1
|
Reddy PP, Phale A, Das R. Structural analysis of genetic variants of the human tumor suppressor PALB2 coiled-coil domain. Biosci Rep 2025; 45:BSR20241173. [PMID: 39745016 PMCID: PMC12096946 DOI: 10.1042/bsr20241173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 03/18/2025] Open
Abstract
The tumor suppressor PALB2 is a key player in the homologous recombination (HR) pathway, functionally connecting BRCA proteins at the DNA damage site. PALB2 forms homodimers via its coiled-coil domain, and during HR, it forms a heterodimeric complex with BRCA1 using the same domain. However, the structural details of the human PALB2 coiled-coil domain are unknown. Several missense variants have been reported in the coiled-coil domain. The structure-function relationship of these variants is poorly understood, posing a challenge to genetic counseling. In this study, we present the solution structure of the human PALB2 coiled-coil domain, which forms an antiparallel homodimer. We then use this structure to investigate the impact of a few well-characterized missense mutations on the fold and interactions of the PALB2 coiled-coil domain. Our findings reveal a strong correlation between the structural impact of mutations and their efficiency in homologous recombination, suggesting that our approach can be applied to study other genetic variations in PALB2. These findings hold promise for improving genetic counseling and advancing cancer research.
Collapse
Affiliation(s)
| | - Apurva Phale
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
2
|
Baker CNS, Pajela PGC, Martin DE, Dzyuba SV, Stewart MD. Proline variants in the BRCA1 coiled-coil domain disrupt folding and binding to PALB2. Protein Sci 2025; 34:e5240. [PMID: 39673470 PMCID: PMC11645666 DOI: 10.1002/pro.5240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/16/2024]
Abstract
Inherited mutations in the genes coding for the tumor suppressor proteins BRCA1 and PALB2 can lead to increased risk of breast and ovarian cancer. Upon DNA damage, these two proteins form a complex to promote double-stranded break repair via homologous recombination. Missense mutations in either BRCA1 or PALB2 that disrupt this important interaction result in loss of effective DNA damage repair and are associated with breast tumorigenesis. However, the overwhelming majority of missense mutations found in the binding domains of these two genes remain classified as variants of unknown significance. Here we report an in vitro assay for assessing the effect of variants of unknown significance on the heterodimerization of PALB2 and BRCA1 that recapitulates the effect of the known deleterious mutations. We apply the assay to several variants of unknown significance in BRCA1 which reveals other mutations in this region that also disrupt binding, including a mutation of a residue not predicted to directly interact with PALB2. Structural analysis indicates that all BRCA1 mutations to proline tested disrupt α-helix formation and therefore are not well tolerated even when located at positions outside of the PALB2-binding interface. This assay and the structural hypothesis described will be helpful for assessing risk for variants identified in the future in the BRCA1/PALB2 interaction domains.
Collapse
Affiliation(s)
| | | | - Davis E. Martin
- Department of BiologyTexas Christian UniversityFort WorthTexasUSA
| | - Sergei V. Dzyuba
- Department of Chemistry and BiochemistryTexas Christian UniversityFort WorthTexasUSA
| | | |
Collapse
|
3
|
Kyriukha Y, Watkins MB, Redington JM, Chintalapati N, Ganti A, Dastvan R, Uversky VN, Hopkins JB, Pozzi N, Korolev S. The strand exchange domain of tumor suppressor PALB2 is intrinsically disordered and promotes oligomerization-dependent DNA compaction. iScience 2024; 27:111259. [PMID: 39584160 PMCID: PMC11582789 DOI: 10.1016/j.isci.2024.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The partner and localizer of BRCA2 (PALB2) is a scaffold protein linking BRCA1 with BRCA2 and RAD51 during homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR in cells, while the PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange in vitro. We determined that PALB2-DBD is intrinsically disordered beyond a single N-terminal α-helix. Coiled-coil mediated dimerization is stabilized by interaction between intrinsically disordered regions (IDRs) leading to a 2-fold structural compaction. Single-stranded (ss)DNA binding promotes additional structural compaction and protein tetramerization. Using confocal single-molecule FRET, we observed bimodal and oligomerization-dependent compaction of ssDNA bound to PALB2-DBD, suggesting a novel strand exchange mechanism. Bioinformatics analysis and preliminary observations indicate that PALB2 forms protein-nucleic acids condensates. Intrinsically disordered DBDs are prevalent in the human proteome. PALB2-DBD and similar IDRs may use a chaperone-like mechanism to aid formation and resolution of DNA and RNA multichain intermediates during DNA replication, repair and recombination.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Maxwell B. Watkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL, USA
