1
|
Fracassi A, Seoane A, Brea RJ, Lee HG, Harjung A, Devaraj NK. Abiotic lipid metabolism enables membrane plasticity in artificial cells. Nat Chem 2025:10.1038/s41557-025-01829-5. [PMID: 40404958 DOI: 10.1038/s41557-025-01829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 04/11/2025] [Indexed: 05/24/2025]
Abstract
The plasticity of living cell membranes relies on complex metabolic networks fueled by cellular energy. These metabolic processes exert direct control over membrane properties such as lipid composition and morphological plasticity, which are essential for cellular functions. Despite notable progress in the development of artificial systems mimicking natural membranes, the realization of synthetic membranes capable of sustaining metabolic cycles remains a challenge. Here we present an abiotic phospholipid metabolic network that generates and maintains dynamic artificial cell membranes. Chemical coupling agents drive the in situ synthesis of transiently stable non-canonical phospholipids, leading to the formation and maintenance of phospholipid membranes. We find that phospholipid metabolic cycles can drive lipid self-selection, favouring the enrichment of specific lipid species. Moreover, we demonstrate that controlling lipid metabolism can induce reversible membrane phase transitions, facilitating lipid mixing between distinct populations of artificial membranes. Our work demonstrates that a simple lipid metabolic network can drive dynamic behaviour in artificial membranes, offering insights into mechanisms for engineering functional synthetic compartments.
Collapse
Affiliation(s)
- Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Andrés Seoane
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Roberto J Brea
- Bioinspired Nanochemistry (BioNanoChem) Group, CICA Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, A Coruña, Spain
| | - Hong-Guen Lee
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Alexander Harjung
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Charman M, Weitzman MD. Mysteries of adenovirus packaging. J Virol 2025; 99:e0018025. [PMID: 40243339 PMCID: PMC12090768 DOI: 10.1128/jvi.00180-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
It is conventionally held that most DNA viruses package their genomes by one of two fundamental mechanisms: described by the sequential or concurrent models of assembly and packaging. Sequential packaging involves the translocation of a viral genome into a pre-formed capsid, often referred to as the pro-capsid. In contrast, concurrent packaging does not require the assembly of a pro-capsid. Instead, the genome is condensed, and the capsid shell is formed around the genome. The accumulation of empty particles in adenovirus infected cells has led to the assumption that adenovirus packaging may be best described by the sequential model. However, existing models fail to adequately explain all experimental observations, leaving many mysteries of adenovirus genome packaging unresolved. In this review, we describe key findings in adenovirus assembly and packaging, and we discuss them in the context of the competing models of sequential versus concurrent packaging. We discuss recent findings that have redefined our understanding of adenovirus packaging, including the role of viral biomolecular condensates and visualization of viral assembly and packaging in situ. These advances have renewed interest in the concurrent model of packaging. We anticipate that lessons learned from adenovirus packaging will be highly valuable for the advancement of viral vectors and gene-delivery technologies. In reviewing this topic, we hope to stimulate discussion and facilitate future investigation that will ultimately resolve gaps in knowledge and expand our understanding of DNA virus genome packaging.
Collapse
Affiliation(s)
- Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew D. Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Center for Genome Integrity, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Yuan J, Yang Y, Dai K, Fakhrullin R, Li H, Zhou P, Yuan C, Yan X. Peptide Coacervates: Formation, Mechanism, and Biological Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27697-27712. [PMID: 40304369 DOI: 10.1021/acsami.5c04775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Biomolecular coacervates, dynamic compartments formed via liquid-liquid phase separation (LLPS), are essential for orchestrating intracellular processes and have emerged as versatile tools in bioengineering. Peptides, with their modular amino acid sequences, exhibit unique potential in coacervate design due to their ability to undergo LLPS while offering precise control over molecular architecture and environmental responsiveness. Their simplicity, synthetic accessibility, and tunability make peptide-based coacervates particularly attractive for biomedical and materials applications. However, the formation and stability of these systems depend on a delicate balance of intrinsic factors (e.g., sequence charge, hydrophobicity, and chain length) and extrinsic conditions (e.g., pH, ionic strength, and temperature), necessitating a deeper understanding of their interplay. This review synthesizes recent advances in the molecular mechanisms driving peptide coacervation, emphasizing how sequence design and environmental cues govern phase behavior. We further highlight groundbreaking applications, from drug delivery platforms to protocell mimics, and discuss strategies to translate mechanistic insights into functional materials. By bridging fundamental principles with innovative applications, this work aims to accelerate the development of peptide coacervates as programmable, multifunctional systems, offering a roadmap for next-generation biochemical technologies.
Collapse
Affiliation(s)
- Jiewei Yuan
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Yufan Yang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Dai
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Peng Zhou
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Mugnai ML, Chakraborty D, Nguyen HT, Maksudov F, Kumar A, Zeno W, Stachowiak JC, Straub JE, Thirumalai D. Sizes, conformational fluctuations, and SAXS profiles for intrinsically disordered proteins. Protein Sci 2025; 34:e70067. [PMID: 40095314 PMCID: PMC11912445 DOI: 10.1002/pro.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/31/2024] [Accepted: 02/01/2025] [Indexed: 03/19/2025]
Abstract
The preponderance of intrinsically disordered proteins (IDPs) in the eukaryotic proteome, and their ability to interact with each other, and with folded proteins, RNA, and DNA for functional purposes, have made it important to quantitatively characterize their biophysical properties. Toward this end, we developed the transferable self-organized polymer (SOP-IDP) model to calculate the properties of several IDPs. The values of the radius of gyration (R g $$ {R}_g $$ ) obtained from SOP-IDP simulations are in excellent agreement (correlation coefficient of 0.96) with those estimated from SAXS experiments. For AP180 and Epsin, the predicted values of the hydrodynamic radii (R h s $$ {R}_h\mathrm{s} $$ ) are in nearly quantitative agreement with those from fluorescence correlation spectroscopy (FCS) experiments. Strikingly, the calculated SAXS profiles for 36 IDPs are also nearly superimposable on the experimental profiles. The dependence ofR g $$ {R}_g $$ and the mean end-to-end distance (R ee $$ {R}_{ee} $$ ) on chain length,N $$ N $$ , follows Flory's scaling law,R α ≈ a α N 0.588 $$ {R}_{\alpha}\approx {a}_{\alpha }{N}^{0.588} $$ (α = g , $$ \alpha =g, $$ ande $$ e $$ ), suggesting that globally IDPs behave as synthetic polymers in a good solvent. This finding depends on the solvent quality, which can be altered by changing variables such as pH and salt concentration. The values ofa g $$ {a}_g $$ anda e $$ {a}_e $$ are 0.20 and 0.48 nm, respectively. Surprisingly, finite size corrections to scaling, expected on theoretical grounds, are negligible forR g $$ {R}_g $$ andR ee $$ {R}_{ee} $$ . In contrast, only by accounting for the finite sizes of the IDPs, the dependence of experimentally measurableR h $$ {R}_h $$ onN $$ N $$ can be quantitatively explained usingν = 0.588 $$ \nu =0.588 $$ . Although Flory scaling law captures the estimates forR g $$ {R}_g $$ ,R ee $$ {R}_{ee} $$ , andR h $$ {R}_h $$ accurately, the spread of the simulated data around the theoretical curve is suggestive of of sequence-specific features that emerge through a fine-grained analysis of the conformational ensembles using hierarchical clustering. Typically, the ensemble of conformations partitions into three distinct clusters, having different equilibrium populations and structural properties. Without any further readjustments to the parameters of the SOP-IDP model, we also obtained nearly quantitative agreement with paramagnetic relaxation enhancement (PRE) measurements for α-synuclein. The transferable SOP-IDP model sets the stage for several applications, including the study of phase separation in IDPs and interactions with nucleic acids.
Collapse
Affiliation(s)
- Mauro L. Mugnai
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
- Present address:
Institute of Soft Matter Synthesis and MetrologyGeorgetown UniversityWashington, DCUSA
| | - Debayan Chakraborty
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
- Present address:
The Institute of Mathematical SciencesChennaiIndia
| | - Hung T. Nguyen
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
- Present address:
Department of ChemistryUniversity at BuffaloBuffaloNew YorkUSA
| | - Farkhad Maksudov
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
| | - Abhinaw Kumar
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
| | - Wade Zeno
- Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jeanne C. Stachowiak
- Department of Biomedical EngineeringThe University of Texas at AustinAustinTexasUSA
| | - John E. Straub
- Department of ChemistryBoston UniversityBostonMassachusettsUSA
| | - D. Thirumalai
- Department of ChemistryThe University of Texas at AustinAustinTexasUSA
- Department of PhysicsThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
5
|
Sabari BR, Hyman AA, Hnisz D. Functional specificity in biomolecular condensates revealed by genetic complementation. Nat Rev Genet 2025; 26:279-290. [PMID: 39433596 DOI: 10.1038/s41576-024-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
Biomolecular condensates are thought to create subcellular microenvironments that regulate specific biochemical activities. Extensive in vitro work has helped link condensate formation to a wide range of cellular processes, including gene expression, nuclear transport, signalling and stress responses. However, testing the relationship between condensate formation and function in cells is more challenging. In particular, the extent to which the cellular functions of condensates depend on the nature of the molecular interactions through which the condensates form is a major outstanding question. Here, we review results from recent genetic complementation experiments in cells, and highlight how genetic complementation provides important insights into cellular functions and functional specificity of biomolecular condensates. Combined with observations from human genetic disease, these experiments suggest that diverse condensate-promoting regions within cellular proteins confer different condensate compositions, biophysical properties and functions.
