1
|
Lv Y, Li Y, Fang M, Liu Y, Wang Y, Yang Y, Zou Y, Shi Q, Mu X. Chromosome-level genome assembly reveals adaptive evolution of the invasive Amazon sailfin catfish (Pterygoplichthys pardalis). Commun Biol 2025; 8:616. [PMID: 40240788 PMCID: PMC12003874 DOI: 10.1038/s42003-025-08029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Catfish represents a diverse lineage with variable number of chromosomes and complex relationships with humans. Although certain species pose significant invasive threats to native fish populations, comprehensive genomic investigations into the evolutionary adaptations that contribute to their invasion success are lacking. To address this gap, our study presents a high-quality genome assembly of the Amazon sailfin catfish (Pterygoplichthys pardalis), a member of the armored catfish family, along with a comprehensive comparative genomic analysis. By utilizing conserved genomic regions across different catfish species, we reconstructed the 29 ancestral chromosomes of catfish, including two microchromosomes (28 and 29) that show different fusion and breakage patterns across species. Our analysis shows that the Amazon sailfin catfish genome is notably larger (1.58 Gb) with more than 40,000 coding genes. The genome expansion was linked to early repetitive sequence expansions and recent gene duplications. Several expanded genes are associated with immune functions, including antigen recognition domains like the Ig-v-set domain and the tandem expansion of the CD300 gene family. We also identified specific insertions in CNEs (conserved non-coding elements) near genes involved in cellular processes and neural development. Additionally, rapidly evolving and positively selected genes in the Amazon sailfin catfish genome were found to be associated with collagen formation. Moreover, we identified multiple positively selected codons in hoxb9, which may lead to functional alterations. These findings provide insights into molecular adaptations in an invasive catfish that may underlie its widespread invasion success.
Collapse
Affiliation(s)
- Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Yanping Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Miao Fang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yi Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yexin Yang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanchao Zou
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Qiong Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, 641100, China.
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518067, China.
| | - Xidong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Stein CS, Linzer CR, Heer CD, Witmer NH, Cochran JD, Spitz DR, Boudreau RL. Mitoregulin Promotes Cell Cycle Progression in Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2025; 26:1939. [PMID: 40076565 PMCID: PMC11899852 DOI: 10.3390/ijms26051939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Mitoregulin (MTLN) is a 56-amino-acid mitochondrial microprotein known to modulate mitochondrial energetics. MTLN gene expression is elevated broadly across most cancers and has been proposed as a prognostic biomarker for non-small cell lung cancer (NSCLC). In addition, lower MTLN expression in lung adenocarcinoma (LUAD) correlates with significantly improved patient survival. In our studies, we have found that MTLN silencing in A549 NSCLC cells slowed proliferation and, in accordance with this, we observed the following: (1) increased proportion of cells in the G1 phase of cell cycle; (2) protein changes consistent with G1 arrest (e.g., reduced levels and/or reduced phosphorylation of ERK, MYC, CDK2, and RB, and elevated p27Kip1); (3) reduction in clonogenic cell survival and; (4) lower steady-state cytosolic and mitochondrial H2O2 levels as indicated by use of the roGFP2-Orp1 redox sensor. Conflicting with G1 arrest, we observed a boost in cyclin D1 abundance. We also tested MTLN silencing in combination with buthionine sulfoximine (BSO) and auranofin (AF), drugs that inhibit GSH synthesis and thioredoxin reductase, respectively, to elevate the reactive oxygen species (ROS) amount to a toxic range. Interestingly, clonogenic survival after drug treatment was greater for MTLN-silenced cultures versus the control cultures. Lower H2O2 output and reduced vulnerability to ROS damage due to G1 status may have jointly contributed to the partial BSO + AF resistance. Overall, our results provide evidence that MTLN fosters H2O2 signaling to propel G1/S transition and suggest MTLN silencing as a therapeutic strategy to limit NSCLC growth.
Collapse
Affiliation(s)
- Colleen S. Stein
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Connor R. Linzer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Collin D. Heer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.D.H.); (D.R.S.)
| | - Nathan H. Witmer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Jesse D. Cochran
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.D.H.); (D.R.S.)
| | - Ryan L. Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (C.R.L.); (N.H.W.); (J.D.C.)
| |
Collapse
|
3
|
Comtois F, Jacques JF, Métayer L, Ouedraogo WYD, Ouangraoua A, Denault JB, Roucou X. Noncanonical altPIDD1 protein: unveiling the true major translational output of the PIDD1 gene. Life Sci Alliance 2025; 8:e202402910. [PMID: 39532532 PMCID: PMC11557682 DOI: 10.26508/lsa.202402910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Proteogenomics has enabled the detection of novel proteins encoded in noncanonical or alternative open reading frames (altORFs) in genes already coding a reference protein. Reanalysis of proteomic and ribo-seq data revealed that the p53-induced death domain-containing protein (or PIDD1) gene encodes a second 171 amino acid protein, altPIDD1, in addition to the known 910-amino acid-long PIDD1 protein. The two ORFs overlap almost completely, and the translation initiation site of altPIDD1 is located upstream of PIDD1. AltPIDD1 has more translational and protein level evidence than PIDD1 across various cell lines and tissues. In HEK293 cells, the altPIDD1 to PIDD1 ratio is 40 to 1, as measured with isotope-labeled (heavy) peptides and targeted proteomics. AltPIDD1 localizes to cytoskeletal structures labeled with phalloidin and interacts with cytoskeletal proteins. Unlike most noncanonical proteins, altPIDD1 is not evolutionarily young but emerged in placental mammals. Overall, we identify PIDD1 as a dual-coding gene, with altPIDD1, not the annotated protein, being the primary product of translation.
Collapse
Affiliation(s)
- Frédérick Comtois
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-François Jacques
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
| | - Lenna Métayer
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Aïda Ouangraoua
- Department of Informatics, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-Bernard Denault
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, Canada
| |
Collapse
|
4
|
Linzer CR, Stein CS, Witmer NH, Xu Z, Schnicker NJ, Boudreau RL. Mitoregulin self-associates to form likely homo-oligomeric pore-like complexes. iScience 2025; 28:111554. [PMID: 39811642 PMCID: PMC11732159 DOI: 10.1016/j.isci.2024.111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/03/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
We and others previously found that a misannotated long noncoding RNA encodes for a conserved mitochondrial transmembrane microprotein named Mitoregulin (Mtln). Beyond an established role for Mtln in lipid metabolism, Mtln has been shown to broadly influence mitochondria, boosting respiratory efficiency and Ca2+ retention capacity, while lowering ROS, yet the underlying mechanisms remain unresolved. Prior studies have identified possible Mtln protein interaction partners; however, a lack of consensus persists, and no claims have been made about Mtln's structure. We noted two key published observations that seemingly remained overlooked: 1) endogenous Mtln co-immunoprecipitates with epitope-tagged Mtln at high efficiency, and 2) Mtln primarily appears to exist in a ∼66 kDa complex. To investigate if Mtln may self-oligomerize into higher-order complexes, we performed co-immunoprecipitation, computational modeling, and native gel assessments of Mtln-containing complexes in cells and tissues and tested whether synthetic Mtln protein itself forms oligomeric complexes. Our combined results provide strong support that Mtln self-associates and likely forms a hexameric pore-like structure.
Collapse
Affiliation(s)
- Connor R. Linzer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Colleen S. Stein
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan H. Witmer
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Nicholas J. Schnicker
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ryan L. Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Andreev DE, Shatsky IN. A Portrait of Three Mammalian Bicistronic mRNA Transcripts, Derived from the Genes ASNSD1, SLC35A4, and MIEF1. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:32-43. [PMID: 40058972 DOI: 10.1134/s0006297924603630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 05/13/2025]
Abstract
Recent advances in functional genomics have allowed identification of thousands of translated short open reading frames (sORFs) in the 5' leaders of mammalian mRNA transcripts. While most sORFs are unlikely to encode functional proteins, a small number have been shown to have evolved as protein-coding genes. As a result, dozens of these sORFs have already been annotated as protein-coding ORFs. mRNAs that contain both a protein-coding sORF and an annotated coding sequence (CDS) are referred to as bicistronic transcripts. In this study, we focus on three genes - ASNSD1, SLC35A4, and MIEF1 - which give rise to bicistronic mRNAs. We discuss recent findings regarding functional investigation of the corresponding polypeptide products, as well as how their translation is regulated, and how this unusual genetic arrangement may have evolved.
Collapse
Affiliation(s)
- Dmitry E Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
6
|
Su H, Katz SG, Slavoff SA. Alternative transcripts recode human genes to express overlapping, frameshifted microproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619581. [PMID: 39484585 PMCID: PMC11526972 DOI: 10.1101/2024.10.22.619581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Overlapping genes were thought to be essentially absent from the human genome until the discovery of abundant, frameshifted internal open reading frames (iORFs) nested within annotated protein coding sequences. However, it is currently unclear how many functional human iORFs exist and how they are expressed. We demonstrate that, in hundreds of cases, alternative transcript variants that bypass the start codon of annotated coding sequences (CDSs) can recode a human gene to express the iORF-encoded microprotein. While many human genes generate such non-coding alternative transcripts, they are poorly annotated. Here we develope a new analysis pipeline enabling the assignment of translated human iORFs to alternative transcripts, and provide long-read sequencing and molecular validation of their expression in dozens of cases. Finally, we demonstrate that a conserved DEDD2 iORF switches the function of this gene from pro- to anti-apoptotic. This work thus demonstrates that alternative transcript variants can broadly reprogram human genes to express frameshifted iORFs, revealing new levels of complexity in the human transcriptome and proteome.