| | - Jennifer M. Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Nithya Chintalapati
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Abhishek Ganti
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
4
|
Claton LE, Baker C, Martin H, Dzyuba SV, Zaman K, Prokai L, Stewart MD, Simanek EE. Installation of an Indole on the BRCA1 Disordered Domain Using Triazine Chemistry. Biomolecules 2024; 14:1625. [PMID: 39766332 PMCID: PMC11726873 DOI: 10.3390/biom14121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
The functionalization of protein sidechains with highly water-soluble chlorotriazines (or derivatives thereof) using nucleophilic aromatic substitution reactions has been commonly employed to install various functional groups, including poly(ethylene glycol) tags or fluorogenic labels. Here, a poorly soluble dichlorotriazine with an appended indole is shown to react with a construct containing the disordered domain of BRCA1. Subsequently, this construct can undergo proteolytic cleavage to remove the SUMO-tag: the N-terminal poly(His) tag is still effective for purification. Steady-state fluorescence, circular dichroism spectroscopy, and isothermal titration calorimetry with the binding partner of BRCA1, PALB2, are used to characterize the indole-labeled BRCA1. Neither the reaction conditions nor the indole-tag appreciably alter the structure of the BRCA1. Mass spectrometry confirms that the target is modified once, although the location of modification cannot be determined by tandem mass spectrometry with collision-induced dissociation due to disadvantageous fragmentation patterns.
Collapse
Affiliation(s)
- Liam E. Claton
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA; (L.E.C.); (S.V.D.)
| | - Chrissy Baker
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA; (C.B.); (H.M.); (M.D.S.)
| | - Hayes Martin
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA; (C.B.); (H.M.); (M.D.S.)
| | - Sergei V. Dzyuba
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA; (L.E.C.); (S.V.D.)
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (L.P.)
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (L.P.)
| | - Mikaela D. Stewart
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA; (C.B.); (H.M.); (M.D.S.)
| | - Eric E. Simanek
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA; (L.E.C.); (S.V.D.)
| |
Collapse
|
5
|
Kyriukha Y, Watkins MB, Redington JM, Dastvan R, Uversky VN, Hopkins JB, Pozzi N, Korolev S. The strand exchange domain of tumor suppressor PALB2 is intrinsically disordered and promotes oligomerization-dependent DNA compaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.01.543259. [PMID: 37333393 PMCID: PMC10274692 DOI: 10.1101/2023.06.01.543259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The Partner and Localizer of BRCA2 (PALB2) is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency in cells. The PALB2 DNA-binding domain (PALB2-DBD) supports strand exchange, a complex multistep reaction conducted by only a few proteins such as RecA-like recombinases and Rad52. Using bioinformatics analysis, small-angle X-ray scattering, circular dichroism, and electron paramagnetic spectroscopy, we determined that PALB2-DBD is an intrinsically disordered region (IDR) forming compact molten globule-like dimer. IDRs contribute to oligomerization synergistically with the coiled-coil interaction. Using confocal single-molecule FRET we demonstrated that PALB2-DBD compacts single-stranded DNA even in the absence of DNA secondary structures. The compaction is bimodal, oligomerization-dependent, and is driven by IDRs, suggesting a novel strand exchange mechanism. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome. Novel DNA binding properties of PALB2-DBD and the complexity of strand exchange mechanism significantly expands the functional repertoire of IDPs. Multivalent interactions and bioinformatics analysis suggest that PALB2 function is likely to depend on formation of protein-nucleic acids condensates. Similar intrinsically disordered DBDs may use chaperone-like mechanism to aid formation and resolution of DNA and RNA multichain intermediates during DNA replication, repair and recombination.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Maxwell B Watkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL
| | - Jennifer M Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
6
|