Collapse
Affiliation(s)
- Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Denes Hnisz
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
6
|
Zhou L, Zhu L, Wang C, Xu T, Wang J, Zhang B, Zhang X, Wang H. Multiphasic condensates formed with mono-component of tetrapeptides via phase separation. Nat Commun 2025; 16:2706. [PMID: 40108179 PMCID: PMC11923152 DOI: 10.1038/s41467-025-58060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Biomolecular condensates, formed by liquid-liquid phase separation of biomacromolecules, play crucial roles in regulating physiological events in biological systems. While multiphasic condensates have been extensively studied, those derived from a single component of short peptides have not yet been reported. Here, we report the symmetrical core-shell structural biomolecular condensates formed with a programmable tetrapeptide library via phase separation. Our findings reveal that tryptophan is essential for core-shell structure formation due to its strongest homotypical π-π interaction, enabling us to modulate the structure of condensates from core-shell to homogeneous by altering the amino acid composition. Molecular dynamics simulation combined with cryogenic focused ion beam scanning electron microscopy and cryogenic electron microscopy show that the inner core of multiphasic tetrapeptide condensates is solid-like, consisting of ordered structures. The core is enveloped by a liquid-like shell, stabilizing the core structure. Furthermore, we demonstrate control over multiphasic condensate formation through intrinsic redox reactions or post-translational modifications, facilitating the rational design of synthetic multiphasic condensates for various applications on demand.
Collapse
Affiliation(s)
- Laicheng Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
- Department of Chemistry, School of Science, Westlake University, No. 600 Yungu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Longchen Zhu
- Department of Chemistry, School of Science, Westlake University, No. 600 Yungu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Cong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tengyan Xu
- Department of Chemistry, School of Science, Westlake University, No. 600 Yungu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jing Wang
- Department of Chemistry, School of Science, Westlake University, No. 600 Yungu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Xin Zhang
- Department of Chemistry, School of Science, Westlake University, No. 600 Yungu Road, Hangzhou, 310030, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Research Center for the Industries of the Future, Westlake University, No. 600 Dunyu Road, Sandun Town, Xihu District, Hangzhou, 310030, Zhejiang Province, China.
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University, No. 600 Yungu Road, Hangzhou, 310030, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Research Center for the Industries of the Future, Westlake University, No. 600 Dunyu Road, Sandun Town, Xihu District, Hangzhou, 310030, Zhejiang Province, China.
| |
Collapse
|
7
|
Zhang L, Hodgins L, Sakib S, Verbeem A, Mahmood A, Perez-Romero C, Marmion RA, Dostatni N, Fradin C. Both the transcriptional activator, Bcd, and repressor, Cic, form small mobile oligomeric clusters. Biophys J 2025; 124:980-995. [PMID: 39164967 PMCID: PMC11947476 DOI: 10.1016/j.bpj.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024] Open
Abstract
Transcription factors play an essential role in pattern formation during early embryo development, generating a strikingly fast and precise transcriptional response that results in sharp gene expression boundaries. To characterize the steps leading up to transcription, we performed a side-by-side comparison of the nuclear dynamics of two morphogens, a transcriptional activator, Bicoid (Bcd), and a transcriptional repressor, Capicua (Cic), both involved in body patterning along the anterior-posterior axis of the early Drosophila embryo. We used a combination of fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single-particle tracking to access a wide range of dynamical timescales. Despite their opposite effects on gene transcription, we find that Bcd and Cic have very similar nuclear dynamics, characterized by the coexistence of a freely diffusing monomer population with a number of oligomeric clusters, which range from low stoichiometry and high mobility clusters to larger, DNA-bound hubs. Our observations are consistent with the inclusion of both Bcd and Cic into transcriptional hubs or condensates, while putting constraints on the mechanism by which these form. These results fit in with the recent proposal that many transcription factors might share a common search strategy for target gene regulatory regions that makes use of their large unstructured regions, and may eventually help explain how the transcriptional response they elicit can be at the same time so fast and so precise.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Lydia Hodgins
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Shariful Sakib
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexander Verbeem
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Ahmad Mahmood
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Carmina Perez-Romero
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Robert A Marmion
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Nathalie Dostatni
- Institut Curie, PSL University, CNRS, Sorbonne University, Nuclear Dynamics, Paris, France
| | - Cécile Fradin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
8
|
Emelianova A, Garcia PL, Tan D, Joseph JA. Prediction of small-molecule partitioning into biomolecular condensates from simulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641530. [PMID: 40093099 PMCID: PMC11908252 DOI: 10.1101/2025.03.04.641530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Predicting small-molecule partitioning into biomolecular condensates is key to developing drugs that selectively target aberrant condensates. However, the molecular mechanisms underlying small-molecule partitioning remain largely unknown. Here, we first exploit atomistic molecular dynamics simulations of model condensates to elucidate physicochemical rules governing small-molecule partitioning. We find that while hydrophobicity is a major determinant, solubility becomes a stronger regulator of partitioning in more polar condensates. Additionally, more polar condensates exhibit selectivity toward certain compounds, suggesting that condensate-specific therapeutics can be engineered. Building on these insights, we develop minimal models (MAPPS) for efficient prediction of small-molecule partitioning into biologically relevant condensates. We demonstrate that this approach reproduces atomistic partition coefficients in both model systems and condensates composed of the low complexity domain (LCD) of FUS. Applying MAPPS to various LCD-based condensates shows that protein sequence can exert a selective pressure, thereby influencing small-molecule partitioning. Collectively, our findings reveal that partitioning is driven by both small-molecule-protein affinity and the complex interplay between the compounds and the condensate chemical environment.
Collapse
Affiliation(s)
- Alina Emelianova
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Pablo L. Garcia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel Tan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jerelle A. Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Omenn–Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
9
|
Hess N, Joseph JA. Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function. Trends Biochem Sci 2025; 50:206-223. [PMID: 39827079 DOI: 10.1016/j.tibs.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates are membraneless organelles that concentrate proteins and nucleic acids. One of the primary components of condensates is multidomain proteins, whose domains can be broadly classified as structured and disordered. While structured protein domains are ubiquitous within biomolecular condensates, the physical ramifications of their unique properties have been relatively underexplored. Therefore, this review synthesizes current literature pertaining to structured protein domains within the context of condensates. We examine how the propensity of structured domains for high interaction specificity and low conformational heterogeneity contributes to the formation, material properties, and functions of biomolecular condensates. Finally, we propose unanswered questions on the behavior of structured protein domains within condensates, the answers of which will contribute to a more complete understanding of condensate biophysics.
Collapse
Affiliation(s)
- Nathaniel Hess
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jerelle A Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
10
|
Li S, Chen J. Driving Forces of RNA Condensation Revealed through Coarse-Grained Modeling with Explicit Mg 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.17.624048. [PMID: 39605385 PMCID: PMC11601354 DOI: 10.1101/2024.11.17.624048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
RNAs are major drivers of phase separation in the formation of biomolecular condensates, and can undergo protein-free phase separation in the presence of divalent ions or crowding agents. Much remains to be understood regarding how the complex interplay of base stacking, base pairing, electrostatics, ion interactions, and particularly structural propensities governs RNA phase behavior. Here we develop an intermediate resolution model for condensates of RNAs (iConRNA) that can capture key local and long-range structure features of dynamic RNAs and simulate their spontaneous phase transitions with Mg2+. Representing each nucleotide using 6-7 beads, iConRNA accurately captures base stacking and pairing and includes explicit Mg2+. The model does not only reproduce major conformational properties of poly(rA) and poly(rU), but also correctly folds small structured RNAs and predicts their melting temperatures. With an effective model of explicit Mg2+, iConRNA successfully recapitulates experimentally observed lower critical solution temperature phase separation of poly(rA) and triplet repeats, and critically, the nontrivial dependence of phase transitions on RNA sequence, length, concentration, and Mg2+ level. Further mechanistic analysis reveals a key role of RNA folding in modulating phase separation as well as its temperature and ion dependence, besides other driving forces such as Mg2+-phosphate interactions, base stacking, and base pairing. These studies also support iConRNA as a powerful tool for direct simulation of RNA-driven phase transitions, enabling molecular studies of how RNA conformational dynamics and its response to complex condensate environment control the phase behavior and condensate material properties. SIGNIFICANCE STATEMENT Dynamic RNAs and proteins are major drivers of biomolecular phase separation that has been recently discovered to underlie numerous biological processes and be involved in many human diseases. Molecular simulation has an indispensable role to play in dissecting the driving forces and regulation of biomolecular phase separation. The current work describes a high-resolution coarse-grained RNA model that is capable of describing the structure dynamics and complex sequence, concentration, temperature and ion dependent phase transitions of flexible RNAs. The study further reveals a central role of RNA folding in coordinating Mg2+-phosphate interactions, base stacking, and base pairing to drive phase separation, paving the road for studies of RNA-mediated phase separation in relevant biological contexts.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Zechner C, Jülicher F. Concentration buffering and noise reduction in non-equilibrium phase-separating systems. Cell Syst 2025; 16:101168. [PMID: 39922189 DOI: 10.1016/j.cels.2025.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/10/2024] [Accepted: 01/02/2025] [Indexed: 02/10/2025]
Abstract
Biomolecular condensates have been proposed to buffer intracellular concentrations and reduce noise. However, concentrations need not be buffered in multicomponent systems, leading to a non-constant saturation concentration (csat) when individual components are varied. Simplified equilibrium considerations suggest that noise reduction might be closely related to concentration buffering and that a fixed saturation concentration is required for noise reduction to be effective. Here, we present a theoretical analysis to demonstrate that these suggestions do not apply to mesoscopic fluctuating systems. We show that concentration buffering and noise reduction are distinct concepts, which cannot be used interchangeably. We further demonstrate that concentration buffering and a constant csat are neither necessary nor sufficient for noise reduction to be effective. Clarity about these concepts is important for studying the role of condensates in controlling cellular noise and for the interpretation of concentration relationships in cells. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Christoph Zechner
- Center for Systems Biology Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany; Faculty of Computer Science, TU Dresden, Dresden, Germany.