Collapse
Affiliation(s)
- Haomiao Su
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT 06525, USA
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| |
Collapse
|
7
|
Tzani I, Castro-Rivadeneyra M, Kelly P, Strasser L, Zhang L, Clynes M, Karger BL, Barron N, Bones J, Clarke C. Detection of host cell microprotein impurities in antibody drug products. Nat Commun 2024; 15:8605. [PMID: 39366928 PMCID: PMC11452709 DOI: 10.1038/s41467-024-51870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2024] [Indexed: 10/06/2024] Open
Abstract
Chinese hamster ovary (CHO) cells are used to produce almost 90% of therapeutic monoclonal antibodies (mAbs) and antibody fusion proteins (Fc-fusion). The annotation of non-canonical translation events in these cellular factories remains incomplete, limiting our ability to study CHO cell biology and detect host cell protein (HCP) impurities in the final antibody drug product. We utilised ribosome footprint profiling (Ribo-seq) to identify novel open reading frames (ORFs) including N-terminal extensions and thousands of short ORFs (sORFs) predicted to encode microproteins. Mass spectrometry-based HCP analysis of eight commercial antibody drug products (7 mAbs and 1 Fc-fusion protein) using the extended protein sequence database revealed the presence of microprotein impurities. We present evidence that microprotein abundance varies with growth phase and can be affected by the cell culture environment. In addition, our work provides a vital resource to facilitate future studies of non-canonical translation and the regulation of protein synthesis in CHO cell lines.
Collapse
Affiliation(s)
- Ioanna Tzani
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
| | - Marina Castro-Rivadeneyra
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Paul Kelly
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
| | - Lisa Strasser
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
| | - Lin Zhang
- Bioprocess R&D, Pfizer Inc. Andover, Massachusetts, USA
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Barry L Karger
- Barnett Institute, Northeastern University, 360 Huntington Ave, Boston, MA, USA
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Colin Clarke
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co, Dublin, Ireland.
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
8
|
Whited AM, Jungreis I, Allen J, Cleveland CL, Mudge JM, Kellis M, Rinn JL, Hough LE. Biophysical characterization of high-confidence, small human proteins. BIOPHYSICAL REPORTS 2024; 4:100167. [PMID: 38909903 PMCID: PMC11305224 DOI: 10.1016/j.bpr.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. In addition, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from noncoding ones in otherwise ambiguous cases.
Collapse
Affiliation(s)
- A M Whited
- BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Irwin Jungreis
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts
| | - Jeffre Allen
- BioFrontiers Institute, University of Colorado, Boulder, Colorado; Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | | | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts
| | - John L Rinn
- BioFrontiers Institute, University of Colorado, Boulder, Colorado; Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Loren E Hough
- BioFrontiers Institute, University of Colorado, Boulder, Colorado; Department of Physics, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
9
|
Deutsch EW, Kok LW, Mudge JM, Ruiz-Orera J, Fierro-Monti I, Sun Z, Abelin JG, Alba MM, Aspden JL, Bazzini AA, Bruford EA, Brunet MA, Calviello L, Carr SA, Carvunis AR, Chothani S, Clauwaert J, Dean K, Faridi P, Frankish A, Hubner N, Ingolia NT, Magrane M, Martin MJ, Martinez TF, Menschaert G, Ohler U, Orchard S, Rackham O, Roucou X, Slavoff SA, Valen E, Wacholder A, Weissman JS, Wu W, Xie Z, Choudhary J, Bassani-Sternberg M, Vizcaíno JA, Ternette N, Moritz RL, Prensner JR, van Heesch S. High-quality peptide evidence for annotating non-canonical open reading frames as human proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612016. [PMID: 39314370 PMCID: PMC11419116 DOI: 10.1101/2024.09.09.612016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A major scientific drive is to characterize the protein-coding genome as it provides the primary basis for the study of human health. But the fundamental question remains: what has been missed in prior genomic analyses? Over the past decade, the translation of non-canonical open reading frames (ncORFs) has been observed across human cell types and disease states, with major implications for proteomics, genomics, and clinical science. However, the impact of ncORFs has been limited by the absence of a large-scale understanding of their contribution to the human proteome. Here, we report the collaborative efforts of stakeholders in proteomics, immunopeptidomics, Ribo-seq ORF discovery, and gene annotation, to produce a consensus landscape of protein-level evidence for ncORFs. We show that at least 25% of a set of 7,264 ncORFs give rise to translated gene products, yielding over 3,000 peptides in a pan-proteome analysis encompassing 3.8 billion mass spectra from 95,520 experiments. With these data, we developed an annotation framework for ncORFs and created public tools for researchers through GENCODE and PeptideAtlas. This work will provide a platform to advance ncORF-derived proteins in biomedical discovery and, beyond humans, diverse animals and plants where ncORFs are similarly observed.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, WA, 98109, USA
| | - Leron W Kok
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, 13125, Germany
| | - Ivo Fierro-Monti
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, WA, 98109, USA
| | | | - M Mar Alba
- Hospital del Mar Research Institute, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Marie A Brunet
- Pediatrics Department, University of Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, Québec, Canada
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sonia Chothani
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS (National University of Singapore) Medical School, Singapore
| | - Jim Clauwaert
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pouya Faridi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash Proteomics & Metabolomics Platform, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, 13125, Germany
- Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, 69117, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, 13347, Germany
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, Center for Computational Biology, University of California, Berkeley, Berkeley, CA, 94720-3202, USA
| | - Michele Magrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Maria Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Thomas F Martinez
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, 92617, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92617, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92617, USA
| | - Gerben Menschaert
- Biobix, Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - Uwe Ohler
- Department of Biology, Humboldt University Berlin, Berlin, 10117, Germany
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, 10115, Germany
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | | | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, 06516, USA
| | - Eivind Valen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Pharmacy & Pharmaceutical sciences, National University of Singapore (NUS), Singapore
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jyoti Choudhary
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, London, SW3 6JB, UK
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, 1005, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Lausanne, 1005, Switzerland
- Agora Cancer Research Centre, Lausanne, 1011, Switzerland
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Nicola Ternette
- School of Life Sciences, Division Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
- Centre for Immuno-Oncology, University of Oxford, Oxford, OX37DQ, UK
| | - Robert L Moritz
- Institute for Systems Biology (ISB), Seattle, WA, 98109, USA
| | - John R Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584 CS, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
10
|
Linzer CR, Stein CS, Witmer NH, Xu Z, Schnicker NJ, Boudreau RL. Mitoregulin self-associates to form likely homo-oligomeric pore-like structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.601956. [PMID: 39026732 PMCID: PMC11257578 DOI: 10.1101/2024.07.10.601956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We and others previously found that a misannotated long noncoding RNA encodes for a conserved mitochondrial transmembrane microprotein named Mitoregulin (Mtln). Beyond an established role for Mtln in lipid metabolism, Mtln has also been shown to more broadly influence mitochondria, boosting respiratory efficiency and Ca 2+ retention capacity, while lowering ROS, yet the underlying mechanisms remain unresolved. Prior studies have identified possible Mtln protein interaction partners; however, a lack of consensus persists, and no claims have been made about Mtln's structure. We previously noted two key published observations that seemingly remained overlooked: 1) endogenous Mtln co-immunoprecipitates with epitope-tagged Mtln at high efficiency, and 2) Mtln primarily exists in a ∼66 kDa complex. To investigate if Mtln may self-oligomerize into higher-order complexes, we performed co-immunoprecipitation, protein modeling simulations, and native gel assessments of Mtln-containing complexes in cells and tissues, as well as tested whether synthetic Mtln protein itself forms oligomeric complexes. Our combined results provide strong support that Mtln self-associates and likely forms a hexameric pore-like structure.
Collapse
|
11
|
Dasgupta A, Prensner JR. Upstream open reading frames: new players in the landscape of cancer gene regulation. NAR Cancer 2024; 6:zcae023. [PMID: 38774471 PMCID: PMC11106035 DOI: 10.1093/narcan/zcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
The translation of RNA by ribosomes represents a central biological process and one of the most dysregulated processes in cancer. While translation is traditionally thought to occur exclusively in the protein-coding regions of messenger RNAs (mRNAs), recent transcriptome-wide approaches have shown abundant ribosome activity across diverse stretches of RNA transcripts. The most common type of this kind of ribosome activity occurs in gene leader sequences, also known as 5' untranslated regions (UTRs) of the mRNA, that precede the main coding sequence. Translation of these upstream open reading frames (uORFs) is now known to occur in upwards of 25% of all protein-coding genes. With diverse functions from RNA regulation to microprotein generation, uORFs are rapidly igniting a new arena of cancer biology, where they are linked to cancer genetics, cancer signaling, and tumor-immune interactions. This review focuses on the contributions of uORFs and their associated 5'UTR sequences to cancer biology.
