1
|
Mai X, Hu Y, Wu Z, Guo X, Dong M, Jia L, Ren J. Self-Assembly of Human Fibrinogen into Microclot-Mimicking Antifibrinolytic Amyloid Fibrinogen Particles. ACS APPLIED BIO MATERIALS 2025; 8:825-834. [PMID: 39723824 DOI: 10.1021/acsabm.4c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Recent clinical studies have highlighted the presence of microclots in the form of amyloid fibrinogen particles (AFPs) in plasma samples from Long COVID patients. However, the clinical significance of these abnormal, nonfibrillar self-assembly aggregates of human fibrinogen remains debated due to the limited understanding of their structural and biological characteristics. In this study, we present a method for generating mimetic microclots in vitro. Using this approach, the self-assembly process, structural organization of AFPs, and their interactions with human plasma components were elucidated. The amyloid transition of fibrinogen occurs under acidic conditions within a pH range of 2.3-3.2. Well-dispersed amyloid oligomers of fibrinogen, ranging in size from 1 to 5 μm, can be prepared at pH 2.8 after 1 h of incubation. We tracked the dynamic self-assembly process at the single-molecule level using high-speed atomic force microscopy (HS-AFM). The arrangement of amyloid oligomers manifests as well-ordered, stacked nanodomains with striped patterns, growing perpendicular to the primary axis of the fibrinogen monomer. Upon transfer to physiological solution conditions or human plasma, these amyloid oligomers further aggregate into nonfibrillar structures at the micrometer scale, resembling the microclots observed in the bloodstream of Long COVID patients. Notably, these AFPs exhibit characteristics consistent with microclots, including positive staining in thioflavin T (ThT) assays and resistance to fibrinolysis. Proteomic analysis suggests that AFPs interact with various components of human plasma and have an enhanced binding affinity with complement C3 compared to native fibrinogen. This study enables the in vitro preparation of mimetic microclots exhibiting amyloid features. It is anticipated to facilitate further researches on the mechanisms, detection, and treatment of diseases associated with fibrinogen amyloidogenesis.
Collapse
Affiliation(s)
- Xiaolan Mai
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Hu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhenlin Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Xin Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Mingming Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Ren
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Singh V, Choudhury A, Ahn HJ. Fibrinogen's potential role in connecting cerebrovascular abnormalities with glymphatic dysfunction in Alzheimer's disease. Neural Regen Res 2025; 20:203-204. [PMID: 39657091 DOI: 10.4103/nrr.nrr-d-23-02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/13/2024] [Indexed: 12/17/2024] Open
Affiliation(s)
- Vishal Singh
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, USA (Singh V, Choudhury A, Ahn HJ)
| | - Arnab Choudhury
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, USA (Singh V, Choudhury A, Ahn HJ)
| | - Hyung Jin Ahn
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, USA (Singh V, Choudhury A, Ahn HJ)
- Brain Health Institute, Rutgers University, Piscataway, NJ, USA (Ahn HJ)
| |
Collapse
|
3
|
Badimon A, Torrente D, Norris EH. Vascular Dysfunction in Alzheimer's Disease: Alterations in the Plasma Contact and Fibrinolytic Systems. Int J Mol Sci 2023; 24:7046. [PMID: 37108211 PMCID: PMC10138543 DOI: 10.3390/ijms24087046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting millions of people worldwide. The classical hallmarks of AD include extracellular beta-amyloid (Aβ) plaques and neurofibrillary tau tangles, although they are often accompanied by various vascular defects. These changes include damage to the vasculature, a decrease in cerebral blood flow, and accumulation of Aβ along vessels, among others. Vascular dysfunction begins early in disease pathogenesis and may contribute to disease progression and cognitive dysfunction. In addition, patients with AD exhibit alterations in the plasma contact system and the fibrinolytic system, two pathways in the blood that regulate clotting and inflammation. Here, we explain the clinical manifestations of vascular deficits in AD. Further, we describe how changes in plasma contact activation and the fibrinolytic system may contribute to vascular dysfunction, inflammation, coagulation, and cognitive impairment in AD. Given this evidence, we propose novel therapies that may, alone or in combination, ameliorate AD progression in patients.