Kyriukha Y, Watkins MB, Redington JM, Dastvan R, Uversky VN, Hopkins J, Pozzi N, Korolev S. The PALB2 DNA-binding domain is an intrinsically disordered recombinase. RESEARCH SQUARE 2023:rs.3.rs-3235465. [PMID: 37790553 PMCID: PMC10543426 DOI: 10.21203/rs.3.rs-3235465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The Partner and Localizer of BRCA2 (PALB2) tumor suppressor is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency. The PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange, a complex multistep reaction supported by only a few protein families such as RecA-like recombinases or Rad52. The mechanisms of PALB2 DNA binding and strand exchange are unknown. We performed circular dichroism, electron paramagnetic spectroscopy, and small-angle X-ray scattering analyses and determined that PALB2-DBD is intrinsically disordered, even when bound to DNA. The intrinsically disordered nature of this domain was further supported by bioinformatics analysis. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome and have many important biological functions. The complexity of the strand exchange reaction significantly expands the functional repertoire of IDPs. The results of confocal single-molecule FRET indicated that PALB2-DBD binding leads to oligomerization-dependent DNA compaction. We hypothesize that PALB2-DBD uses a chaperone-like mechanism to aid formation and resolution of complex DNA and RNA multichain intermediates during DNA replication and repair. Since PALB2-DBD alone or within the full-length PALB2 is predicted to have strong liquid-liquid phase separation (LLPS) potential, protein-nucleic acids condensates are likely to play a role in complex functionality of PALB2-DBD. Similar DNA-binding intrinsically disordered regions may represent a novel class of functional domains that evolved to function in eukaryotic nucleic acid metabolism complexes.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | | | - Jennifer M Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jesse Hopkins
- BioCat, Advanced Photon Source, Argonne National Lab, Argonne, IL
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
7
|
Zhang Y, Zhang W, Zheng L, Guo Q. The roles and targeting options of TRIM family proteins in tumor. Front Pharmacol 2022; 13:999380. [PMID: 36249749 PMCID: PMC9561884 DOI: 10.3389/fphar.2022.999380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Tripartite motif (TRIM) containing proteins are a class of E3 ubiquitin ligases, which are critically implicated in the occurrence and development of tumors. They can function through regulating various aspects of tumors, such as tumor proliferation, metastasis, apoptosis and the development of drug resistance during tumor therapy. Some members of TRIM family proteins can mediate protein ubiquitination and chromosome translocation via modulating several signaling pathways, like p53, NF-κB, AKT, MAPK, Wnt/β-catenin and other molecular regulatory mechanisms. The multi-domain nature/multi-functional biological role of TRIMs implies that blocking just one function or one domain might not be sufficient to obtain the desired therapeutic outcome, therefore, a detailed and systematic understanding of the biological functions of the individual domains of TRIMs is required. This review mainly described their roles and underlying mechanisms in tumorigenesis and progression, and it might shade light on a potential targeting strategy for TRIMs in tumor treatment, especially using PROTACs.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Valenzuela-Palomo A, Sanoguera-Miralles L, Bueno-Martínez E, Esteban-Sánchez A, Llinares-Burguet I, García-Álvarez A, Pérez-Segura P, Gómez-Barrero S, de la Hoya M, Velasco-Sampedro EA. Splicing Analysis of 16 PALB2 ClinVar Variants by Minigene Assays: Identification of Six Likely Pathogenic Variants. Cancers (Basel) 2022; 14:cancers14184541. [PMID: 36139699 PMCID: PMC9496955 DOI: 10.3390/cancers14184541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
PALB2 loss-of-function variants are associated with significant increased risk of breast cancer as well as other types of tumors. Likewise, splicing disruptions are a common mechanism of disease susceptibility. Indeed, we previously showed, by minigene assays, that 35 out of 42 PALB2 variants impaired splicing. Taking advantage of one of these constructs (mgPALB2_ex1-3), we proceeded to analyze other variants at exons 1 to 3 reported at the ClinVar database. Thirty-one variants were bioinformatically analyzed with MaxEntScan and SpliceAI. Then, 16 variants were selected for subsequent RNA assays. We identified a total of 12 spliceogenic variants, 11 of which did not produce any trace of the expected minigene full-length transcript. Interestingly, variant c.49-1G > A mimicked previous outcomes in patient RNA (transcript ∆(E2p6)), supporting the reproducibility of the minigene approach. A total of eight variant-induced transcripts were characterized, three of which (∆(E1q17), ∆(E3p11), and ∆(E3)) were predicted to introduce a premature termination codon and to undergo nonsense-mediated decay, and five (▼(E1q9), ∆(E2p6), ∆(E2), ▼(E3q48)-a, and ▼(E3q48)-b) maintained the reading frame. According to an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme, which integrates mgPALB2 data, six PALB2 variants were classified as pathogenic/likely pathogenic, five as VUS, and five as likely benign. Furthermore, five ±1,2 variants were catalogued as VUS because they produced significant proportions of in-frame transcripts of unknown impact on protein function.