Collapse
Affiliation(s)
- Anwesha Dasgupta
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John R Prensner
- Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Tong G, Hah N, Martinez TF. Comparison of software packages for detecting unannotated translated small open reading frames by Ribo-seq. Brief Bioinform 2024; 25:bbae268. [PMID: 38842510 PMCID: PMC11155197 DOI: 10.1093/bib/bbae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
Accurate and comprehensive annotation of microprotein-coding small open reading frames (smORFs) is critical to our understanding of normal physiology and disease. Empirical identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-seq). While effective, published Ribo-seq datasets can vary drastically in quality and different analysis tools are frequently employed. Here, we examine the impact of these factors on identifying translated smORFs. We compared five commonly used software tools that assess open reading frame translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH) and found surprisingly low agreement across all tools. Only ~2% of smORFs were called translated by all five tools, and ~15% by three or more tools when assessing the same high-resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ~74% agreement across all five tools. We also found that some tools are strongly biased against low-resolution Ribo-seq data, while others are more tolerant. Analyzing Ribo-seq coverage revealed that smORFs detected by more than one tool tend to have higher translation levels and higher fractions of in-frame reads, consistent with what was observed for annotated genes. Together these results support employing multiple tools to identify the most confident microprotein-coding smORFs and choosing the tools based on the quality of the dataset and the planned downstream characterization experiments of the predicted smORFs.
Collapse
Affiliation(s)
- Gregory Tong
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92617, United States
| | - Nasun Hah
- Chapman Charitable Foundations Genomic Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA 92037, United States
| | - Thomas F Martinez
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92617, United States
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, United States
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92617, United States
| |
Collapse
|
13
|
Rocha AL, Pai V, Perkins G, Chang T, Ma J, De Souza EV, Chu Q, Vaughan JM, Diedrich JK, Ellisman MH, Saghatelian A. An Inner Mitochondrial Membrane Microprotein from the SLC35A4 Upstream ORF Regulates Cellular Metabolism. J Mol Biol 2024; 436:168559. [PMID: 38580077 PMCID: PMC11292582 DOI: 10.1016/j.jmb.2024.168559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Upstream open reading frames (uORFs) are cis-acting elements that can dynamically regulate the translation of downstream ORFs by suppressing downstream translation under basal conditions and, in some cases, increasing downstream translation under stress conditions. Computational and empirical methods have identified uORFs in the 5'-UTRs of approximately half of all mouse and human transcripts, making uORFs one of the largest regulatory elements known. Because the prevailing dogma was that eukaryotic mRNAs produce a single functional protein, the peptides and small proteins, or microproteins, encoded by uORFs were rarely studied. We hypothesized that a uORF in the SLC35A4 mRNA is producing a functional microprotein (SLC35A4-MP) because of its conserved amino acid sequence. Through a series of biochemical and cellular experiments, we find that the 103-amino acid SLC35A4-MP is a single-pass transmembrane inner mitochondrial membrane (IMM) microprotein. The IMM contains the protein machinery crucial for cellular respiration and ATP generation, and loss of function studies with SLC35A4-MP significantly diminish maximal cellular respiration, indicating a vital role for this microprotein in cellular metabolism. The findings add SLC35A4-MP to the growing list of functional microproteins and, more generally, indicate that uORFs that encode conserved microproteins are an untapped reservoir of functional microproteins.
Collapse
Affiliation(s)
- Andréa L Rocha
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victor Pai
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tina Chang
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jiao Ma
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Eduardo V De Souza
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Qian Chu
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
14
|
Whited AM, Jungreis I, Allen J, Cleveland CL, Mudge JM, Kellis M, Rinn JL, Hough LE. Biophysical characterization of high-confidence, small human proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589296. [PMID: 38659920 PMCID: PMC11042228 DOI: 10.1101/2024.04.12.589296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. Additionally, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from non-coding ones in otherwise ambiguous cases.
Collapse
Affiliation(s)
- A M Whited
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Irwin Jungreis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Jeffre Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Department of Biochemistry, University of Colorado Boulder, CO, USA
| | | | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - John L Rinn
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Department of Biochemistry, University of Colorado Boulder, CO, USA
| | - Loren E Hough
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, CO, USA
| |
Collapse
|
15
|
Hofman DA, Ruiz-Orera J, Yannuzzi I, Murugesan R, Brown A, Clauser KR, Condurat AL, van Dinter JT, Engels SAG, Goodale A, van der Lugt J, Abid T, Wang L, Zhou KN, Vogelzang J, Ligon KL, Phoenix TN, Roth JA, Root DE, Hubner N, Golub TR, Bandopadhayay P, van Heesch S, Prensner JR. Translation of non-canonical open reading frames as a cancer cell survival mechanism in childhood medulloblastoma. Mol Cell 2024; 84:261-276.e18. [PMID: 38176414 PMCID: PMC10872554 DOI: 10.1016/j.molcel.2023.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames (ORFs). To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a stepwise approach using multiple CRISPR-Cas9 screens to elucidate non-canonical ORFs and putative microproteins implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream ORFs (uORFs) exhibited selective functionality independent of main coding sequences. A microprotein encoded by one of these ORFs, ASNSD1-uORF or ASDURF, was upregulated, associated with MYC-family oncogenes, and promoted medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future studies seeking to define new cancer targets.
Collapse
Affiliation(s)
- Damon A Hofman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Ian Yannuzzi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexandra L Condurat
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jip T van Dinter
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Sem A G Engels
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Tanaz Abid
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Li Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin N Zhou
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Department of Pathology, Boston Children's Hospital, Boston MA 02115, USA
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany; German Centre for Cardiovascular Research, Partner Site Berlin, 13347 Berlin, Germany
| | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands.
| | - John R Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Baker ZN, Forny P, Pagliarini DJ. Mitochondrial proteome research: the road ahead. Nat Rev Mol Cell Biol 2024; 25:65-82. [PMID: 37773518 PMCID: PMC11378943 DOI: 10.1038/s41580-023-00650-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 10/01/2023]
Abstract
Mitochondria are multifaceted organelles with key roles in anabolic and catabolic metabolism, bioenergetics, cellular signalling and nutrient sensing, and programmed cell death processes. Their diverse functions are enabled by a sophisticated set of protein components encoded by the nuclear and mitochondrial genomes. The extent and complexity of the mitochondrial proteome remained unclear for decades. This began to change 20 years ago when, driven by the emergence of mass spectrometry-based proteomics, the first draft mitochondrial proteomes were established. In the ensuing decades, further technological and computational advances helped to refine these 'maps', with current estimates of the core mammalian mitochondrial proteome ranging from 1,000 to 1,500 proteins. The creation of these compendia provided a systemic view of an organelle previously studied primarily in a reductionist fashion and has accelerated both basic scientific discovery and the diagnosis and treatment of human disease. Yet numerous challenges remain in understanding mitochondrial biology and translating this knowledge into the medical context. In this Roadmap, we propose a path forward for refining the mitochondrial protein map to enhance its discovery and therapeutic potential. We discuss how emerging technologies can assist the detection of new mitochondrial proteins, reveal their patterns of expression across diverse tissues and cell types, and provide key information on proteoforms. We highlight the power of an enhanced map for systematically defining the functions of its members. Finally, we examine the utility of an expanded, functionally annotated mitochondrial proteome in a translational setting for aiding both diagnosis of mitochondrial disease and targeting of mitochondria for treatment.
Collapse
Affiliation(s)
- Zakery N Baker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick Forny
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Tong G, Hah N, Martinez TF. Comparison of software packages for detecting unannotated translated small open reading frames by Ribo-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573709. [PMID: 38234848 PMCID: PMC10793472 DOI: 10.1101/2023.12.30.573709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Accurate and comprehensive annotation of microprotein-coding small open reading frames (smORFs) is critical to our understanding of normal physiology and disease. Empirical identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-seq). While effective, published Ribo-seq datasets can vary drastically in quality and different analysis tools are frequently employed. Here, we examine the impact of these factors on identifying translated smORFs. We compared five commonly used software tools that assess ORF translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH), and found surprisingly low agreement across all tools. Only ~2% of smORFs were called translated by all five tools and ~15% by three or more tools when assessing the same high-resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ~72% agreement across all five tools. We also found that some tools are strongly biased against low-resolution Ribo-seq data, while others are more tolerant. Analyzing Ribo-seq coverage as a proxy for translation levels revealed that highly translated smORFs are more likely to be detected by more than one tool. Together these results support employing multiple tools to identify the most confident microprotein-coding smORFs, and choosing the tools based on the quality of the dataset and planned downstream characterization experiments of predicted smORFs.