Collapse
Affiliation(s)
| | | | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
4
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Zhang ZH, Peng JY, Chen YB, Wang C, Chen C, Song GL. Different Effects and Mechanisms of Selenium Compounds in Improving Pathology in Alzheimer’s Disease. Antioxidants (Basel) 2023; 12:antiox12030702. [PMID: 36978950 PMCID: PMC10045564 DOI: 10.3390/antiox12030702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Owing to the strong antioxidant capacity of selenium (Se) in vivo, a variety of Se compounds have been shown to have great potential for improving the main pathologies and cognitive impairment in Alzheimer’s disease (AD) models. However, the differences in the anti-AD effects and mechanisms of different Se compounds are still unclear. Theoretically, the absorption and metabolism of different forms of Se in the body vary, which directly determines the diversification of downstream regulatory pathways. In this study, low doses of Se-methylselenocysteine (SMC), selenomethionine (SeM), or sodium selenate (SeNa) were administered to triple transgenic AD (3× Tg-AD) mice for short time periods. AD pathology, activities of selenoenzymes, and metabolic profiles in the brain were studied to explore the similarities and differences in the anti-AD effects and mechanisms of the three Se compounds. We found that all of these Se compounds significantly increased Se levels and antioxidant capacity, regulated amino acid metabolism, and ameliorated synaptic deficits, thus improving the cognitive capacity of AD mice. Importantly, SMC preferentially increased the expression and activity of thioredoxin reductase and reduced tau phosphorylation by inhibiting glycogen synthase kinase-3 beta (GSK-3β) activity. Glutathione peroxidase 1 (GPx1), the selenoenzyme most affected by SeM, decreased amyloid beta production and improved mitochondrial function. SeNa improved methionine sulfoxide reductase B1 (MsrB1) expression, reflected in AD pathology as promoting the expression of synaptic proteins and restoring synaptic deficits. Herein, we reveal the differences and mechanisms by which different Se compounds improve multiple pathologies of AD and provide novel insights into the targeted administration of Se-containing drugs in the treatment of AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Jia-Ying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yu-Bin Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Bay Laboratory, Shenzhen 518118, China
- Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
6
|
Berk-Rauch HE, Choudhury A, Richards AT, Singh PK, Chen ZL, Norris EH, Strickland S, Ahn HJ. Striatal fibrinogen extravasation and vascular degeneration correlate with motor dysfunction in an aging mouse model of Alzheimer’s disease. Front Aging Neurosci 2023; 15:1064178. [PMID: 36967821 PMCID: PMC10034037 DOI: 10.3389/fnagi.2023.1064178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Alzheimer’s Disease (AD) patients exhibit signs of motor dysfunction, including gait, locomotion, and balance deficits. Changes in motor function often precede other symptoms of AD as well as correlate with increased severity and mortality. Despite the frequent occurrence of motor dysfunction in AD patients, little is known about the mechanisms by which this behavior is altered.Methods and Results: In the present study, we investigated the relationship between cerebrovascular impairment and motor dysfunction in a mouse model of AD (Tg6799). We found an age-dependent increase of extravasated fibrinogen deposits in the cortex and striatum of AD mice. Interestingly, there was significantly decreased cerebrovascular density in the striatum of the 15-month-old as compared to 7-month-old AD mice. We also found significant demyelination and axonal damage in the striatum of aged AD mice. We analyzed striatum-related motor function and anxiety levels of AD mice at both ages and found that aged AD mice exhibited significant impairment of motor function but not in the younger AD mice.Discussion: Our finding suggests an enticing correlation between extravasated fibrinogen, cerebrovascular damage of the striatum, and motor dysfunction in an AD mouse model, suggesting a possible mechanism underlying motor dysfunction in AD.
Collapse
Affiliation(s)
- Hanna E. Berk-Rauch
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Arnab Choudhury
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Allison T. Richards
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Pradeep K. Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Hyung Jin Ahn
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Hyung Jin Ahn,
| |
Collapse
|
7
|
Bhattacharjee S, Bhattacharyya R. PRFF Peptide Mimic Interferes with Toxic Fibrin-Aβ 42 Interaction by Emulating the Aβ Binding Interface on Fibrinogen. ACS Chem Neurosci 2021; 12:4144-4152. [PMID: 34669381 DOI: 10.1021/acschemneuro.1c00519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cerebrovascular dysfunction is a common phenomenon in Alzheimer's patients, where fibrinogen is a major player. With the blood-brain barrier compromised, fibrinogen gains access to the brain, where its interaction with Aβ42 results in plasmin-resistant abnormal blood clots that are deposited in the cerebral blood vessels, a condition commonly encountered in Alzheimer's disease (AD) patients called cerebral amyloid angiopathy (CAA). So far, there have been no effective therapeutics available to combat AD-associated CAA. This study reports a 13-amino acid peptide (Pα-NPGRPEPGSAGTW) as a potential inhibitor of the fibrin-Aβ42 interaction along with the property to dissolve pre-existing plasmin-resistant abnormal clots. Strikingly, the identified sequence was found to be partially similar to a fragment of the fibrinogen α-chain reported to bind Aβ42, the plasmin-resistant fibrinogen fragment (PRFF). Mechanistically, Pα interacts with Aβ42 in place of fibrinogen, thus inhibiting the toxic fibrin-Aβ42 interaction. However, it does not interfere with normal fibrin polymerization.