| | - Frank Jülicher
- Center for Systems Biology Dresden, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
12
|
Biswas S, Potoyan DA. Decoding biomolecular condensate dynamics: an energy landscape approach. PLoS Comput Biol 2025; 21:e1012826. [PMID: 39928699 PMCID: PMC11841893 DOI: 10.1371/journal.pcbi.1012826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/20/2025] [Accepted: 01/23/2025] [Indexed: 02/12/2025] Open
Abstract
Many eukaryotic proteins and RNAs contain low-complexity domains (LCDs) with a strong propensity for binding and driving phase separation into biomolecular condensates. Mutations in LCDs frequently disrupt condensate dynamics, resulting in pathological transitions to solid-like states. Understanding how the molecular sequence grammar of LCDs governs condensate dynamics is essential for uncovering their biological functions and the evolutionary forces that shape these sequences. To this end, we present an energy landscape framework that operates on a continuous 'stickiness' energy scale rather than relying on an explicit alphabet-based sequence. Sequences are characterized by Wasserstein distance relative to thoroughly shuffled or random counterparts. Armed with an energy landscape framework, map diagrams of material and dynamical properties governed by key energy landscape features modulated by the degree of complexity in LCD arrangements, including the periodicity and local disorder in LCDs. Highly periodic LCD patterns promote elasticity-dominated behavior, while random sequences exhibit viscosity-dominated properties. Our results reveal that minimum sticker periodicity is crucial for maintaining fluidity in condensates, thereby avoiding transitions to glassy or solid-like states. Moreover, we demonstrate that the energy landscape framework explains the recent experimental findings on prion domains and predicts systematic alterations in condensate viscoelasticity. Our work provides a unifying perspective on the sequence-encoded material properties whereby key features of energy landscapes are conserved while sequences are variable.
Collapse
Affiliation(s)
- Subhadip Biswas
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
13
|
Liao Y, Fan C, Zheng J, Liu C, Zhu W, Xu Y, Qian X, Yang Y. Enhanced liquid-liquid phase separation of stress granules in a reconstructed model and their cytoplasmic targeting using a DNA nanodevice. J Mater Chem B 2025; 13:1744-1752. [PMID: 39704478 DOI: 10.1039/d4tb02161d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Biomolecular condensates (BCs) are crucial membraneless organelles formed through the process of liquid-liquid phase separation (LLPS) involving proteins and nucleic acids. These LLPS processes are tightly linked with essential cellular activities. Stress granules (SGs), functioning as cytoplasmic BCs, play indispensable roles in maintaining cellular homeostasis and are implicated in diseases like cancers and neurodegenerative disorders. However, devices that can regulate SG LLPS are lacking. Herein, a triangular prism-shaped DNA nanostructure containing polythymidine (ΔDNA(polyT)) is presented as a nanodevice to investigate the LLPS process of in vitro reconstructed SGs (rSGs), a mixture of marker protein G3BP1 and total RNAs. Our observations reveal that the concentration threshold required for rSG LLPS decreases upon addition of ΔDNA(polyT), suggesting an enhancement in SG LLPS efficiency. It is speculated that ΔDNA(polyT) can concentrate mRNAs onto its surface via polyT hybridization with poly-adenosine sequences (polyA) in mRNAs. This alteration in the spatial distribution of mRNAs subsequently affects the multivalency interactions between G3BP1 and mRNAs. Furthermore, ΔDNA(polyT) exhibits excellent colocalization with cytoplasmic SGs under stressed conditions. This DNA-based nanodevice presents a new artificial approach for the targeted regulation of BC LLPS and holds promise for future studies focusing on BCs.
Collapse
Affiliation(s)
- Yue Liao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chunyu Fan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jiaxin Zheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Caixia Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
14
|
Catherall E, Musial S, Atkinson N, Walker CE, Mackinder LCM, McCormick AJ. From algae to plants: understanding pyrenoid-based CO 2-concentrating mechanisms. Trends Biochem Sci 2025; 50:33-45. [PMID: 39592300 DOI: 10.1016/j.tibs.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Pyrenoids are the key component of one of the most abundant biological CO2 concentration mechanisms found in nature. Pyrenoid-based CO2-concentrating mechanisms (pCCMs) are estimated to account for one third of global photosynthetic CO2 capture. Our molecular understanding of how pyrenoids work is based largely on work in the green algae Chlamydomonas reinhardtii. Here, we review recent advances in our fundamental knowledge of the biogenesis, architecture, and function of pyrenoids in Chlamydomonas and ongoing engineering biology efforts to introduce a functional pCCM into chloroplasts of vascular plants, which, if successful, has the potential to enhance crop productivity and resilience to climate change.
Collapse
Affiliation(s)
- Ella Catherall
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sabina Musial
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte E Walker
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
15
|
Guo L, Hong T, Lee YT, Hu X, Pan G, Zhao R, Yang Y, Yang J, Cai X, Rivera L, Liang J, Wang R, Dou Y, Kodali S, Li W, Han L, Di Stefano B, Zhou Y, Li J, Huang Y. Perturbing TET2 condensation promotes aberrant genome-wide DNA methylation and curtails leukaemia cell growth. Nat Cell Biol 2024; 26:2154-2167. [PMID: 39251719 DOI: 10.1038/s41556-024-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
The ten-eleven translocation (TET) family of dioxygenases maintain stable local DNA demethylation during cell division and lineage specification. As the major catalytic product of TET enzymes, 5-hydroxymethylcytosine is selectively enriched at specific genomic regions, such as enhancers, in a tissue-dependent manner. However, the mechanisms underlying this selectivity remain unresolved. Here we unveil a low-complexity insert domain within TET2 that facilitates its biomolecular condensation with epigenetic modulators, such as UTX and MLL4. This co-condensation fosters a permissive chromatin environment for precise DNA demethylation. Disrupting low-complexity insert-mediated condensation alters the genomic binding of TET2 to cause promiscuous DNA demethylation and genome reorganization. These changes influence the expression of key genes implicated in leukaemogenesis to curtail leukaemia cell proliferation. Collectively, this study establishes the pivotal role of TET2 condensation in orchestrating precise DNA demethylation and gene transcription to support tumour cell growth.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Tingting Hong
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yi-Tsang Lee
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Xue Hu
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Guokai Pan
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Rongjie Zhao
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yuhan Yang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jingwen Yang
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Xiaoli Cai
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Logan Rivera
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jie Liang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Rui Wang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yaling Dou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Leng Han
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
| | - Jia Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
- Department of Laboratory Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA.
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
16
|
Andrade GCD, Mota MF, Moreira-Ferreira DN, Silva JL, de Oliveira GAP, Marques MA. Protein aggregation in health and disease: A looking glass of two faces. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 145:145-217. [PMID: 40324846 DOI: 10.1016/bs.apcsb.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein molecules organize into an intricate alphabet of twenty amino acids and five architecture levels. The jargon "one structure, one functionality" has been challenged, considering the amount of intrinsically disordered proteins in the human genome and the requirements of hierarchical hetero- and homo-protein complexes in cell signaling. The assembly of large protein structures in health and disease is now viewed through the lens of phase separation and transition phenomena. What drives protein misfolding and aggregation? Or, more fundamentally, what hinders proteins from maintaining their native conformations, pushing them toward aggregation? Here, we explore the principles of protein folding, phase separation, and aggregation, which hinge on crucial events such as the reorganization of solvents, the chemical properties of amino acids, and their interactions with the environment. We focus on the dynamic shifts between functional and dysfunctional states of proteins and the conditions that promote protein misfolding, often leading to disease. By exploring these processes, we highlight potential therapeutic avenues to manage protein aggregation and reduce its harmful impacts on health.
Collapse
Affiliation(s)
- Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Dinarte N Moreira-Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, Rio De Janeiro, RJ, Brazil.
| |
Collapse
|
17
|
Zhang R, Yang W, Zhang R, Rijal S, Youssef A, Zheng W, Tian XJ. Phase Separation to Resolve Growth-Related Circuit Failures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621586. [PMID: 39554057 PMCID: PMC11565989 DOI: 10.1101/2024.11.01.621586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Fluctuations in host cell growth poses a significant challenge to synthetic gene circuits, often disrupting circuit function. Existing solutions typically rely on circuit redesign with alternative topologies or additional control elements, yet a broadly applicable approach remains elusive. Here, we introduce a new strategy based on liquid-liquid phase separation (LLPS) to stabilize circuit performance. By engineering a self-activating circuit with transcription factors (TF) fused to an intrinsically disordered region (IDR), we enable the formation of TF condensates at the promoter region, maintaining local TF concentration despite growth-mediated dilution. This condensate formation preserves bistable memory in the self-activating circuit, demonstrating that phase separation can robustly counteract growth fluctuations, offering a novel design principle for resilient synthetic circuits.
Collapse
|
18
|
Ambadi Thody S, Clements HD, Baniasadi H, Lyon AS, Sigman MS, Rosen MK. Small-molecule properties define partitioning into biomolecular condensates. Nat Chem 2024; 16:1794-1802. [PMID: 39271915 PMCID: PMC11527791 DOI: 10.1038/s41557-024-01630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Biomolecular condensates regulate cellular function by compartmentalizing molecules without a surrounding membrane. Condensate function arises from the specific exclusion or enrichment of molecules. Thus, understanding condensate composition is critical to characterizing condensate function. Whereas principles defining macromolecular composition have been described, understanding of small-molecule composition remains limited. Here we quantified the partitioning of ~1,700 biologically relevant small molecules into condensates composed of different macromolecules. Partitioning varied nearly a million-fold across compounds but was correlated among condensates, indicating that disparate condensates are physically similar. For one system, the enriched compounds did not generally bind macromolecules with high affinity under conditions where condensates do not form, suggesting that partitioning is not governed by site-specific interactions. Correspondingly, a machine learning model accurately predicts partitioning using only computed physicochemical features of the compounds, chiefly those related to solubility and hydrophobicity. These results suggest that a hydrophobic environment emerges upon condensate formation, driving the enrichment and exclusion of small molecules.