Collapse
Affiliation(s)
- Gregory Tong
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA
| | - Nasun Hah
- Chapman Charitable Foundations Genomic Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thomas F. Martinez
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92617, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92617, USA
| |
Collapse
|
18
|
Lu Y, Ran Y, Li H, Wen J, Cui X, Zhang X, Guan X, Cheng M. Micropeptides: origins, identification, and potential role in metabolism-related diseases. J Zhejiang Univ Sci B 2023; 24:1106-1122. [PMID: 38057268 PMCID: PMC10710913 DOI: 10.1631/jzus.b2300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 12/08/2023]
Abstract
With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Cheng
- School of Basic Medicine Sciences, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
19
|
Mohsen JJ, Martel AA, Slavoff SA. Microproteins-Discovery, structure, and function. Proteomics 2023; 23:e2100211. [PMID: 37603371 PMCID: PMC10841188 DOI: 10.1002/pmic.202100211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Advances in proteogenomic technologies have revealed hundreds to thousands of translated small open reading frames (sORFs) that encode microproteins in genomes across evolutionary space. While many microproteins have now been shown to play critical roles in biology and human disease, a majority of recently identified microproteins have little or no experimental evidence regarding their functionality. Computational tools have some limitations for analysis of short, poorly conserved microprotein sequences, so additional approaches are needed to determine the role of each member of this recently discovered polypeptide class. A currently underexplored avenue in the study of microproteins is structure prediction and determination, which delivers a depth of functional information. In this review, we provide a brief overview of microprotein discovery methods, then examine examples of microprotein structures (and, conversely, intrinsic disorder) that have been experimentally determined using crystallography, cryo-electron microscopy, and NMR, which provide insight into their molecular functions and mechanisms. Additionally, we discuss examples of predicted microprotein structures that have provided insight or context regarding their function. Analysis of microprotein structure at the angstrom level, and confirmation of predicted structures, therefore, has potential to identify translated microproteins that are of biological importance and to provide molecular mechanism for their in vivo roles.
Collapse
Affiliation(s)
- Jessica J. Mohsen
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Alina A. Martel
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Sarah A. Slavoff
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
20
|
Bosch JA, Keith N, Escobedo F, Fisher WW, LaGraff JT, Rabasco J, Wan KH, Weiszmann R, Hu Y, Kondo S, Brown JB, Perrimon N, Celniker SE. Molecular and functional characterization of the Drosophila melanogaster conserved smORFome. Cell Rep 2023; 42:113311. [PMID: 37889754 PMCID: PMC10843857 DOI: 10.1016/j.celrep.2023.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Short polypeptides encoded by small open reading frames (smORFs) are ubiquitously found in eukaryotic genomes and are important regulators of physiology, development, and mitochondrial processes. Here, we focus on a subset of 298 smORFs that are evolutionarily conserved between Drosophila melanogaster and humans. Many of these smORFs are conserved broadly in the bilaterian lineage, and ∼182 are conserved in plants. We observe remarkably heterogeneous spatial and temporal expression patterns of smORF transcripts-indicating wide-spread tissue-specific and stage-specific mitochondrial architectures. In addition, an analysis of annotated functional domains reveals a predicted enrichment of smORF polypeptides localizing to mitochondria. We conduct an embryonic ribosome profiling experiment and find support for translation of 137 of these smORFs during embryogenesis. We further embark on functional characterization using CRISPR knockout/activation, RNAi knockdown, and cDNA overexpression, revealing diverse phenotypes. This study underscores the importance of identifying smORF function in disease and phenotypic diversity.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Keith
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Felipe Escobedo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William W Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Thai LaGraff
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jorden Rabasco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth H Wan
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard Weiszmann
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - James B Brown
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
21
|
Kamradt ML, Makarewich CA. Mitochondrial microproteins: critical regulators of protein import, energy production, stress response pathways, and programmed cell death. Am J Physiol Cell Physiol 2023; 325:C807-C816. [PMID: 37642234 PMCID: PMC11540166 DOI: 10.1152/ajpcell.00189.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Mitochondria rely upon the coordination of protein import, protein translation, and proper functioning of oxidative phosphorylation (OXPHOS) complexes I-V to sustain the activities of life for an organism. Each process is dependent upon the function of profoundly large protein complexes found in the mitochondria [translocase of the outer mitochondrial membrane (TOMM) complex, translocase of the inner mitochondrial membrane (TIMM) complex, OXPHOS complexes, mitoribosomes]. These massive protein complexes, in some instances more than one megadalton, are built up from numerous protein subunits of varying sizes, including many proteins that are ≤100-150 amino acids. However, these small proteins, termed microproteins, not only act as cogs in large molecular machines but also have important steps in inhibiting or promoting the intrinsic pathway of apoptosis, coordinate responses to cellular stress, and even act as hormones. This review focuses on microproteins that occupy the mitochondria and are critical for its function. Although the microprotein field is relatively new, researchers have long recognized the existence of these mitochondrial proteins as critical components of virtually all aspects of mitochondrial biology. Thus, recent studies estimating that hundreds of new microproteins of unknown function exist and are missing from current genome annotations suggests that the mitochondrial "microproteome" is a rich area for future biological investigation.
Collapse
Affiliation(s)
- Michael L Kamradt
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Catherine A Makarewich
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
22
|
Chen Y, Cao X, Loh KH, Slavoff SA. Chemical labeling and proteomics for characterization of unannotated small and alternative open reading frame-encoded polypeptides. Biochem Soc Trans 2023; 51:1071-1082. [PMID: 37171061 PMCID: PMC10317152 DOI: 10.1042/bst20221074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Thousands of unannotated small and alternative open reading frames (smORFs and alt-ORFs, respectively) have recently been revealed in mammalian genomes. While hundreds of mammalian smORF- and alt-ORF-encoded proteins (SEPs and alt-proteins, respectively) affect cell proliferation, the overwhelming majority of smORFs and alt-ORFs remain uncharacterized at the molecular level. Complicating the task of identifying the biological roles of smORFs and alt-ORFs, the SEPs and alt-proteins that they encode exhibit limited sequence homology to protein domains of known function. Experimental techniques for the functionalization of these gene classes are therefore required. Approaches combining chemical labeling and quantitative proteomics have greatly advanced our ability to identify and characterize functional SEPs and alt-proteins in high throughput. In this review, we briefly describe the principles of proteomic discovery of SEPs and alt-proteins, then summarize how these technologies interface with chemical labeling for identification of SEPs and alt-proteins with specific properties, as well as in defining the interactome of SEPs and alt-proteins.
Collapse
Affiliation(s)
- Yanran Chen
- Department of Chemistry, Yale University, New Haven, CT, U.S.A
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
| | - Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT, U.S.A
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, U.S.A
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ken H. Loh
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Sarah A. Slavoff
- Department of Chemistry, Yale University, New Haven, CT, U.S.A
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, U.S.A
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, U.S.A
| |
Collapse
|
23
|
Averina OA, Permyakov OA, Emelianova MA, Guseva EA, Grigoryeva OO, Lovat ML, Egorova AE, Grinchenko AV, Kumeiko VV, Marey MV, Manskikh VN, Dontsova OA, Vyssokikh MY, Sergiev PV. Kidney-Related Function of Mitochondrial Protein Mitoregulin. Int J Mol Sci 2023; 24:ijms24109106. [PMID: 37240452 DOI: 10.3390/ijms24109106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
A small protein, Mitoregulin (Mtln), localizes in mitochondria and contributes to oxidative phosphorylation and fatty acid metabolism. Mtln knockout mice develop obesity on a high-fat diet, demonstrating elevated cardiolipin damage and suboptimal creatine kinase oligomerization in muscle tissue. Kidneys heavily depend on the oxidative phosphorylation in mitochondria. Here we report kidney-related phenotypes in aged Mtln knockout mice. Similar to Mtln knockout mice muscle mitochondria, those of the kidney demonstrate a decreased respiratory complex I activity and excessive cardiolipin damage. Aged male mice carrying Mtln knockout demonstrated an increased frequency of renal proximal tubules' degeneration. At the same time, a decreased glomerular filtration rate has been more frequently detected in aged female mice devoid of Mtln. An amount of Mtln partner protein, Cyb5r3, is drastically decreased in the kidneys of Mtln knockout mice.
Collapse
Affiliation(s)
- Olga A Averina
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Oleg A Permyakov
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Mariia A Emelianova
- Center for Life Sciences, Skolkovo Institute of Science and Technology, 143025 Moscow, Russia
| | - Ekaterina A Guseva
- Center for Life Sciences, Skolkovo Institute of Science and Technology, 143025 Moscow, Russia
| | - Olga O Grigoryeva
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Maxim L Lovat
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Mitoengineering MSU, 119992 Moscow, Russia
| | - Anna E Egorova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Andrei V Grinchenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 690041 Vladivostok, Russia
| | - Vadim V Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 690041 Vladivostok, Russia
| | - Maria V Marey
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I.Kulakov, 117198 Moscow, Russia
| | - Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Mitoengineering MSU, 119992 Moscow, Russia
| | - Olga A Dontsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, 143025 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119992 Moscow, Russia
| | - Mikhail Y Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I.Kulakov, 117198 Moscow, Russia
| | - Petr V Sergiev
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Center for Life Sciences, Skolkovo Institute of Science and Technology, 143025 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
24
|
Hofman DA, Ruiz-Orera J, Yannuzzi I, Murugesan R, Brown A, Clauser KR, Condurat AL, van Dinter JT, Engels SA, Goodale A, van der Lugt J, Abid T, Wang L, Zhou KN, Vogelzang J, Ligon KL, Phoenix TN, Roth JA, Root DE, Hubner N, Golub TR, Bandopadhayay P, van Heesch S, Prensner JR. Translation of non-canonical open reading frames as a cancer cell survival mechanism in childhood medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539399. [PMID: 37205492 PMCID: PMC10187264 DOI: 10.1101/2023.05.04.539399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames. To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a step-wise approach to employ multiple CRISPR-Cas9 screens to elucidate functional non-canonical ORFs implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream open reading frames (uORFs) exhibited selective functionality independent of the main coding sequence. One of these, ASNSD1-uORF or ASDURF, was upregulated, associated with the MYC family oncogenes, and was required for medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future cancer genomics studies seeking to define new cancer targets.