Collapse
Affiliation(s)
- Sayan Bhattacharjee
- Structural Biology & Bio-Informatics Division, CSIR − Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Rajanya Bhattacharyya
- Structural Biology & Bio-Informatics Division, CSIR − Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
8
|
Singh PK, Badimon A, Chen Z, Strickland S, Norris EH. The contact activation system and vascular factors as alternative targets for Alzheimer's disease therapy. Res Pract Thromb Haemost 2021; 5:e12504. [PMID: 33977208 PMCID: PMC8105157 DOI: 10.1002/rth2.12504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting millions of people worldwide. Extracellular beta-amyloid (Aβ) plaques and neurofibrillary tau tangles are classical hallmarks of AD pathology and thus are the prime targets for AD therapeutics. However, approaches to slow or stop AD progression and dementia by reducing Aβ production, neutralizing toxic Aβ aggregates, or inhibiting tau aggregation have been largely unsuccessful in clinical trials. The contribution of dysregulated vascular components and inflammation is evident in AD pathology. Vascular changes are detectable early in AD progression, so treatment of vascular defects along with anti-Aβ/tau therapy could be a successful combination therapeutic strategy for this disease. Here, we explain how vascular dysfunction mechanistically contributes to thrombosis as well as inflammation and neurodegeneration in AD pathogenesis. This review provides evidence that addressing vascular dysfunction in people with AD could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Pradeep K. Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Ana Badimon
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Zu‐Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNYUSA
| |
Collapse
|
9
|
Cerebral amyloid angiopathy-linked β-amyloid mutations promote cerebral fibrin deposits via increased binding affinity for fibrinogen. Proc Natl Acad Sci U S A 2020; 117:14482-14492. [PMID: 32518112 DOI: 10.1073/pnas.1921327117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), where beta-amyloid (Aβ) deposits around cerebral blood vessels, is a major contributor of vascular dysfunction in Alzheimer's disease (AD) patients. However, the molecular mechanism underlying CAA formation and CAA-induced cerebrovascular pathology is unclear. Hereditary cerebral amyloid angiopathy (HCAA) is a rare familial form of CAA in which mutations within the (Aβ) peptide cause an increase in vascular deposits. Since the interaction between Aβ and fibrinogen increases CAA and plays an important role in cerebrovascular damage in AD, we investigated the role of the Aβ-fibrinogen interaction in HCAA pathology. Our work revealed the most common forms of HCAA-linked mutations, Dutch (E22Q) and Iowa (D23N), resulted in up to a 50-fold stronger binding affinity of Aβ for fibrinogen. In addition, the stronger interaction between fibrinogen and mutant Aβs led to a dramatic perturbation of clot structure and delayed fibrinolysis. Immunofluorescence analysis of the occipital cortex showed an increase of fibrin(ogen)/Aβ codeposition, as well as fibrin deposits in HCAA patients, compared to early-onset AD patients and nondemented individuals. Our results suggest the HCAA-type Dutch and Iowa mutations increase the interaction between fibrinogen and Aβ, which might be central to cerebrovascular pathologies observed in HCAA.
Collapse
|
10
|
Abstract
Alzheimer's disease (AD) is a multifactorial syndrome with a plethora of progressive, degenerative changes in the brain parenchyma, but also in the cerebrovascular and hemostatic system. A therapeutic approach for AD is reviewed, which is focused on the role of amyloid-β protein (Aβ) and fibrin in triggering intra-brain vascular dysfunction and connected, cognitive decline. It is proposed that direct oral anticoagulants (DOACs) counteract Aβ-induced pathological alterations in cerebral blood vessels early in AD, a condition, known as cerebral amyloid angiopathy (CAA). By inhibiting thrombin for fibrin formation, anticoagulants can prevent accumulations of proinflammatory thrombin and fibrin, and deposition of degradation-resistant, Aβ-containing fibrin clots. These fibrin-Aβ clots are found in brain parenchyma between neuron cells, and in and around cerebral blood vessels in areas of CAA, leading to decreased cerebral blood flow. Consequently, anticoagulant treatment could reduce hypoperfusion and restricted supply of brain tissue with oxygen and nutrients. Concomitantly, hypoperfusion-enhanced neurodegenerative processes, such as progressive Aβ accumulation via synthesis and reduced perivascular clearance, neuroinflammation, and synapse and neuron cell loss, could be mitigated. Given full cerebral perfusion and reduced Aβ- and fibrin-accumulating and inflammatory milieu, anticoagulants could be able to decrease vascular-driven progression in neurodegenerative and cognitive changes, present in AD, when treated early, therapeutically, or prophylactically.