Collapse
Affiliation(s)
- Sabareesan Ambadi Thody
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Hanna D Clements
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Hamid Baniasadi
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andrew S Lyon
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Sun Y, Hsieh T, Lin C, Shao W, Lin Y, Huang J. A Few Charged Residues in Galectin-3's Folded and Disordered Regions Regulate Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402570. [PMID: 39248370 PMCID: PMC11538691 DOI: 10.1002/advs.202402570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/25/2024] [Indexed: 09/10/2024]
Abstract
Proteins with intrinsically disordered regions (IDRs) often undergo phase separation to control their functions spatiotemporally. Changing the pH alters the protonation levels of charged sidechains, which in turn affects the attractive or repulsive force for phase separation. In a cell, the rupture of membrane-bound compartments, such as lysosomes, creates an abrupt change in pH. However, how proteins' phase separation reacts to different pH environments remains largely unexplored. Here, using extensive mutagenesis, NMR spectroscopy, and biophysical techniques, it is shown that the assembly of galectin-3, a widely studied lysosomal damage marker, is driven by cation-π interactions between positively charged residues in its folded domain with aromatic residues in the IDR in addition to π-π interaction between IDRs. It is also found that the sole two negatively charged residues in its IDR sense pH changes for tuning the condensation tendency. Also, these two residues may prevent this prion-like IDR domain from forming rapid and extensive aggregates. These results demonstrate how cation-π, π-π, and electrostatic interactions can regulate protein condensation between disordered and structured domains and highlight the importance of sparse negatively charged residues in prion-like IDRs.
Collapse
Affiliation(s)
- Yung‐Chen Sun
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Tsung‐Lun Hsieh
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Chia‐I Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Wan‐Yu Shao
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Yu‐Hao Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Jie‐rong Huang
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Institute of Biomedical InformaticsNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| |
Collapse
|
20
|
Santamaria A, Hutin S, Doucet CM, Zubieta C, Milhiet PE, Costa L. Quantifying surface tension and viscosity in biomolecular condensates by FRAP-ID. Biophys J 2024; 123:3366-3374. [PMID: 39113361 PMCID: PMC11480758 DOI: 10.1016/j.bpj.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Many proteins with intrinsically disordered regions undergo liquid-liquid phase separation under specific conditions in vitro and in vivo. These complex biopolymers form a metastable phase with distinct mechanical properties defining the timescale of their biological functions. However, determining these properties is nontrivial, even in vitro, and often requires multiple techniques. Here we report the measurement of both viscosity and surface tension of biomolecular condensates via correlative fluorescence microscopy and atomic force microscopy (AFM) in a single experiment (fluorescence recovery after probe-induced dewetting, FRAP-ID). Upon surface tension evaluation via regular AFM-force spectroscopy, controlled AFM indentations induce dry spots in fluorescent condensates on a glass coverslip. The subsequent rewetting exhibits a contact line velocity that is used to quantify the condensed-phase viscosity. Therefore, in contrast with fluorescence recovery after photobleaching (FRAP), where molecular diffusion is observed, in FRAP-ID fluorescence recovery is obtained through fluid rewetting and the subsequent morphological relaxation. We show that the latter can be used to cross-validate viscosity values determined during the rewetting regime. Making use of fluid mechanics, FRAP-ID is a valuable tool to evaluate the mechanical properties that govern the dynamics of biomolecular condensates and determine how these properties impact the temporal aspects of condensate functionality.
Collapse
Affiliation(s)
- Andreas Santamaria
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Stephanie Hutin
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble, France
| | - Christine M Doucet
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, Grenoble, France
| | - Pierre-Emmanuel Milhiet
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France
| | - Luca Costa
- Center for Structural Biology (CBS), CNRS, INSERM, Montpellier University, Montpellier, France.
| |
Collapse
|
21
|
Biswas S, Potoyan DA. Decoding Biomolecular Condensate Dynamics: An Energy Landscape Approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614805. [PMID: 39386612 PMCID: PMC11463539 DOI: 10.1101/2024.09.24.614805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A significant fraction of eukaryotic proteins contain low-complexity sequence elements with unknown functions. Many of these sequences are prone to form biomolecular condensates with unique material and dynamic properties. Mutations in low-complexity regions often result in abnormal phase transitions into pathological solid-like states. Therefore, understanding how the low-complexity sequence patterns encode the material properties of condensates is crucial for uncovering the cellular functions and evolutionary forces behind the emergence of low-complexity regions in proteins. In this work, we employ an alphabet-free energy landscape framework of the stickers and spacers to dissect how the low complexity patterns of proteins encode the material properties of condensates. We find a broad phase diagram of material properties determined by distinct energy landscape features, showing that periodic repeat motifs promote elastic-dominated while random sequences are viscous-dominated properties. We find that a certain degree of sticker periodicity is necessary to maintain the fluidity of condensates, preventing them from forming glassy or solid-like states. Finally, we show that the energy landscape framework captures viscoelastic trends seen in the recent experiments on prion domains and makes predictions for systematic variation of protein condensate viscoelasticity via altering the periodicity and strength of sticker motifs. TOC Graphic
Collapse
|
22
|
Chen C, Ganar KA, de Haas RJ, Jarnot N, Hogeveen E, de Vries R, Deshpande S. Elastin-like polypeptide coacervates as reversibly triggerable compartments for synthetic cells. Commun Chem 2024; 7:198. [PMID: 39232074 PMCID: PMC11374812 DOI: 10.1038/s42004-024-01270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Compartmentalization is a vital aspect of living cells to orchestrate intracellular processes. In a similar vein, constructing dynamic and responsive sub-compartments is key to synthetic cell engineering. In recent years, liquid-liquid phase separation via coacervation has offered an innovative avenue for creating membraneless organelles (MOs) within artificial cells. Here, we present a lab-on-a-chip system to reversibly trigger peptide-based coacervates within cell-mimicking confinements. We use double emulsion droplets (DEs) as our synthetic cell containers while pH-responsive elastin-like polypeptides (ELPs) act as the coacervate system. We first present a high-throughput microfluidic DE production enabling efficient encapsulation of the ELPs. The DEs are then harvested to perform multiple MO formation-dissolution cycles using pH as well as temperature variation. For controlled long-term visualization and modulation of the external environment, we developed an integrated microfluidic device for trapping and environmental stimulation of DEs, with negligible mechanical force, and demonstrated a proof-of-principle osmolyte-based triggering to induce multiple MO formation-dissolution cycles. In conclusion, our work showcases the use of DEs and ELPs in designing membraneless reversible compartmentalization within synthetic cells via physicochemical triggers. Additionally, presented on-chip platform can be applied over a wide range of phase separation and vesicle systems for applications in synthetic cells and beyond.
Collapse
Affiliation(s)
- Chang Chen
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ketan A Ganar
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Robbert J de Haas
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Nele Jarnot
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Erwin Hogeveen
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Renko de Vries
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Chattaraj A, Baltaci Z, Chung S, Mayer BJ, Loew LM, Ditlev JA. Measurement of solubility product reveals the interplay of oligomerization and self-association for defining condensate formation. Mol Biol Cell 2024; 35:ar122. [PMID: 39046778 PMCID: PMC11449392 DOI: 10.1091/mbc.e24-01-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Cellular condensates often consist of 10s to 100s of distinct interacting molecular species. Because of the complexity of these interactions, predicting the point at which they will undergo phase separation is daunting. Using experiments and computation, we therefore studied a simple model system consisting of polySH3 and polyPRM designed for pentavalent heterotypic binding. We tested whether the peak solubility product, or the product of the dilute phase concentration of each component, is a predictive parameter for the onset of phase separation. Titrating up equal total concentrations of each component showed that the maximum solubility product does approximately coincide with the threshold for phase separation in both experiments and models. However, we found that measurements of dilute phase concentration include small oligomers and monomers; therefore, a quantitative comparison of the experiments and models required inclusion of small oligomers in the model analysis. Even with the inclusion of small polyPRM and polySH3 oligomers, models did not predict experimental results. This led us to perform dynamic light scattering experiments, which revealed homotypic binding of polyPRM. Addition of this interaction to our model recapitulated the experimentally observed asymmetry. Thus, comparing experiments with simulation reveals that the solubility product can be predictive of the interactions underlying phase separation, even if small oligomers and low affinity homotypic interactions complicate the analysis.
Collapse
Affiliation(s)
- Aniruddha Chattaraj
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Zeynep Baltaci
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Steve Chung
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
| | - Bruce J. Mayer
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Leslie M. Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Jonathon A. Ditlev
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
24
|
Jo M, Kim S, Park J, Chang YT, Gwon Y. Reduced dynamicity and increased high-order protein assemblies in dense fibrillar component of the nucleolus under cellular senescence. Redox Biol 2024; 75:103279. [PMID: 39111063 PMCID: PMC11347067 DOI: 10.1016/j.redox.2024.103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Cellular senescence, which is triggered by various stressors, manifests as irreversible cell cycle arrest, resulting in the disruption of multiple nuclear condensates. One of the affected structures is the nucleolus, whose tripartite layout, separated into distinct liquid phases, allows for the stepwise progression of ribosome biogenesis. The dynamic properties of dense fibrillar components, a sub-nucleolar phase, are crucial for mediating pre-rRNA processing. However, the mechanistic link between the material properties of dense fibrillar components and cellular senescence remains unclear. We established a significant association between cellular senescence and alterations in nucleolar materiality and characteristics, including the number, size, and sphericity of individual subphases of the nucleolus. Senescent cells exhibit reduced fibrillarin dynamics, aberrant accumulation of high-order protein assemblies, such as oligomers and fibrils, and increased dense fibrillar component density. Intriguingly, the addition of RNA-interacting entities mirrored the diminished diffusion of fibrillarin in the nucleolus during cellular senescence. Thus, our findings contribute to a broader understanding of the intricate changes in the materiality of the nucleolus associated with cellular senescence and shed light on nucleolar dynamics in the context of aging and cellular stress.