Collapse
Affiliation(s)
- Damon A. Hofman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
- These authors contributed equally
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- These authors contributed equally
| | - Ian Yannuzzi
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Current address: Arbor Biotechnologies, Cambridge, MA, 02140, USA
| | - Karl R. Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Alexandra L. Condurat
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jip T. van Dinter
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Sem A.G. Engels
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Tanaz Abid
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Li Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin N. Zhou
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Current address: Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, 91101, USA
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, 02215, USA
| | - Keith L. Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Department of Pathology, Boston Children’s Hospital, Boston MA 02115
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45229, USA
| | | | - David E. Root
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité-Universitätsmedizin, 10117 Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, 13347 Berlin, Germany
| | - Todd R. Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - John R. Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, 02115, USA
- Current address: Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Connor OM, Matta SK, Friedman JR. An intermembrane space protein facilitates completion of mitochondrial division in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535139. [PMID: 37034761 PMCID: PMC10081322 DOI: 10.1101/2023.03.31.535139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mitochondria are highly dynamic double membrane-bound organelles that maintain their shape in part through fission and fusion. Mitochondrial fission is performed by the dynamin-related protein Dnm1 (Drp1 in humans), a large GTPase that constricts and divides the mitochondria in a GTP hydrolysis-dependent manner. However, it is unclear whether factors inside mitochondria help coordinate the process and if Dnm1/Drp1 activity alone is sufficient to complete fission of both mitochondrial membranes. Here, we identify an intermembrane space protein required for mitochondrial fission in yeast, which we propose to name Mdi1. Loss of Mdi1 leads to hyper-fused mitochondria networks due to defects in mitochondrial fission, but not lack of Dnm1 recruitment to mitochondria. Mdi1 plays a conserved role in fungal species and its homologs contain a putative amphipathic α-helix, mutations in which disrupt mitochondrial morphology. One model to explain these findings is that Mdi1 associates with and distorts the mitochondrial inner membrane to enable Dnm1 to robustly complete fission. Our work reveals that Dnm1 cannot efficiently divide mitochondria without the coordinated function of a protein that resides inside mitochondria.
Collapse
Affiliation(s)
- Olivia M. Connor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Srujan K. Matta
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jonathan R. Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
26
|
Sandmann CL, Schulz JF, Ruiz-Orera J, Kirchner M, Ziehm M, Adami E, Marczenke M, Christ A, Liebe N, Greiner J, Schoenenberger A, Muecke MB, Liang N, Moritz RL, Sun Z, Deutsch EW, Gotthardt M, Mudge JM, Prensner JR, Willnow TE, Mertins P, van Heesch S, Hubner N. Evolutionary origins and interactomes of human, young microproteins and small peptides translated from short open reading frames. Mol Cell 2023; 83:994-1011.e18. [PMID: 36806354 PMCID: PMC10032668 DOI: 10.1016/j.molcel.2023.01.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.
Collapse
Affiliation(s)
- Clara-L Sandmann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| | - Jana F Schulz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| | - Jorge Ruiz-Orera
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | - Eleonora Adami
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Maike Marczenke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Annabel Christ
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Nina Liebe
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Johannes Greiner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Aaron Schoenenberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Michael B Muecke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Ning Liang
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | | | - Zhi Sun
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John R Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Thomas E Willnow
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | | | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany.
| |
Collapse
|
27
|
Pueyo JI, Salazar J, Grincho C, Berni J, Towler BP, Newbury SF. Purriato is a conserved small open reading frame gene that interacts with the CASA pathway to regulate muscle homeostasis and epithelial tissue growth in Drosophila. Front Cell Dev Biol 2023; 11:1117454. [PMID: 36968202 PMCID: PMC10036370 DOI: 10.3389/fcell.2023.1117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Recent advances in proteogenomic techniques and bioinformatic pipelines have permitted the detection of thousands of translated small Open Reading Frames (smORFs), which contain less than 100 codons, in eukaryotic genomes. Hundreds of these actively translated smORFs display conserved sequence, structure and evolutionary signatures indicating that the translated peptides could fulfil important biological roles. Despite their abundance, only tens of smORF genes have been fully characterised; these act mainly as regulators of canonical proteins involved in essential cellular processes. Importantly, some of these smORFs display conserved functions with their mutations being associated with pathogenesis. Thus, investigating smORF roles in Drosophila will not only expand our understanding of their functions but it may have an impact in human health. Here we describe the function of a novel and essential Drosophila smORF gene named purriato (prto). prto belongs to an ancient gene family whose members have expanded throughout the Protostomia clade. prto encodes a transmembrane peptide which is localized in endo-lysosomes and perinuclear and plasma membranes. prto is dynamically expressed in mesodermal tissues and imaginal discs. Targeted prto knockdown (KD) in these organs results in changes in nuclear morphology and endo-lysosomal distributions correlating with the loss of sarcomeric homeostasis in muscles and reduction of mitosis in wing discs. Consequently, prto KD mutants display severe reduction of motility, and shorter wings. Finally, our genetic interaction experiments show that prto function is closely associated to the CASA pathway, a conserved mechanism involved in turnover of mis-folded proteins and linked to muscle dystrophies and neurodegenerative diseases. Thus, this study shows the relevance of smORFs in regulating important cellular functions and supports the systematic characterisation of this class of genes to understand their functions and evolution.
Collapse
Affiliation(s)
- Jose I. Pueyo
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jorge Salazar
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Carolina Grincho
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jimena Berni
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Benjamin P. Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sarah F. Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
28
|
Abstract
Mitoribosome biogenesis is a complex and energetically costly process that involves RNA elements encoded in the mitochondrial genome and mitoribosomal proteins most frequently encoded in the nuclear genome. The process is catalyzed by extra-ribosomal proteins, nucleus-encoded assembly factors that act in all stages of the assembly process to coordinate the processing and maturation of ribosomal RNAs with the hierarchical association of ribosomal proteins. Biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided hints regarding their assembly. In this general concept chapter, we will briefly describe the current knowledge, mainly regarding the mammalian mitoribosome biogenesis pathway and factors involved, and will emphasize the biological sources and approaches that have been applied to advance the field.
Collapse
Affiliation(s)
- J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Austin Choi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
29
|
Treichel AJ, Bazzini AA. Casting CRISPR-Cas13d to fish for microprotein functions in animal development. iScience 2022; 25:105547. [PMID: 36444300 PMCID: PMC9700322 DOI: 10.1016/j.isci.2022.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein coding genes were originally identified with sequence-based definitions that included a 100-codon cutoff to avoid annotating irrelevant open reading frames. However, many active proteins contain less than 100 amino acids. Indeed, functional genetics, ribosome profiling, and proteomic profiling have identified many short, translated open reading frames, including those with biologically active peptide products (microproteins). Yet, functions for most of these peptide products remain unknown. Because microproteins often act as key signals or fine-tune processes, animal development has already revealed functions for a handful of microproteins and provides an ideal context to uncover additional microprotein functions. However, many mRNAs during early development are maternally provided and hinder targeted mutagenesis approaches to characterize developmental microprotein functions. The recently established, RNA-targeting CRISPR-Cas13d system in zebrafish overcomes this barrier and produces potent knockdown of targeted mRNA, including maternally provided mRNA, and enables flexible, efficient interrogation of microprotein functions in animal development.
Collapse
Affiliation(s)
| | - Ariel Alejandro Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
30
|
Zheng X, Xiang M. Mitochondrion-located peptides and their pleiotropic physiological functions. FEBS J 2022; 289:6919-6935. [PMID: 35599630 DOI: 10.1111/febs.16532] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 01/13/2023]
Abstract
With the development of advanced technologies, many small open reading frames (sORFs) have been found to be translated into micropeptides. Interestingly, a considerable proportion of micropeptides are located in mitochondria, which are designated here as mitochondrion-located peptides (MLPs). These MLPs often contain a transmembrane domain and show a high degree of conservation across species. They usually act as co-factors of large proteins and play regulatory roles in mitochondria such as electron transport in the respiratory chain, reactive oxygen species (ROS) production, metabolic homeostasis, and so on. Deficiency of MLPs disturbs diverse physiological processes including immunity, differentiation, and metabolism both in vivo and in vitro. These findings reveal crucial functions for MLPs and provide fresh insights into diverse mitochondrion-associated biological processes and diseases.
Collapse
Affiliation(s)
- Xintong Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Manske F, Ogoniak L, Jürgens L, Grundmann N, Makałowski W, Wethmar K. The new uORFdb: integrating literature, sequence, and variation data in a central hub for uORF research. Nucleic Acids Res 2022; 51:D328-D336. [PMID: 36305828 PMCID: PMC9825577 DOI: 10.1093/nar/gkac899] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 02/07/2023] Open
Abstract
Upstream open reading frames (uORFs) are initiated by AUG or near-cognate start codons and have been identified in the transcript leader sequences of the majority of eukaryotic transcripts. Functionally, uORFs are implicated in downstream translational regulation of the main protein coding sequence and may serve as a source of non-canonical peptides. Genetic defects in uORF sequences have been linked to the development of various diseases, including cancer. To simplify uORF-related research, the initial release of uORFdb in 2014 provided a comprehensive and manually curated collection of uORF-related literature. Here, we present an updated sequence-based version of uORFdb, accessible at https://www.bioinformatics.uni-muenster.de/tools/uorfdb. The new uORFdb enables users to directly access sequence information, graphical displays, and genetic variation data for over 2.4 million human uORFs. It also includes sequence data of >4.2 million uORFs in 12 additional species. Multiple uORFs can be displayed in transcript- and reading-frame-specific models to visualize the translational context. A variety of filters, sequence-related information, and links to external resources (UCSC Genome Browser, dbSNP, ClinVar) facilitate immediate in-depth analysis of individual uORFs. The database also contains uORF-related somatic variation data obtained from whole-genome sequencing (WGS) analyses of 677 cancer samples collected by the TCGA consortium.