Collapse
Affiliation(s)
- Klaus Grossmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Kumar A, Pasam VR, Thakur RK, Singh M, Singh K, Shukla M, Yadav A, Dogra S, Sona C, Umrao D, Jaiswal S, Ahmad H, Rashid M, Singh SK, Wahajuddin M, Dwivedi AK, Siddiqi MI, Lal J, Tripathi RP, Yadav PN. Novel Tetrahydroquinazolinamines as Selective Histamine 3 Receptor Antagonists for the Treatment of Obesity. J Med Chem 2019; 62:4638-4655. [PMID: 30998358 DOI: 10.1021/acs.jmedchem.9b00241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The histamine 3 receptor (H3R) is a presynaptic receptor, which modulates several neurotransmitters including histamine and various essential physiological processes, such as feeding, arousal, cognition, and pain. The H3R is considered as a drug target for the treatment of several central nervous system disorders. We have synthesized and identified a novel series of 4-aryl-6-methyl-5,6,7,8-tetrahydroquinazolinamines that act as selective H3R antagonists. Among all the synthesized compounds, in vitro and docking studies suggested that the 4-methoxy-phenyl-substituted tetrahydroquinazolinamine compound 4c has potent and selective H3R antagonist activity (IC50 < 0.04 μM). Compound 4c did not exhibit any activity on the hERG ion channel and pan-assay interference compounds liability. Pharmacokinetic studies showed that 4c crosses the blood brain barrier, and in vivo studies demonstrated that 4c induces anorexia and weight loss in obese, but not in lean mice. These data reveal the therapeutic potential of 4c as an anti-obesity candidate drug via antagonizing the H3R.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chandan Sona
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001 , India
| | | | | | | | | | | | | | | | | | | | - Rama Pati Tripathi
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001 , India.,National Institute of Pharmaceutical Education and Research Raebareli , New Transit Campus, Bijnor Road , Sarojani Nagar, Near CRPF Base Camp, Lucknow , 226002 Uttar Pradesh , India
| | - Prem N Yadav
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001 , India
| |
Collapse
|
12
|
Podsiedlik M, Markowicz-Piasecka M, Mikiciuk-Olasik E, Sikora J. The Associations between Central Nervous System Diseases and Haemostatic Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:307-316. [PMID: 30868969 DOI: 10.2174/1871527318666190314101946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
Abstract
The aim of this review was to examine the relationship between the occurrence of central nervous system (CNS) diseases, the medicines used in their treatment and the blood coagulation process. The paper mainly focuses on the effects of antidepressant and antipsychotic drugs. Special attention has been paid to the influence of drugs on platelets, the vascular endothelium, plasma coagulation and fibrinolysis, regarding coagulation.
Collapse
Affiliation(s)
- Maria Podsiedlik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
13
|
Singh PK, Berk-Rauch HE, Soplop N, Uryu K, Strickland S, Ahn HJ. Analysis of β-Amyloid-induced Abnormalities on Fibrin Clot Structure by Spectroscopy and Scanning Electron Microscopy. J Vis Exp 2018. [PMID: 30582601 DOI: 10.3791/58475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This article presents methods for generating in vitro fibrin clots and analyzing the effect of beta-amyloid (Aβ) protein on clot formation and structure by spectrometry and scanning electron microscopy (SEM). Aβ, which forms neurotoxic amyloid aggregates in Alzheimer's disease (AD), has been shown to interact with fibrinogen. This Aβ-fibrinogen interaction makes the fibrin clot structurally abnormal and resistant to fibrinolysis. Aβ-induced abnormalities in fibrin clotting may also contribute to cerebrovascular aspects of the AD pathology such as microinfarcts, inflammation, as well as, cerebral amyloid angiopathy (CAA). Given the potentially critical role of neurovascular deficits in AD pathology, developing compounds which can inhibit or lessen the Aβ-fibrinogen interaction has promising therapeutic value. In vitro methods by which fibrin clot formation can be easily and systematically assessed are potentially useful tools for developing therapeutic compounds. Presented here is an optimized protocol for in vitro generation of the fibrin clot, as well as analysis of the effect of Aβ and Aβ-fibrinogen interaction inhibitors. The clot turbidity assay is rapid, highly reproducible and can be used to test multiple conditions simultaneously, allowing for the screening of large numbers of Aβ-fibrinogen inhibitors. Hit compounds from this screening can be further evaluated for their ability to ameliorate Aβ-induced structural abnormalities of the fibrin clot architecture using SEM. The effectiveness of these optimized protocols is demonstrated here using TDI-2760, a recently identified Aβ-fibrinogen interaction inhibitor.
Collapse
Affiliation(s)
- Pradeep K Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, Rockefeller University
| | - Hanna E Berk-Rauch
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, Rockefeller University
| | - Nadine Soplop
- Electron Microscopy Resource Center, Rockefeller University
| | - Kunihiro Uryu
- Electron Microscopy Resource Center, Rockefeller University
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, Rockefeller University
| | - Hyung Jin Ahn
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, Rockefeller University;
| |
Collapse
|