Collapse
Affiliation(s)
- Minjeong Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Soomin Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jeongeun Park
- Department of MetaBioHealth, Sungkyunkwan University Institute for Convergence, Suwon, 16419, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youngdae Gwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University Institute for Convergence, Suwon, 16419, Republic of Korea; KIST-SKKU Brain Research Center, Sungkyunkwan University Institute for Convergence, Suwon, 16419, Republic of Korea.
| |
Collapse
|
25
|
Kamano S, Ozawa D, Ikenaka K, Nagai Y. Role of Lipids in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:8935. [PMID: 39201619 PMCID: PMC11354291 DOI: 10.3390/ijms25168935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Aggregation of α-synuclein (αSyn) and its accumulation as Lewy bodies play a central role in the pathogenesis of Parkinson's disease (PD). However, the mechanism by which αSyn aggregates in the brain remains unclear. Biochemical studies have demonstrated that αSyn interacts with lipids, and these interactions affect the aggregation process of αSyn. Furthermore, genetic studies have identified mutations in lipid metabolism-associated genes such as glucocerebrosidase 1 (GBA1) and synaptojanin 1 (SYNJ1) in sporadic and familial forms of PD, respectively. In this review, we focus on the role of lipids in triggering αSyn aggregation in the pathogenesis of PD and propose the possibility of modulating the interaction of lipids with αSyn as a potential therapy for PD.
Collapse
Grants
- 24H00630 Ministry of Education, Culture, Sports, Science and Technology
- 21H02840 Ministry of Education, Culture, Sports, Science and Technology
- 17K19658 Ministry of Education, Culture, Sports, Science and Technology
- 20H05927 Ministry of Education, Culture, Sports, Science and Technology
- JP16ek0109018 Japan Agency for Medical Research and Development
- JP19ek0109222 Japan Agency for Medical Research and Development
- 30-3 National Center of Neurology and Psychiatry
- 30-9 National Center of Neurology and Psychiatry
- 3-9 National Center of Neurology and Psychiatry
- 6-9 National Center of Neurology and Psychiatry
Collapse
Affiliation(s)
- Shumpei Kamano
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Daisaku Ozawa
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan;
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan; (S.K.); (D.O.)
- Life Science Research Institute, Kindai University, Osaka-Sayama 589-8511, Osaka, Japan
| |
Collapse
|
26
|
Yu Y, Liu Q, Zeng J, Tan Y, Tang Y, Wei G. Multiscale simulations reveal the driving forces of p53C phase separation accelerated by oncogenic mutations. Chem Sci 2024; 15:12806-12818. [PMID: 39148776 PMCID: PMC11323318 DOI: 10.1039/d4sc03645j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Liquid-Liquid phase separation (LLPS) of p53 to form liquid condensates has been implicated in cellular functions and dysfunctions. The p53 condensates may serve as amyloid fibril precursors to initiate p53 aggregation, which is associated with oncogenic gain-of-function and various human cancers. M237I and R249S mutations located in p53 core domain (p53C) have been detected respectively in glioblastomas and hepatocellular carcinoma. Interestingly, these p53C mutants can also undergo LLPS and liquid-to-solid phase transition, which are faster than wild type p53C. However, the underlying molecular basis governing the accelerated LLPS and liquid-to-solid transition of p53C remain poorly understood. Herein, we explore the M237I/R249S mutation-induced structural alterations and phase separation behavior of p53C by employing multiscale molecular dynamics simulations. All-atom simulations revealed conformational disruptions in the zinc-binding domain of the M237I mutant and in both loop3 and zinc-binding domain of the R249S mutant. The two mutations enhance hydrophobic exposure of those regions and attenuate intramolecular interactions, which may hasten the LLPS and aggregation of p53C. Martini 3 coarse-grained simulations demonstrated spontaneous phase separation of p53C and accelerated effects of M237I/R249S mutations on the phase separation of p53C. Importantly, we find that the regions with enhanced intermolecular interactions observed in coarse-grained simulations coincide with the disrupted regions with weakened intramolecular interactions observed in all-atom simulations, indicating that M237I/R249S mutation-induced local structural disruptions expedite the LLPS of p53C. This study unveils the molecular mechanisms underlying the two cancer-associated mutation-accelerated LLPS and aggregation of p53C, providing avenues for anticancer therapy by targeting the phase separation process.
Collapse
Affiliation(s)
- Yawei Yu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Qian Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Jiyuan Zeng
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yuan Tan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University Shanghai 200438 People's Republic of China
| |
Collapse
|
27
|
Nicy, Morgan JWR, Wales DJ. Energy landscapes for clusters of hexapeptides. J Chem Phys 2024; 161:054112. [PMID: 39092941 DOI: 10.1063/5.0220652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
We present the results for energy landscapes of hexapeptides obtained using interfaces to the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) program. We have used basin-hopping global optimization and discrete path sampling to explore the landscapes of hexapeptide monomers, dimers, and oligomers containing 10, 100, and 200 monomers modeled using a residue-level coarse-grained potential, Mpipi, implemented in LAMMPS. We find that the dimers of peptides containing amino acid residues that are better at promoting phase separation, such as tyrosine and arginine, have melting peaks at higher temperature in their heat capacity compared to phenylalanine and lysine, respectively. This observation correlates with previous work on the same uncapped hexapeptide monomers modeled using atomistic potential. For oligomers, we compare the variation in monomer conformations with radial distance and observe trends for selected angles calculated for each monomer. The LAMMPS interfaces to the GMIN and OPTIM programs for landscape exploration offer new opportunities to investigate larger systems and provide access to the coarse-grained potentials implemented within LAMMPS.
Collapse
Affiliation(s)
- Nicy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John W R Morgan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
28
|
Barkley RJR, Crowley JC, Brodrick AJ, Zipfel WR, Parker JSL. Fluorescent protein tags affect the condensation properties of a phase-separating viral protein. Mol Biol Cell 2024; 35:ar100. [PMID: 38809580 PMCID: PMC11244164 DOI: 10.1091/mbc.e24-01-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Fluorescent protein (FP) tags are extensively used to visualize and characterize the properties of biomolecular condensates despite a lack of investigation into the effects of these tags on phase separation. Here, we characterized the dynamic properties of µNS, a viral protein hypothesized to undergo phase separation and the main component of mammalian orthoreovirus viral factories. Our interest in the sequence determinants and nucleation process of µNS phase separation led us to compare the size and density of condensates formed by FP::µNS to the untagged protein. We found an FP-dependent increase in droplet size and density, which suggests that FP tags can promote µNS condensation. To further assess the effect of FP tags on µNS droplet formation, we fused FP tags to µNS mutants to show that the tags could variably induce phase separation of otherwise noncondensing proteins. By comparing fluorescent constructs with untagged µNS, we identified mNeonGreen as the least artifactual FP tag that minimally perturbed µNS condensation. These results show that FP tags can promote phase separation and that some tags are more suitable for visualizing and characterizing biomolecular condensates with minimal experimental artifacts.
Collapse
Affiliation(s)
- Russell J. R. Barkley
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Jack C. Crowley
- School of Applied and Engineering Physics, College of Engineering, Cornell University, Ithaca, NY 14850
| | - Andrew J. Brodrick
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Warren R. Zipfel
- School of Applied and Engineering Physics, College of Engineering, Cornell University, Ithaca, NY 14850
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14850
| | - John S. L. Parker
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| |
Collapse
|
29
|
Fukata Y, Fukata M, MacGillavry HD, Nair D, Hosy E. Celebrating the Birthday of AMPA Receptor Nanodomains: Illuminating the Nanoscale Organization of Excitatory Synapses with 10 Nanocandles. J Neurosci 2024; 44:e2104232024. [PMID: 38839340 PMCID: PMC11154862 DOI: 10.1523/jneurosci.2104-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/07/2024] Open
Abstract
A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR5297, Bordeaux F-33000, France
| |
Collapse
|
30
|
Bokros M, Balukoff NC, Grunfeld A, Sebastiao M, Beurel E, Bourgault S, Lee S. RNA tailing machinery drives amyloidogenic phase transition. Proc Natl Acad Sci U S A 2024; 121:e2316734121. [PMID: 38805292 PMCID: PMC11161805 DOI: 10.1073/pnas.2316734121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
The RNA tailing machinery adds nucleotides to the 3'-end of RNA molecules that are implicated in various biochemical functions, including protein synthesis and RNA stability. Here, we report a role for the RNA tailing machinery as enzymatic modifiers of intracellular amyloidogenesis. A targeted RNA interference screen identified Terminal Nucleotidyl-transferase 4b (TENT4b/Papd5) as an essential participant in the amyloidogenic phase transition of nucleoli into solid-like Amyloid bodies. Full-length-and-mRNA sequencing uncovered starRNA, a class of unusually long untemplated RNA molecules synthesized by TENT4b. StarRNA consists of short rRNA fragments linked to long, linear mixed tails that operate as polyanionic stimulators of amyloidogenesis in cells and in vitro. Ribosomal intergenic spacer noncoding RNA (rIGSRNA) recruit TENT4b in intranucleolar foci to coordinate starRNA synthesis driving their amyloidogenic phase transition. The exoribonuclease RNA Exosome degrades starRNA and functions as a general suppressor of cellular amyloidogenesis. We propose that amyloidogenic phase transition is under tight enzymatic control by the RNA tailing and exosome axis.