Collapse
Affiliation(s)
- Felix Manske
- Institute of Bioinformatics, University of Münster, Münster 48149, Germany
| | - Lynn Ogoniak
- Institute of Bioinformatics, University of Münster, Münster 48149, Germany
| | - Lara Jürgens
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Münster 48149, Germany
| | - Norbert Grundmann
- Institute of Bioinformatics, University of Münster, Münster 48149, Germany
| | - Wojciech Makałowski
- Correspondence may also be addressed to Wojciech Makałowski. Tel: +49 2518353006;
| | - Klaus Wethmar
- To whom correspondence should be addressed. Tel: +49 2518347587; Fax: +49 2518347588;
| |
Collapse
|
32
|
Pei J, Zhang J, Cong Q. Human mitochondrial protein complexes revealed by large-scale coevolution analysis and deep learning-based structure modeling. Bioinformatics 2022; 38:4301-4311. [PMID: 35881696 DOI: 10.1093/bioinformatics/btac527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Recent development of deep-learning methods has led to a breakthrough in the prediction accuracy of 3D protein structures. Extending these methods to protein pairs is expected to allow large-scale detection of protein-protein interactions (PPIs) and modeling protein complexes at the proteome level. RESULTS We applied RoseTTAFold and AlphaFold, two of the latest deep-learning methods for structure predictions, to analyze coevolution of human proteins residing in mitochondria, an organelle of vital importance in many cellular processes including energy production, metabolism, cell death and antiviral response. Variations in mitochondrial proteins have been linked to a plethora of human diseases and genetic conditions. RoseTTAFold, with high computational speed, was used to predict the coevolution of about 95% of mitochondrial protein pairs. Top-ranked pairs were further subject to modeling of the complex structures by AlphaFold, which also produced contact probability with high precision and in many cases consistent with RoseTTAFold. Most top-ranked pairs with high contact probability were supported by known PPIs and/or similarities to experimental structural complexes. For high-scoring pairs without experimental complex structures, our coevolution analyses and structural models shed light on the details of their interfaces, including CHCHD4-AIFM1, MTERF3-TRUB2, FMC1-ATPAF2 and ECSIT-NDUFAF1. We also identified novel PPIs (PYURF-NDUFAF5, LYRM1-MTRF1L and COA8-COX10) for several proteins without experimentally characterized interaction partners, leading to predictions of their molecular functions and the biological processes they are involved in. AVAILABILITY AND IMPLEMENTATION Data of mitochondrial proteins and their interactions are available at: http://conglab.swmed.edu/mitochondria. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Meyer EH, Letts JA, Maldonado M. Structural insights into the assembly and the function of the plant oxidative phosphorylation system. THE NEW PHYTOLOGIST 2022; 235:1315-1329. [PMID: 35588181 DOI: 10.1111/nph.18259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/05/2022] [Indexed: 05/23/2023]
Abstract
One of the key functions of mitochondria is the production of ATP to support cellular metabolism and growth. The last step of mitochondrial ATP synthesis is performed by the oxidative phosphorylation (OXPHOS) system, an ensemble of protein complexes embedded in the inner mitochondrial membrane. In the last 25 yr, many structures of OXPHOS complexes and supercomplexes have been resolved in yeast, mammals, and bacteria. However, structures of plant OXPHOS enzymes only became available very recently. In this review, we highlight the plant-specific features revealed by the recent structures and discuss how they advance our understanding of the function and assembly of plant OXPHOS complexes. We also propose new hypotheses to be tested and discuss older findings to be re-evaluated. Further biochemical and structural work on the plant OXPHOS system will lead to a deeper understanding of plant respiration and its regulation, with significant agricultural, environmental, and societal implications.
Collapse
Affiliation(s)
- Etienne H Meyer
- Institute of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Maria Maldonado
- Department of Molecular and Cellular Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
34
|
Brito-Estrada O, Hassel KR, Makarewich CA. An Integrated Approach for Microprotein Identification and Sequence Analysis. J Vis Exp 2022:10.3791/63841. [PMID: 35913170 PMCID: PMC9521633 DOI: 10.3791/63841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Next-generation sequencing (NGS) has propelled the field of genomics forward and produced whole genome sequences for numerous animal species and model organisms. However, despite this wealth of sequence information, comprehensive gene annotation efforts have proven challenging, especially for small proteins. Notably, conventional protein annotation methods were designed to intentionally exclude putative proteins encoded by short open reading frames (sORFs) less than 300 nucleotides in length to filter out the exponentially higher number of spurious noncoding sORFs throughout the genome. As a result, hundreds of functional small proteins called microproteins (<100 amino acids in length) have been incorrectly classified as noncoding RNAs or overlooked entirely. Here we provide a detailed protocol to leverage free, publicly available bioinformatic tools to query genomic regions for microprotein-coding potential based on evolutionary conservation. Specifically, we provide step-by-step instructions on how to examine sequence conservation and coding potential using Phylogenetic Codon Substitution Frequencies (PhyloCSF) on the user-friendly University of California Santa Cruz (UCSC) Genome Browser. Additionally, we detail steps to efficiently generate multiple species alignments of identified microprotein sequences to visualize amino acid sequence conservation and recommend resources to analyze microprotein characteristics, including predicted domain structures. These powerful tools can be used to help identify putative microprotein-coding sequences in noncanonical genomic regions or to rule out the presence of a conserved coding sequence with translational potential in a noncoding transcript of interest.
Collapse
Affiliation(s)
- Omar Brito-Estrada
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center
| | - Keira R Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine;
| |
Collapse
|
35
|
Bogaert A, Fijalkowska D, Staes A, Van de Steene T, Demol H, Gevaert K. Limited evidence for protein products of non-coding transcripts in the HEK293T cellular cytosol. Mol Cell Proteomics 2022; 21:100264. [PMID: 35788065 PMCID: PMC9396073 DOI: 10.1016/j.mcpro.2022.100264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 10/25/2022] Open
Abstract
Ribosome profiling has revealed translation outside of canonical coding sequences (CDSs) including translation of short upstream ORFs, long non-coding RNAs, overlapping ORFs, ORFs in UTRs or ORFs in alternative reading frames. Studies combining mass spectrometry, ribosome profiling and CRISPR-based screens showed that hundreds of ORFs derived from non-coding transcripts produce (micro)proteins, while other studies failed to find evidence for such types of non-canonical translation products. Here, we attempted to discover translation products from non-coding regions by strongly reducing the complexity of the sample prior to mass spectrometric analysis. We used an extended database as the search space and applied stringent filtering of the identified peptides to find evidence for novel translation events. We show that, theoretically our strategy facilitates the detection of translation events of transcripts from non-coding regions, but experimentally only find 19 peptides that might originate from such translation events. Finally, Virotrap based interactome analysis of two N-terminal proteoforms originating from non-coding regions finally showed the functional potential of these novel proteins.
Collapse
Affiliation(s)
- Annelies Bogaert
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Daria Fijalkowska
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Tessa Van de Steene
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Hans Demol
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, 9052, Belgium.
| |
Collapse
|
36
|
Liu Y, Zeng S, Wu M. Novel insights into noncanonical open reading frames in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188755. [PMID: 35777601 DOI: 10.1016/j.bbcan.2022.188755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
With technological advances, previously neglected noncanonical open reading frames (nORFs) are drawing ever-increasing attention. However, the translation potential of numerous putative nORFs remains elusive, and the functions of noncanonical peptides have not been systemically summarized. Moreover, the relationship between noncanonical peptides and their counterpart protein or RNA products remains elusive and the clinical implementation of noncanonical peptides has not been explored. In this review, we highlight how recent technological advances such as ribosome profiling, bioinformatics approaches and CRISPR/Cas9 facilitate the research of noncanonical peptides. We delineate the features of each nORF category and the evolutionary process underneath the nORFs. Most importantly, we summarize the diversified functions of noncanonical peptides in cancer based on their subcellular location, which reflect their extensive participation in key pathways and essential cellular activities in cancer cells. Meanwhile, the equilibrium between noncanonical peptides and their corresponding transcripts or counterpart products may be dysregulated under pathological states, which is essential for their roles in cancer. Lastly, we explore their underestimated potential in clinical application as diagnostic biomarkers and treatment targets against cancer.