Collapse
Affiliation(s)
- Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Ada Esteban-Sánchez
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain
| | - Susana Gómez-Barrero
- Facultad de Ciencias de la Salud, Universidad Alfonso X “El Sabio”, Avda. de la Universidad 1, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain
| | - Eladio A. Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain
- Correspondence:
| |
Collapse
|
9
|
Foo TK, Xia B. BRCA1-Dependent and Independent Recruitment of PALB2-BRCA2-RAD51 in the DNA Damage Response and Cancer. Cancer Res 2022; 82:3191-3197. [PMID: 35819255 PMCID: PMC9481714 DOI: 10.1158/0008-5472.can-22-1535] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The BRCA1-PALB2-BRCA2 axis plays essential roles in the cellular response to DNA double-strand breaks (DSB), maintenance of genome integrity, and suppression of cancer development. Upon DNA damage, BRCA1 is recruited to DSBs, where it facilitates end resection and recruits PALB2 and its associated BRCA2 to load the central recombination enzyme RAD51 to initiate homologous recombination (HR) repair. In recent years, several BRCA1-independent mechanisms of PALB2 recruitment have also been reported. Collectively, these available data illustrate a series of hierarchical, context-dependent, and cooperating mechanisms of PALB2 recruitment that is critical for HR and therapy response either in the presence or absence of BRCA1. Here, we review these BRCA1-dependent and independent mechanisms and their importance in DSB repair, cancer development, and therapy. As BRCA1-mutant cancer cells regain HR function, for which PALB2 is generally required, and become resistant to targeted therapies, such as PARP inhibitors, targeting BRCA1-independent mechanisms of PALB2 recruitment represents a potential new avenue to improve treatment of BRCA1-mutant tumors.
Collapse
Affiliation(s)
- Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
10
|
Functional assessment of missense variants of uncertain significance in the cancer susceptibility gene PALB2. NPJ Breast Cancer 2022; 8:86. [PMID: 35853885 PMCID: PMC9296472 DOI: 10.1038/s41523-022-00454-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Germline PALB2 pathogenic variants are associated with an increased lifetime risk for breast, pancreatic, and ovarian cancer. However, the interpretation of the pathogenicity of numerous PALB2 missense variants of uncertain significance (VUSs) identified in germline genetic testing remains a challenge. Here we selected ten potentially pathogenic PALB2 VUSs identified in 2279 Chinese patients with breast cancer and evaluated their impacts on PALB2 function by systematic functional assays. We showed that three PALB2 VUSs p.K16M [c.47 A > T], p.L24F [c.72 G > C], and p.L35F [c.103 C > T] in the coiled-coil domain impaired PALB2-mediated homologous recombination. The p.L24F and p.L35F variants partially disrupted BRCA1-PALB2 interactions, reduced RAD51 foci formation in response to DNA damage, abrogated ionizing radiation-induced G2/M checkpoint maintenance, and conferred increased sensitivity to olaparib and cisplatin. The p.K16M variant presented mild effects on BRCA1-PALB2 interactions and RAD51 foci formation. Altogether, we identify two novel PALB2 VUSs, p.L24F and p.L35F, that compromise PALB2 function and may increase cancer risk. These two variants display marked olaparib and cisplatin sensitivity and may help predict response to targeted therapy in the clinical treatment of patients with these variants.