Collapse
Affiliation(s)
- Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Cancer Epigenetics Program, University of Miami, Miami, FL33136
| | - Nathan C. Balukoff
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Cancer Epigenetics Program, University of Miami, Miami, FL33136
| | - Alex Grunfeld
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Cancer Epigenetics Program, University of Miami, Miami, FL33136
| | - Mathew Sebastiao
- Department of Chemistry, Université du Québec à Montréal, MontrealQCH3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Montreal, QCH3C 3P8, Canada
| | - Eléonore Beurel
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL33136
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL33136
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, MontrealQCH3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Montreal, QCH3C 3P8, Canada
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Cancer Epigenetics Program, University of Miami, Miami, FL33136
| |
Collapse
|
31
|
Chew PY, Joseph JA, Collepardo-Guevara R, Reinhardt A. Aromatic and arginine content drives multiphasic condensation of protein-RNA mixtures. Biophys J 2024; 123:1342-1355. [PMID: 37408305 PMCID: PMC11163273 DOI: 10.1016/j.bpj.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Multiphasic architectures are found ubiquitously in biomolecular condensates and are thought to have important implications for the organization of multiple chemical reactions within the same compartment. Many of these multiphasic condensates contain RNA in addition to proteins. Here, we investigate the importance of different interactions in multiphasic condensates comprising two different proteins and RNA using computer simulations with a residue-resolution coarse-grained model of proteins and RNA. We find that in multilayered condensates containing RNA in both phases, protein-RNA interactions dominate, with aromatic residues and arginine forming the key stabilizing interactions. The total aromatic and arginine content of the two proteins must be appreciably different for distinct phases to form, and we show that this difference increases as the system is driven toward greater multiphasicity. Using the trends observed in the different interaction energies of this system, we demonstrate that we can also construct multilayered condensates with RNA preferentially concentrated in one phase. The "rules" identified can thus enable the design of synthetic multiphasic condensates to facilitate further study of their organization and function.
Collapse
Affiliation(s)
- Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jerelle A Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Physics, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
32
|
Zhang M, Zhang Z, Niu X, Ti H, Zhou Y, Gao B, Li Y, Liu J, Chen X, Li H. Interplay Between Intracellular Transport Dynamics and Liquid‒Liquid Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308338. [PMID: 38447188 PMCID: PMC11109639 DOI: 10.1002/advs.202308338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Liquid‒liquid phase separation (LLPS) is a ubiquitous process in which proteins, RNA, and biomolecules assemble into membrane-less compartments, playing important roles in many biological functions and diseases. The current knowledge on the biophysical and biochemical principles of LLPS is largely from in vitro studies; however, the physiological environment in living cells is complex and not at equilibrium. The characteristics of intracellular dynamics and their roles in physiological LLPS remain to be resolved. Here, by using single-particle tracking of quantum dots and dynamic monitoring of the formation of stress granules (SGs) in single cells, the spatiotemporal dynamics of intracellular transport in cells undergoing LLPS are quantified. It is shown that intracellular diffusion and active transport are both reduced. Furthermore, the formation of SG droplets contributes to increased spatial heterogeneity within the cell. More importantly, the study demonstrated that the LLPS of SGs can be regulated by intracellular dynamics in two stages: the reduced intracellular diffusion promotes SG assembly and the microtubule-associated transport facilitates SG coalescences. The work on intracellular dynamics not only improves the understanding of the mechanism of physiology phase separations occurring in nonequilibrium environments but also reveals an interplay between intracellular dynamics and LLPS.
Collapse
Affiliation(s)
- Ming‐Li Zhang
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Ziheng Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xue‐Zhi Niu
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Hui‐Ying Ti
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Yu‐Xuan Zhou
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Bo Gao
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics and Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Ji‐Long Liu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xiaosong Chen
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium SystemsBeijing Normal UniversityBeijing100875China
| |
Collapse
|
33
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
34
|
Ye G, Tang Y, Yang Q, Zhang C, Shi H, Wang J, Hu X, Wan X, Xu Z, Liang J, Yang Y, Yang M, Liu Y. A peptide derived from SARS-CoV-2 nucleocapsid protein with broad-spectrum anti-coronavirus activity. J Med Virol 2024; 96:e29492. [PMID: 38587139 DOI: 10.1002/jmv.29492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Guoguo Ye
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Division of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yimin Tang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Division of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Qin Yang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhui Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Division of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Huiping Shi
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Jun Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Division of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Xiao Hu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Division of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaofu Wan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Division of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, China
| | - Zhixiang Xu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Division of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jinhu Liang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Division of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Division of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Minghui Yang
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Division of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
35
|
Gan P, Eppert M, De La Cruz N, Lyons H, Shah AM, Veettil RT, Chen K, Pradhan P, Bezprozvannaya S, Xu L, Liu N, Olson EN, Sabari BR. Coactivator condensation drives cardiovascular cell lineage specification. SCIENCE ADVANCES 2024; 10:eadk7160. [PMID: 38489358 PMCID: PMC10942106 DOI: 10.1126/sciadv.adk7160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
During development, cells make switch-like decisions to activate new gene programs specifying cell lineage. The mechanisms underlying these decisive choices remain unclear. Here, we show that the cardiovascular transcriptional coactivator myocardin (MYOCD) activates cell identity genes by concentration-dependent and switch-like formation of transcriptional condensates. MYOCD forms such condensates and activates cell identity genes at critical concentration thresholds achieved during smooth muscle cell and cardiomyocyte differentiation. The carboxyl-terminal disordered region of MYOCD is necessary and sufficient for condensate formation. Disrupting this region's ability to form condensates disrupts gene activation and smooth muscle cell reprogramming. Rescuing condensate formation by replacing this region with disordered regions from functionally unrelated proteins rescues gene activation and smooth muscle cell reprogramming. Our findings demonstrate that MYOCD condensate formation is required for gene activation during cardiovascular differentiation. We propose that the formation of transcriptional condensates at critical concentrations of cell type-specific regulators provides a molecular switch underlying the activation of key cell identity genes during development.
Collapse
Affiliation(s)
- Peiheng Gan
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Akansha M. Shah
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T. Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin R. Sabari
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
36
|
Thirumalai D, Kumar A, Chakraborty D, Straub JE, Mugnai ML. Conformational fluctuations and phases in fused in sarcoma (FUS) low-complexity domain. Biopolymers 2024; 115:e23558. [PMID: 37399327 PMCID: PMC10831756 DOI: 10.1002/bip.23558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
The well-known phenomenon of phase separation in synthetic polymers and proteins has become a major topic in biophysics because it has been invoked as a mechanism of compartment formation in cells, without the need for membranes. Most of the coacervates (or condensates) are composed of Intrinsically Disordered Proteins (IDPs) or regions that are structureless, often in interaction with RNA and DNA. One of the more intriguing IDPs is the 526-residue RNA-binding protein, Fused in Sarcoma (FUS), whose monomer conformations and condensates exhibit unusual behavior that are sensitive to solution conditions. By focussing principally on the N-terminus low-complexity domain (FUS-LC comprising residues 1-214) and other truncations, we rationalize the findings of solid-state NMR experiments, which show that FUS-LC adopts a non-polymorphic fibril structure (core-1) involving residues 39-95, flanked by fuzzy coats on both the N- and C-terminal ends. An alternate structure (core-2), whose free energy is comparable to core-1, emerges only in the truncated construct (residues 110-214). Both core-1 and core-2 fibrils are stabilized by a Tyrosine ladder as well as hydrophilic interactions. The morphologies (gels, fibrils, and glass-like) adopted by FUS seem to vary greatly, depending on the experimental conditions. The effect of phosphorylation is site-specific. Simulations show that phosphorylation of residues within the fibril has a greater destabilization effect than residues that are outside the fibril region, which accords well with experiments. Many of the peculiarities associated with FUS may also be shared by other IDPs, such as TDP43 and hnRNPA2. We outline a number of problems for which there is no clear molecular explanation.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| | - Abhinaw Kumar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Mauro L Mugnai
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| |
Collapse
|
37
|
Li S, Zhang Y, Chen J. Backbone interactions and secondary structures in phase separation of disordered proteins. Biochem Soc Trans 2024; 52:319-329. [PMID: 38348795 PMCID: PMC11742187 DOI: 10.1042/bst20230618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
Intrinsically disordered proteins (IDPs) are one of the major drivers behind the formation and characteristics of biomolecular condensates. Due to their inherent flexibility, the backbones of IDPs are significantly exposed, rendering them highly influential and susceptible to biomolecular phase separation. In densely packed condensates, exposed backbones have a heightened capacity to interact with neighboring protein chains, which might lead to strong coupling between the secondary structures and phase separation and further modulate the subsequent transitions of the condensates, such as aging and fibrillization. In this mini-review, we provide an overview of backbone-mediated interactions and secondary structures within biomolecular condensates to underscore the importance of protein backbones in phase separation. We further focus on recent advances in experimental techniques and molecular dynamics simulation methods for probing and exploring the roles of backbone interactions and secondary structures in biomolecular phase separation involving IDPs.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
38
|
Chattaraj A, Baltaci Z, Mayer BJ, Loew LM, Ditlev JA. Measurement of solubility product in a model condensate reveals the interplay of small oligomerization and self-association. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576869. [PMID: 38328089 PMCID: PMC10849621 DOI: 10.1101/2024.01.23.576869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cellular condensates often consist of 10s to 100s of distinct interacting molecular species. Because of the complexity of these interactions, predicting the point at which they will undergo phase separation into discrete compartments is daunting. Using experiments and computation, we therefore studied a simple model system consisting of 2 proteins, polySH3 and polyPRM, designed for pentavalent heterotypic binding. We tested whether the peak solubility product, the product of dilute phase monomer concentrations, is a predictive parameter for the onset of phase separation. Titrating up equal total concentrations of each component showed that the maximum solubility product does approximately coincide with the threshold for phase separation in both the experiments and models. However, we found that measurements of dilute phase concentration include contributions from small oligomers, not just monomers; therefore, a quantitative comparison of the experiments and models required inclusion of small oligomers in the model analysis. We also examined full phase diagrams where the model results were almost symmetric along the diagonal, but the experimental results were highly asymmetric. This led us to perform dynamic light scattering experiments, where we discovered a weak homotypic interaction for polyPRM; when this was added to the computational model, it was able to recapitulate the experimentally observed asymmetry. Thus, comparing experiments to simulation reveals that the solubility product can be predictive of phase separation, even if small oligomers and low affinity homotypic interactions preclude experimental measurement of monomer concentration.