Collapse
Affiliation(s)
- Yihan Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
37
|
Fatkhullin BF, Gabdulkhakov AG, Yusupov MM. Is RsfS a Hibernation Factor or a Ribosome Biogenesis Factor? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:500-510. [PMID: 35790407 DOI: 10.1134/s0006297922060025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Solving the structures of bacterial, archaeal, and eukaryotic ribosomes by crystallography and cryo-electron microscopy has given an impetus for studying intracellular regulatory proteins affecting various stages of protein translation. Among them are ribosome hibernation factors, which have been actively investigated during the last decade. These factors are involved in the regulation of protein biosynthesis under stressful conditions. The main role of hibernation factors is the reduction of energy consumption for protein biosynthesis and preservation of existing functional ribosomes from degradation, which increases cell survival under unfavorable conditions. Despite a broad interest in this topic, only a few articles have been published on the ribosomal silencing factor S (RsfS). According to the results of these studies, RsfS can be assigned to the group of hibernation factors. However, recent structural studies of the 50S ribosomal subunit maturation demonstrated that RsfS has the features inherent to biogenesis factors for example, ability to bind to the immature ribosomal subunit (similar to the RsfS mitochondrial ortholog MALSU1, mitochondrial assembly of ribosomal large subunit 1). In this review, we summarized the information on the function and structural features RsfS, as well as compared RsfS with MALSU1 in order to answer the emerging question on whether RsfS is a hibernation factor or a ribosome biogenesis factor. We believe that this review might promote future studies of the RsfS-involving molecular mechanisms, which so far remain completely unknown.
Collapse
Affiliation(s)
- Bulat F Fatkhullin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
- Institute of Genetics and Molecular and Cellular Biology, Illkirsch-Graffenstaden, F-67400, France
| | - Azat G Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Marat M Yusupov
- Institute of Genetics and Molecular and Cellular Biology, Illkirsch-Graffenstaden, F-67400, France
- Laboratory of Structural Analyze of Biomacromolecules, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| |
Collapse
|
38
|
Andreev DE, Loughran G, Fedorova AD, Mikhaylova MS, Shatsky IN, Baranov PV. Non-AUG translation initiation in mammals. Genome Biol 2022; 23:111. [PMID: 35534899 PMCID: PMC9082881 DOI: 10.1186/s13059-022-02674-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Recent proteogenomic studies revealed extensive translation outside of annotated protein coding regions, such as non-coding RNAs and untranslated regions of mRNAs. This non-canonical translation is largely due to start codon plurality within the same RNA. This plurality is often due to the failure of some scanning ribosomes to recognize potential start codons leading to initiation downstream—a process termed leaky scanning. Codons other than AUG (non-AUG) are particularly leaky due to their inefficiency. Here we discuss our current understanding of non-AUG initiation. We argue for a near-ubiquitous role of non-AUG initiation in shaping the dynamic composition of mammalian proteomes.
Collapse
|
39
|
Abstract
The mechanisms that explain mitochondrial dysfunction in aging and healthspan continue to be studied, but one element has been unexplored: microproteins. Small open reading frames in circular mitochondria DNA can encode multiple microproteins, called mitochondria-derived peptides (MDPs). Currently, eight MDPs have been published: humanin, MOTS-c, and SHLPs 1–6. This Review describes recent advances in microprotein discovery with a focus on MDPs. It discusses what is currently known about MDPs in aging and how this new understanding could add to the way we understand age-related diseases including type 2 diabetes, cancer, and neurodegenerative diseases at the genomic, proteomic, and drug-development levels.
Collapse
|
40
|
Yuanyuan J, Xinqiang Y. Micropeptides Identified from Human Genomes. J Proteome Res 2022; 21:865-873. [DOI: 10.1021/acs.jproteome.1c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Yuanyuan
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Yin Xinqiang
- School of Basic Medicine and Forensics, North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
41
|
The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol 2022; 32:243-258. [PMID: 34844857 PMCID: PMC8934435 DOI: 10.1016/j.tcb.2021.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Omics-based technologies have revolutionized our understanding of the coding potential of the genome. In particular, these studies revealed widespread unannotated open reading frames (ORFs) throughout genomes and that these regions have the potential to encode novel functional (micro-)proteins and/or hold regulatory roles. However, despite their genomic prevalence, relatively few of these noncanonical ORFs have been functionally characterized, likely in part due to their under-recognition by the broader scientific community. The few that have been investigated in detail have demonstrated their essentiality in critical and divergent biological processes. As such, here we aim to discuss recent advances in understanding the diversity of noncanonical ORFs and their roles, as well as detail biologically important examples within the context of the mammalian genome.
Collapse
|
42
|
Della Bella E, Koch J, Baerenfaller K. Translation and emerging functions of non-coding RNAs in inflammation and immunity. Allergy 2022; 77:2025-2037. [PMID: 35094406 PMCID: PMC9302665 DOI: 10.1111/all.15234] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/17/2022]
Abstract
Regulatory non‐coding RNAs (ncRNAs) including small non‐coding RNAs (sRNAs), long non‐coding RNAs (lncRNAs), and circular RNAs (circRNAs) have gained considerable attention in the last few years. This is mainly due to their condition‐ and tissue‐specific expression and their various modes of action, which suggests them as promising biomarkers and therapeutic targets. One important mechanism of ncRNAs to regulate gene expression is through translation of short open reading frames (sORFs). These sORFs can be located in lncRNAs, in non‐translated regions of mRNAs where upstream ORFs (uORFs) represent the majority, or in circRNAs. Regulation of their translation can function as a quick way to adapt protein production to changing cellular or environmental cues, and can either depend solely on the initiation and elongation of translation, or on the roles of the produced functional peptides. Due to the experimental challenges to pinpoint translation events and to detect the produced peptides, translational regulation through regulatory RNAs is not well studied yet. In the case of circRNAs, they have only recently started to be recognized as regulatory molecules instead of mere artifacts of RNA biosynthesis. Of the many roles described for regulatory ncRNAs, we will focus here on their regulation during inflammation and in immunity.
Collapse
Affiliation(s)
| | - Jana Koch
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Swiss Institute of Bioinformatics (SIB) Davos Switzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Swiss Institute of Bioinformatics (SIB) Davos Switzerland
| |
Collapse
|
43
|
Padavannil A, Ayala-Hernandez MG, Castellanos-Silva EA, Letts JA. The Mysterious Multitude: Structural Perspective on the Accessory Subunits of Respiratory Complex I. Front Mol Biosci 2022; 8:798353. [PMID: 35047558 PMCID: PMC8762328 DOI: 10.3389/fmolb.2021.798353] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023] Open
Abstract
Complex I (CI) is the largest protein complex in the mitochondrial oxidative phosphorylation electron transport chain of the inner mitochondrial membrane and plays a key role in the transport of electrons from reduced substrates to molecular oxygen. CI is composed of 14 core subunits that are conserved across species and an increasing number of accessory subunits from bacteria to mammals. The fact that adding accessory subunits incurs costs of protein production and import suggests that these subunits play important physiological roles. Accordingly, knockout studies have demonstrated that accessory subunits are essential for CI assembly and function. Furthermore, clinical studies have shown that amino acid substitutions in accessory subunits lead to several debilitating and fatal CI deficiencies. Nevertheless, the specific roles of CI’s accessory subunits have remained mysterious. In this review, we explore the possible roles of each of mammalian CI’s 31 accessory subunits by integrating recent high-resolution CI structures with knockout, assembly, and clinical studies. Thus, we develop a framework of experimentally testable hypotheses for the function of the accessory subunits. We believe that this framework will provide inroads towards the complete understanding of mitochondrial CI physiology and help to develop strategies for the treatment of CI deficiencies.
Collapse
Affiliation(s)
- Abhilash Padavannil
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Maria G Ayala-Hernandez
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Eimy A Castellanos-Silva
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
44
|
Parmar BS, Peeters MKR, Boonen K, Clark EC, Baggerman G, Menschaert G, Temmerman L. Identification of Non-Canonical Translation Products in C. elegans Using Tandem Mass Spectrometry. Front Genet 2021; 12:728900. [PMID: 34759956 PMCID: PMC8575065 DOI: 10.3389/fgene.2021.728900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Transcriptome and ribosome sequencing have revealed the existence of many non-canonical transcripts, mainly containing splice variants, ncRNA, sORFs and altORFs. However, identification and characterization of products that may be translated out of these remains a challenge. Addressing this, we here report on 552 non-canonical proteins and splice variants in the model organism C. elegans using tandem mass spectrometry. Aided by sequencing-based prediction, we generated a custom proteome database tailored to search for non-canonical translation products of C. elegans. Using this database, we mined available mass spectrometric resources of C. elegans, from which 51 novel, non-canonical proteins could be identified. Furthermore, we utilized diverse proteomic and peptidomic strategies to detect 40 novel non-canonical proteins in C. elegans by LC-TIMS-MS/MS, of which 6 were common with our meta-analysis of existing resources. Together, this permits us to provide a resource with detailed annotation of 467 splice variants and 85 novel proteins mapped onto UTRs, non-coding regions and alternative open reading frames of the C. elegans genome.