Collapse
|
11
|
Valenzuela‐Palomo A, Bueno‐Martínez E, Sanoguera‐Miralles L, Lorca V, Fraile‐Bethencourt E, Esteban‐Sánchez A, Gómez‐Barrero S, Carvalho S, Allen J, García‐Álvarez A, Pérez‐Segura P, Dorling L, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. Splicing predictions, minigene analyses, and ACMG-AMP clinical classification of 42 germline PALB2 splice-site variants. J Pathol 2022; 256:321-334. [PMID: 34846068 PMCID: PMC9306493 DOI: 10.1002/path.5839] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
PALB2 loss-of-function variants confer high risk of developing breast cancer. Here we present a systematic functional analysis of PALB2 splice-site variants detected in approximately 113,000 women in the large-scale sequencing project Breast Cancer After Diagnostic Gene Sequencing (BRIDGES; https://bridges-research.eu/). Eighty-two PALB2 variants at the intron-exon boundaries were analyzed with MaxEntScan. Forty-two variants were selected for the subsequent splicing functional assays. For this purpose, three splicing reporter minigenes comprising exons 1-12 were constructed. The 42 potential spliceogenic variants were introduced into the minigenes by site-directed mutagenesis and assayed in MCF-7/MDA-MB-231 cells. Splicing anomalies were observed in 35 variants, 23 of which showed no traces or minimal amounts of the expected full-length transcripts of each minigene. More than 30 different variant-induced transcripts were characterized, 23 of which were predicted to truncate the PALB2 protein. The pathogenicity of all variants was interpreted according to an in-house adaptation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) variant classification scheme. Up to 23 variants were classified as pathogenic/likely pathogenic. Remarkably, three ±1,2 variants (c.49-2A>T, c.108+2T>C, and c.211+1G>A) were classified as variants of unknown significance, as they produced significant amounts of either in-frame transcripts of unknown impact on the PALB2 protein function or the minigene full-length transcripts. In conclusion, we have significantly contributed to the ongoing effort of identifying spliceogenic variants in the clinically relevant PALB2 cancer susceptibility gene. Moreover, we suggest some approaches to classify the findings in accordance with the ACMG-AMP rationale. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alberto Valenzuela‐Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Elena Bueno‐Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Lara Sanoguera‐Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Víctor Lorca
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eugenia Fraile‐Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
- Knight Cancer Research BuildingPortlandORUSA
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | | | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Alicia García‐Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Pedro Pérez‐Segura
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Peter Devilee
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike PG Vreeswijk
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética MolecularConsejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| |
Collapse
|
12
|
Sanchez A, Lee D, Kim DI, Miller KM. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Front Genet 2021; 12:747734. [PMID: 34659365 PMCID: PMC8514019 DOI: 10.3389/fgene.2021.747734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 01/25/2023] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Dae In Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
13
|
Brnich SE, Arteaga EC, Wang Y, Tan X, Berg JS. A Validated Functional Analysis of Partner and Localizer of BRCA2 Missense Variants for Use in Clinical Variant Interpretation. J Mol Diagn 2021; 23:847-864. [PMID: 33964450 PMCID: PMC8491091 DOI: 10.1016/j.jmoldx.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Clinical genetic testing readily detects germline genetic variants. Yet, the rarity of individual variants limits the evidence available for variant classification, leading to many variants of uncertain significance (VUS). VUS cannot guide clinical decisions, complicating counseling and management. In hereditary breast cancer gene PALB2, approximately 50% of clinically identified germline variants are VUS and approximately 90% of VUS are missense. Truncating PALB2 variants have homologous recombination (HR) defects and rely on error-prone nonhomologous end-joining for DNA damage repair (DDR). Recent reports show that some missense PALB2 variants may also be damaging, but most functional studies have lacked benchmarking controls required for sufficient predictive power for clinical use. Here, variant-level DDR capacity in hereditary breast cancer genes was assessed using the Traffic Light Reporter (TLR) to quantify cellular HR/nonhomologous end-joining with fluorescent markers. First, using BRCA2 missense variants of known significance as benchmarks, the TLR distinguished between normal/abnormal HR function. The TLR was then validated for PALB2 and used to test 37 PALB2 variants. Based on the TLR's ability to correctly classify PALB2 validation controls, these functional data where applied in subsequent germline variant interpretations at a moderate level of evidence toward a pathogenic interpretation (PS3_moderate) for 8 variants with abnormal DDR, or a supporting level of evidence toward a benign interpretation (BS3_supporting) for 13 variants with normal DDR.