Collapse
Affiliation(s)
- Aniruddha Chattaraj
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Zeynep Baltaci
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bruce J. Mayer
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Leslie M. Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Jonathon A. Ditlev
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Zhang Y, Li S, Gong X, Chen J. Toward Accurate Simulation of Coupling between Protein Secondary Structure and Phase Separation. J Am Chem Soc 2024; 146:342-357. [PMID: 38112495 PMCID: PMC10842759 DOI: 10.1021/jacs.3c09195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) frequently mediate phase separation that underlies the formation of a biomolecular condensate. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding the sequence-specific phase separation of IDPs. However, the widely used Cα-only models are limited in capturing the peptide nature of IDPs, particularly backbone-mediated interactions and effects of secondary structures, in phase separation. Here, we describe a hybrid resolution (HyRes) protein model toward a more accurate description of the backbone and transient secondary structures in phase separation. With an atomistic backbone and coarse-grained side chains, HyRes can semiquantitatively capture the residue helical propensity and overall chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for the direct simulation of spontaneous phase separation and, at the same time, appears accurate enough to resolve the effects of single His to Lys mutations. HyRes simulations also successfully predict increased β-structure formation in the condensate, consistent with available experimental CD data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate the phase separation propensity as measured by the saturation concentration. The simulations successfully recapitulate the effect of these mutants on the helicity and phase separation propensity of TDP-43 CR. Analyses reveal that the balance between backbone and side chain-mediated interactions, but not helicity itself, actually determines phase separation propensity. These results support that HyRes represents an effective protein model for molecular simulation of IDP phase separation and will help to elucidate the coupling between transient secondary structures and phase separation.
Collapse
Affiliation(s)
| | | | - Xiping Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
40
|
Chakraborty A, Dutta A, Dettori LG, Daoud R, Li J, Gonzalez L, Xue X, Hehnly H, Sung P, Bah A, Feng W. Complex interplay between FMRP and DHX9 during DNA replication stress. J Biol Chem 2024; 300:105572. [PMID: 38110032 PMCID: PMC10825048 DOI: 10.1016/j.jbc.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
Mutations in, or deficiency of, fragile X messenger ribonucleoprotein (FMRP) is responsible for the Fragile X syndrome (FXS), the most common cause for inherited intellectual disability. FMRP is a nucleocytoplasmic protein, primarily characterized as a translation repressor with poorly understood nuclear function(s). We recently reported that FXS patient cells lacking FMRP sustain higher level of DNA double-strand breaks (DSBs) than normal cells, specifically at sequences prone to forming R-loops, a phenotype further exacerbated by DNA replication stress. Moreover, expression of FMRP, and not an FMRPI304N mutant known to cause FXS, reduced R-loop-associated DSBs. We subsequently reported that recombinant FMRP directly binds R-loops, primarily through the carboxyl terminal intrinsically disordered region. Here, we show that FMRP directly interacts with an RNA helicase, DHX9. This interaction, which is mediated by the amino terminal structured domain of FMRP, is reduced with FMRPI304N. We also show that FMRP inhibits DHX9 helicase activity on RNA:DNA hybrids and the inhibition is also dependent on the amino terminus. Furthermore, the FMRPI304N mutation causes both FMRP and DHX9 to persist on the chromatin in replication stress. These results suggest an antagonistic relationship between FMRP and DHX9 at the chromatin, where their proper interaction leads to dissociation of both proteins from the fully resolved R-loop. We propose that the absence or the loss of function of FMRP leads to persistent presence of DHX9 or both proteins, respectively, on the unresolved R-loop, ultimately leading to DSBs. Our study sheds new light on our understanding of the genome functions of FMRP.
Collapse
Affiliation(s)
- Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Leonardo G Dettori
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rosemarie Daoud
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jing Li
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Leticia Gonzalez
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
41
|
Grams N, Charman M, Halko E, Lauman R, Garcia BA, Weitzman MD. Phosphorylation regulates viral biomolecular condensates to promote infectious progeny production. EMBO J 2024; 43:277-303. [PMID: 38177504 PMCID: PMC10897327 DOI: 10.1038/s44318-023-00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Biomolecular condensates (BMCs) play important roles in diverse biological processes. Many viruses form BMCs which have been implicated in various functions critical for the productive infection of host cells. The adenovirus L1-52/55 kilodalton protein (52K) was recently shown to form viral BMCs that coordinate viral genome packaging and capsid assembly. Although critical for packaging, we do not know how viral condensates are regulated during adenovirus infection. Here we show that phosphorylation of serine residues 28 and 75 within the N-terminal intrinsically disordered region of 52K modulates viral condensates in vitro and in cells, promoting liquid-like properties. Furthermore, we demonstrate that phosphorylation of 52K promotes viral genome packaging and the production of infectious progeny particles. Collectively, our findings provide insights into how viral condensate properties are regulated and maintained in a state conducive to their function in viral progeny production. In addition, our findings have implications for antiviral strategies aimed at targeting the regulation of viral BMCs to limit viral multiplication.
Collapse
Affiliation(s)
- Nicholas Grams
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Edwin Halko
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard Lauman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Mann R, Notani D. Transcription factor condensates and signaling driven transcription. Nucleus 2023; 14:2205758. [PMID: 37129580 PMCID: PMC10155639 DOI: 10.1080/19491034.2023.2205758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023] Open
Abstract
Transcription Factor (TF) condensates are a heterogenous mix of RNA, DNA, and multiple co-factor proteins capable of modulating the transcriptional response of the cell. The dynamic nature and the spatial location of TF-condensates in the 3D nuclear space is believed to provide a fast response, which is on the same pace as the signaling cascade and yet ever-so-specific in the crowded environment of the nucleus. However, the current understanding of how TF-condensates can achieve these feet so quickly and efficiently is still unclear. In this review, we draw parallels with other protein condensates and share our speculations on how the nucleus uses these TF-condensates to achieve high transcriptional specificity and fidelity. We discuss the various constituents of TF-condensates, their properties, and the known and unknown functions of TF-condensates with a particular focus on steroid signaling-induced transcriptional programs.
Collapse
Affiliation(s)
- Rajat Mann
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Dimple Notani
- National Centre for Biological Sciences, TIFR, Bangalore, India
| |
Collapse
|
43
|
Galagedera SKK, Dao TP, Enos SE, Chaudhuri A, Schmit JD, Castañeda CA. Polyubiquitin ligand-induced phase transitions are optimized by spacing between ubiquitin units. Proc Natl Acad Sci U S A 2023; 120:e2306638120. [PMID: 37824531 PMCID: PMC10589717 DOI: 10.1073/pnas.2306638120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Biomolecular condensates form via multivalent interactions among key macromolecules and are regulated through ligand binding and/or posttranslational modifications. One such modification is ubiquitination, the covalent addition of ubiquitin (Ub) or polyubiquitin chains to target macromolecules. Specific interactions between polyubiquitin chains and partner proteins, including hHR23B, NEMO, and UBQLN2, regulate condensate assembly or disassembly. Here, we used a library of designed polyubiquitin hubs and UBQLN2 as model systems for determining the driving forces of ligand-mediated phase transitions. Perturbations to either the UBQLN2-binding surface of Ub or the spacing between Ub units reduce the ability of hubs to modulate UBQLN2 phase behavior. By developing an analytical model based on polyphasic linkage principles that accurately described the effects of different hubs on UBQLN2 phase separation, we determined that introduction of Ub to UBQLN2 condensates incurs a significant inclusion energetic penalty. This penalty antagonizes the ability of polyUb hubs to scaffold multiple UBQLN2 molecules and cooperatively amplify phase separation. The extent to which polyubiquitin hubs promote UBQLN2 phase separation is encoded in the spacings between Ub units. This spacing is modulated by chains of different linkages and designed chains of different architectures, thus illustrating how the ubiquitin code regulates functionality via the emergent properties of the condensate. The spacing in naturally occurring linear polyubiquitin chains is already optimized to promote phase separation with UBQLN2. We expect our findings to extend to other condensates, emphasizing the importance of ligand properties, including concentration, valency, affinity, and spacing between binding sites in studies and designs of condensates.
Collapse
Affiliation(s)
- Sarasi K. K. Galagedera
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Thuy P. Dao
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Suzanne E. Enos
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Antara Chaudhuri
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS66506
| | - Carlos A. Castañeda
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
- BioInspired Institute, Syracuse University, Syracuse, NY13244
| |
Collapse
|
44
|
Williamson I, Boyle S, Grimes GR, Friman ET, Bickmore WA. Dispersal of PRC1 condensates disrupts polycomb chromatin domains and loops. Life Sci Alliance 2023; 6:e202302101. [PMID: 37487640 PMCID: PMC10366532 DOI: 10.26508/lsa.202302101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) strongly influences 3D genome organization, mediating local chromatin compaction and clustering of target loci. Several PRC1 subunits have the capacity to form biomolecular condensates through liquid-liquid phase separation in vitro and when tagged and over-expressed in cells. Here, we use 1,6-hexanediol, which can disrupt liquid-like condensates, to examine the role of endogenous PRC1 biomolecular condensates on local and chromosome-wide clustering of PRC1-bound loci. Using imaging and chromatin immunoprecipitation, we show that PRC1-mediated chromatin compaction and clustering of targeted genomic loci-at different length scales-can be reversibly disrupted by the addition and subsequent removal of 1,6-hexanediol to mouse embryonic stem cells. Decompaction and dispersal of polycomb domains and clusters cannot be solely attributable to reduced PRC1 occupancy detected by chromatin immunoprecipitation following 1,6-hexanediol treatment as the addition of 2,5-hexanediol has similar effects on binding despite this alcohol not perturbing PRC1-mediated 3D clustering, at least at the sub-megabase and megabase scales. These results suggest that weak hydrophobic interactions between PRC1 molecules may have a role in polycomb-mediated genome organization.