Collapse
Affiliation(s)
- Bhavesh S. Parmar
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Marlies K. R. Peeters
- Laboratory of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Kurt Boonen
- Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Ellie C. Clark
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Geert Baggerman
- Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Gerben Menschaert
- Laboratory of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
45
|
Falekun S, Sepulveda J, Jami-Alahmadi Y, Park H, Wohlschlegel JA, Sigala PA. Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites. eLife 2021; 10:71636. [PMID: 34612205 PMCID: PMC8547962 DOI: 10.7554/elife.71636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Most eukaryotic cells retain a mitochondrial fatty acid synthesis (FASII) pathway whose acyl carrier protein (mACP) and 4-phosphopantetheine (Ppant) prosthetic group provide a soluble scaffold for acyl chain synthesis and biochemically couple FASII activity to mitochondrial electron transport chain (ETC) assembly and Fe-S cluster biogenesis. In contrast, the mitochondrion of Plasmodium falciparum malaria parasites lacks FASII enzymes yet curiously retains a divergent mACP lacking a Ppant group. We report that ligand-dependent knockdown of mACP is lethal to parasites, indicating an essential FASII-independent function. Decyl-ubiquinone rescues parasites temporarily from death, suggesting a dominant dysfunction of the mitochondrial ETC. Biochemical studies reveal that Plasmodium mACP binds and stabilizes the Isd11-Nfs1 complex required for Fe-S cluster biosynthesis, despite lacking the Ppant group required for this association in other eukaryotes, and knockdown of parasite mACP causes loss of Nfs1 and the Rieske Fe-S protein in ETC complex III. This work reveals that Plasmodium parasites have evolved to decouple mitochondrial Fe-S cluster biogenesis from FASII activity, and this adaptation is a shared metabolic feature of other apicomplexan pathogens, including Toxoplasma and Babesia. This discovery unveils an evolutionary driving force to retain interaction of mitochondrial Fe-S cluster biogenesis with ACP independent of its eponymous function in FASII.
Collapse
Affiliation(s)
- Seyi Falekun
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Jaime Sepulveda
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Hahnbeom Park
- Department of Biochemistry, University of Washington, Seattle, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
46
|
Sergiev PV, Rubtsova MP. Little but Loud. The Diversity of Functions of Small Proteins and Peptides - Translational Products of Short Reading Frames. BIOCHEMISTRY (MOSCOW) 2021; 86:1139-1150. [PMID: 34565317 DOI: 10.1134/s0006297921090091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell functioning is tightly regulated process. For many years, research in the fields of proteomics and functional genomics has been focused on the role of proteins in cell functioning. The advances in science have led to the uncovering that short open reading frames, previously considered non-functional, serve a variety of functions. Short reading frames in polycistronic mRNAs often regulate their stability and translational efficiency of the main reading frame. The improvement of proteomic analysis methods has made it possible to identify the products of translation of short open reading frames in quantities that suggest the existence of functional role of those peptides and short proteins. Studies demonstrating their role unravel a new level of the regulation of cell functioning and its adaptation to changing conditions. This review is devoted to the analysis of functions of recently discovered peptides and short proteins.
Collapse
Affiliation(s)
- Petr V Sergiev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Skoltech Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria P Rubtsova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
47
|
Dabravolski SA, Nikiforov NG, Starodubova AV, Popkova TV, Orekhov AN. The Role of Mitochondria-Derived Peptides in Cardiovascular Diseases and Their Potential as Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22168770. [PMID: 34445477 PMCID: PMC8396025 DOI: 10.3390/ijms22168770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria-derived peptides (MDPs) are small peptides hidden in the mitochondrial DNA, maintaining mitochondrial function and protecting cells under different stresses. Currently, three types of MDPs have been identified: Humanin, MOTS-c and SHLP1-6. MDPs have demonstrated anti-apoptotic and anti-inflammatory activities, reactive oxygen species and oxidative stress-protecting properties both in vitro and in vivo. Recent research suggests that MDPs have a significant cardioprotective role, affecting CVDs (cardiovascular diseases) development and progression. CVDs are the leading cause of death globally; this term combines disorders of the blood vessels and heart. In this review, we focus on the recent progress in understanding the relationships between MDPs and the main cardiovascular risk factors (atherosclerosis, insulin resistance, hyperlipidaemia and ageing). We also will discuss the therapeutic application of MDPs, modified and synthetic MDPs, and their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Therapy Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| |
Collapse
|
48
|
Hilander T, Jackson CB, Robciuc M, Bashir T, Zhao H. The roles of assembly factors in mammalian mitoribosome biogenesis. Mitochondrion 2021; 60:70-84. [PMID: 34339868 DOI: 10.1016/j.mito.2021.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
As ancient bacterial endosymbionts of eukaryotic cells, mitochondria have retained their own circular DNA as well as protein translation system including mitochondrial ribosomes (mitoribosomes). In recent years, methodological advancements in cryoelectron microscopy and mass spectrometry have revealed the extent of the evolutionary divergence of mitoribosomes from their bacterial ancestors and their adaptation to the synthesis of 13 mitochondrial DNA encoded oxidative phosphorylation complex subunits. In addition to the structural data, the first assembly pathway maps of mitoribosomes have started to emerge and concomitantly also the assembly factors involved in this process to achieve fully translational competent particles. These transiently associated factors assist in the intricate assembly process of mitoribosomes by enhancing protein incorporation, ribosomal RNA folding and modification, and by blocking premature or non-native protein binding, for example. This review focuses on summarizing the current understanding of the known mammalian mitoribosome assembly factors and discussing their possible roles in the assembly of small or large mitoribosomal subunits.
Collapse
Affiliation(s)
- Taru Hilander
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland.
| | - Christopher B Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Finland.
| | - Marius Robciuc
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Tanzeela Bashir
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Key Laboratory of Stem Cell and Biopharmaceutical Technology, School of Life Sciences, Guangxi Normal University, Guangxi, China.
| |
Collapse
|
49
|
Kiniry SJ, Judge CE, Michel AM, Baranov PV. Trips-Viz: an environment for the analysis of public and user-generated ribosome profiling data. Nucleic Acids Res 2021; 49:W662-W670. [PMID: 33950201 PMCID: PMC8262740 DOI: 10.1093/nar/gkab323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Trips-Viz (https://trips.ucc.ie/) is an interactive platform for the analysis and visualization of ribosome profiling (Ribo-Seq) and shotgun RNA sequencing (RNA-seq) data. This includes publicly available and user generated data, hence Trips-Viz can be classified as a database and as a server. As a database it provides access to many processed Ribo-Seq and RNA-seq data aligned to reference transcriptomes which has been expanded considerably since its inception. Here, we focus on the server functionality of Trips-viz which also has been greatly improved. Trips-viz now enables visualisation of proteomics data from a large number of processed mass spectrometry datasets. It can be used to support translation inferred from Ribo-Seq data. Users are now able to upload a custom reference transcriptome as well as data types other than Ribo-Seq/RNA-Seq. Incorporating custom data has been streamlined with RiboGalaxy (https://ribogalaxy.ucc.ie/) integration. The other new functionality is the rapid detection of translated open reading frames (ORFs) through a simple easy to use interface. The analysis of differential expression has been also improved via integration of DESeq2 and Anota2seq in addition to a number of other improvements of existing Trips-viz features.
Collapse
Affiliation(s)
- Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ciara E Judge
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Audrey M Michel
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Ribomaps Ltd, Western Gateway Bld, Western Rd, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| |
Collapse
|
50
|
Gagnon M, Savard M, Jacques JF, Bkaily G, Geha S, Roucou X, Gobeil F. Potentiation of B2 receptor signaling by AltB2R, a newly identified alternative protein encoded in the human bradykinin B2 receptor gene. J Biol Chem 2021; 296:100329. [PMID: 33497625 PMCID: PMC7949122 DOI: 10.1016/j.jbc.2021.100329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
Recent functional and proteomic studies in eukaryotes (www.openprot.org) predict the translation of alternative open reading frames (AltORFs) in mature G-protein-coupled receptor (GPCR) mRNAs, including that of bradykinin B2 receptor (B2R). Our main objective was to determine the implication of a newly discovered AltORF resulting protein, termed AltB2R, in the known signaling properties of B2R using complementary methodological approaches. When ectopically expressed in HeLa cells, AltB2R presented predominant punctate cytoplasmic/perinuclear distribution and apparent cointeraction with B2R at plasma and endosomal/vesicular membranes. The presence of AltB2R increases intracellular [Ca2+] and ERK1/2-MAPK activation (via phosphorylation) following B2R stimulation. Moreover, HEK293A cells expressing mutant B2R lacking concomitant expression of AltB2R displayed significantly decreased maximal responses in agonist-stimulated Gαq-Gαi2/3-protein coupling, IP3 generation, and ERK1/2-MAPK activation as compared with wild-type controls. Conversely, there was no difference in cell-surface density as well as ligand-binding properties of B2R and in efficiencies of cognate agonists at promoting B2R internalization and β-arrestin 2 recruitment. Importantly, both AltB2R and B2R proteins were overexpressed in prostate and breast cancers, compared with their normal counterparts suggesting new associative roles of AltB2R in these diseases. Our study shows that BDKRB2 is a dual-coding gene and identifies AltB2R as a novel positive modulator of some B2R signaling pathways. More broadly, it also supports a new, unexpected alternative proteome for GPCRs, which opens new frontiers in fields of GPCR biology, diseases, and drug discovery.
Collapse
Affiliation(s)
- Maxime Gagnon
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Savard
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Jacques
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ghassan Bkaily
- Department of Immunology & Cellular Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sameh Geha
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Xavier Roucou
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Fernand Gobeil
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|