Collapse
Affiliation(s)
- Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elias T Friman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
45
|
Nicy, Collepardo-Guevara R, Joseph JA, Wales DJ. Energy landscapes and heat capacity signatures for peptides correlate with phase separation propensity. QRB DISCOVERY 2023; 4:e7. [PMID: 37771761 PMCID: PMC10523320 DOI: 10.1017/qrd.2023.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 09/30/2023] Open
Abstract
Phase separation plays an important role in the formation of membraneless compartments within the cell and intrinsically disordered proteins with low-complexity sequences can drive this compartmentalisation. Various intermolecular forces, such as aromatic-aromatic and cation-aromatic interactions, promote phase separation. However, little is known about how the ability of proteins to phase separate under physiological conditions is encoded in their energy landscapes and this is the focus of the present investigation. Our results provide a first glimpse into how the energy landscapes of minimal peptides that contain - and cation- interactions differ from the peptides that lack amino acids with such interactions. The peaks in the heat capacity () as a function of temperature report on alternative low-lying conformations that differ significantly in terms of their enthalpic and entropic contributions. The analysis and subsequent quantification of frustration of the energy landscape suggest that the interactions that promote phase separation lead to features (peaks or inflection points) at low temperatures in . More features may occur for peptides containing residues with better phase separation propensity and the energy landscape is more frustrated for such peptides. Overall, this work links the features in the underlying single-molecule potential energy landscapes to their collective phase separation behaviour and identifies quantities ( and frustration metric) that can be utilised in soft material design.
Collapse
Affiliation(s)
- Nicy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Physics, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Jerelle A. Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - David J. Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
46
|
Ray S, Mason TO, Boyens-Thiele L, Farzadfard A, Larsen JA, Norrild RK, Jahnke N, Buell AK. Mass photometric detection and quantification of nanoscale α-synuclein phase separation. Nat Chem 2023; 15:1306-1316. [PMID: 37337111 DOI: 10.1038/s41557-023-01244-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/19/2023] [Indexed: 06/21/2023]
Abstract
Protein liquid-liquid phase separation can lead to disease-related amyloid fibril formation. The mechanisms of conversion of monomeric protein into condensate droplets and of the latter into fibrils remain elusive. Here, using mass photometry, we demonstrate that the Parkinson's disease-related protein, α-synuclein, can form dynamic nanoscale clusters at physiologically relevant, sub-saturated concentrations. Nanoclusters nucleate in bulk solution and promote amyloid fibril formation of the dilute-phase monomers upon ageing. Their formation is instantaneous, even under conditions where macroscopic assemblies appear only after several days. The slow growth of the nanoclusters can be attributed to a kinetic barrier, probably due to an interfacial penalty from the charged C terminus of α-synuclein. Our findings reveal that α-synuclein phase separation occurs at much wider ranges of solution conditions than reported so far. Importantly, we establish mass photometry as a promising methodology to detect and quantify nanoscale precursors of phase separation. We also demonstrate its general applicability by probing the existence of nanoclusters of a non-amyloidogenic protein, Ddx4n1.
Collapse
Affiliation(s)
- Soumik Ray
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Thomas O Mason
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lars Boyens-Thiele
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Azad Farzadfard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jacob Aunstrup Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Rasmus K Norrild
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Nadin Jahnke
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
47
|
Zhang Y, Li S, Gong X, Chen J. Accurate Simulation of Coupling between Protein Secondary Structure and Liquid-Liquid Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554378. [PMID: 37662293 PMCID: PMC10473686 DOI: 10.1101/2023.08.22.554378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Intrinsically disordered proteins (IDPs) frequently mediate liquid-liquid phase separation (LLPS) that underlies the formation of membraneless organelles. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding sequence-specific phase separation of IDPs. However, the widely-used Cα-only models are severely limited in capturing the peptide nature of IDPs, including backbone-mediated interactions and effects of secondary structures, in LLPS. Here, we describe a hybrid resolution (HyRes) protein model for accurate description of the backbone and transient secondary structures in LLPS. With an atomistic backbone and coarse-grained side chains, HyRes accurately predicts the residue helical propensity and chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for direct simulation of spontaneous phase separation, and at the same time accurate enough to resolve the effects of single mutations. HyRes simulations also successfully predict increased beta-sheet formation in the condensate, consistent with available experimental data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate LLPS propensity. The simulations successfully recapitulate the effect of these mutants on the helicity and LLPS propensity of TDP-43 CR. Analyses reveal that the balance between backbone and sidechain-mediated interactions, but not helicity itself, actually determines LLPS propensity. We believe that the HyRes model represents an important advance in the molecular simulation of LLPS and will help elucidate the coupling between IDP transient secondary structures and phase separation.
Collapse
Affiliation(s)
| | | | - Xiping Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
48
|
Lan C, Kim J, Ulferts S, Aprile-Garcia F, Weyrauch S, Anandamurugan A, Grosse R, Sawarkar R, Reinhardt A, Hugel T. Quantitative real-time in-cell imaging reveals heterogeneous clusters of proteins prior to condensation. Nat Commun 2023; 14:4831. [PMID: 37582808 PMCID: PMC10427612 DOI: 10.1038/s41467-023-40540-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Our current understanding of biomolecular condensate formation is largely based on observing the final near-equilibrium condensate state. Despite expectations from classical nucleation theory, pre-critical protein clusters were recently shown to form under subsaturation conditions in vitro; if similar long-lived clusters comprising more than a few molecules are also present in cells, our understanding of the physical basis of biological phase separation may fundamentally change. Here, we combine fluorescence microscopy with photobleaching analysis to quantify the formation of clusters of NELF proteins in living, stressed cells. We categorise small and large clusters based on their dynamics and their response to p38 kinase inhibition. We find a broad distribution of pre-condensate cluster sizes and show that NELF protein cluster formation can be explained as non-classical nucleation with a surprisingly flat free-energy landscape for a wide range of sizes and an inhibition of condensation in unstressed cells.
Collapse
Affiliation(s)
- Chenyang Lan
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- BIOSS and CIBSS Signalling Research Centres, University of Freiburg, Freiburg, Germany
- PicoQuant GmbH, Rudower Chaussee 29, 12489, Berlin, Germany
| | - Juhyeong Kim
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | | | - Sophie Weyrauch
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Chemistry and Pharmacology, University of Freiburg, Freiburg, Germany
| | | | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Ritwick Sawarkar
- Medical Research Council (MRC), University of Cambridge, Cambridge, CB2 1QR, United Kingdom
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany.
- BIOSS and CIBSS Signalling Research Centres, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
49
|
Toledo PL, Gianotti AR, Vazquez DS, Ermácora MR. Protein nanocondensates: the next frontier. Biophys Rev 2023; 15:515-530. [PMID: 37681092 PMCID: PMC10480383 DOI: 10.1007/s12551-023-01105-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
Over the past decade, myriads of studies have highlighted the central role of protein condensation in subcellular compartmentalization and spatiotemporal organization of biological processes. Conceptually, protein condensation stands at the highest level in protein structure hierarchy, accounting for the assembly of bodies ranging from thousands to billions of molecules and for densities ranging from dense liquids to solid materials. In size, protein condensates range from nanocondensates of hundreds of nanometers (mesoscopic clusters) to phase-separated micron-sized condensates. In this review, we focus on protein nanocondensation, a process that can occur in subsaturated solutions and can nucleate dense liquid phases, crystals, amorphous aggregates, and fibers. We discuss the nanocondensation of proteins in the light of general physical principles and examine the biophysical properties of several outstanding examples of nanocondensation. We conclude that protein nanocondensation cannot be fully explained by the conceptual framework of micron-scale biomolecular condensation. The evolution of nanocondensates through changes in density and order is currently under intense investigation, and this should lead to the development of a general theoretical framework, capable of encompassing the full range of sizes and densities found in protein condensates.
Collapse
Affiliation(s)
- Pamela L. Toledo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Diego S. Vazquez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Mario R. Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
50
|
Thirumalai D, Kumar A, Chakraborty D, Straub JE, Mugnai ML. Conformational Fluctuations and Phases in Fused in Sarcoma (FUS) Low-Complexity Domain. ARXIV 2023:arXiv:2303.04215v2. [PMID: 36945688 PMCID: PMC10029050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The well known phenomenon of phase separation in synthetic polymers and proteins has become a major topic in biophysics because it has been invoked as a mechanism of compartment formation in cells, without the need for membranes. Most of the coacervates (or condensates) are composed of Intrinsically Disordered Proteins (IDPs) or regions that are structureless, often in interaction with RNA and DNA. One of the more intriguing IDPs is the 526-residue RNA binding protein, Fused In Sarcoma (FUS), whose monomer conformations and condensates exhibit unusual behavior that are sensitive to solution conditions. By focussing principally on the N-terminus low complexity domain (FUS-LC comprising residues 1-214) and other truncations, we rationalize the findings of solid state NMR experiments, which show that FUS-LC adopts a non-polymorphic fibril (core-1) involving residues 39-95, flanked by fuzzy coats on both the N- and C- terminal ends. An alternate structure (core-2), whose free energy is comparable to core-1, emerges only in the truncated construct (residues 110-214). Both core-1 and core-2 fibrils are stabilized by a Tyrosine ladder as well as hydrophilic interactions. The morphologies (gels, fibrils, and glass-like behavior) adopted by FUS seem to vary greatly, depending on the experimental conditions. The effect of phosphorylation is site specific and affects the stability of the fibril depending on the sites that are phosphorylated. Many of the peculiarities associated with FUS may also be shared by other IDPs, such as TDP43 and hnRNPA2. We outline a number of problems for which there is no clear molecular understanding.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
- Department of Physics, The University of Texas at Austin, Austin, TX 78712
| | - Abhinaw Kumar
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - John E Straub
- Department of Chemistry, Boston University, Boston, MA 78712
| | - Mauro L Mugnai
- Institute of Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057
| |
Collapse
|