Collapse
Affiliation(s)
- Sarah E Brnich
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eyla Cristina Arteaga
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yueting Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
14
|
Kumbhar R, Sanchez A, Perren J, Gong F, Corujo D, Medina F, Devanathan SK, Xhemalce B, Matouschek A, Buschbeck M, Buck-Koehntop BA, Miller KM. Poly(ADP-ribose) binding and macroH2A mediate recruitment and functions of KDM5A at DNA lesions. J Cell Biol 2021; 220:212163. [PMID: 34003252 PMCID: PMC8135068 DOI: 10.1083/jcb.202006149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The histone demethylase KDM5A erases histone H3 lysine 4 methylation, which is involved in transcription and DNA damage responses (DDRs). While DDR functions of KDM5A have been identified, how KDM5A recognizes DNA lesion sites within chromatin is unknown. Here, we identify two factors that act upstream of KDM5A to promote its association with DNA damage sites. We have identified a noncanonical poly(ADP-ribose) (PAR)–binding region unique to KDM5A. Loss of the PAR-binding region or treatment with PAR polymerase (PARP) inhibitors (PARPi’s) blocks KDM5A–PAR interactions and DNA repair functions of KDM5A. The histone variant macroH2A1.2 is also specifically required for KDM5A recruitment and function at DNA damage sites, including homology-directed repair of DNA double-strand breaks and repression of transcription at DNA breaks. Overall, this work reveals the importance of PAR binding and macroH2A1.2 in KDM5A recognition of DNA lesion sites that drive transcriptional and repair activities at DNA breaks within chromatin that are essential for maintaining genome integrity.
Collapse
Affiliation(s)
- Ramhari Kumbhar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Jullian Perren
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Fade Gong
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX
| | - David Corujo
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain
| | - Frank Medina
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Sravan K Devanathan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Marcus Buschbeck
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain.,Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Spain
| | | | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| |
Collapse
|
15
|
Loening NM, Barbar E. Structural characterization of the self-association domain of swallow. Protein Sci 2021; 30:1056-1063. [PMID: 33641207 DOI: 10.1002/pro.4055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/29/2023]
Abstract
Swallow, a 62 kDa multidomain protein, is required for the proper localization of several mRNAs involved in the development of Drosophila oocytes. The dimerization of Swallow depends on a 71-residue self-association domain in the center of the protein sequence, and is significantly stabilized by a binding interaction with dynein light chain (LC8). Here, we detail the use of solution-state nuclear magnetic resonance spectroscopy to characterize the structure of this self-association domain, thereby establishing that this domain forms a parallel coiled-coil and providing insight into how the stability of the dimerization interaction is regulated.
Collapse
Affiliation(s)
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
16
|
Rodrigue A, Margaillan G, Torres Gomes T, Coulombe Y, Montalban G, da Costa E Silva Carvalho S, Milano L, Ducy M, De-Gregoriis G, Dellaire G, Araújo da Silva W, Monteiro AN, Carvalho MA, Simard J, Masson JY. A global functional analysis of missense mutations reveals two major hotspots in the PALB2 tumor suppressor. Nucleic Acids Res 2020; 47:10662-10677. [PMID: 31586400 PMCID: PMC6847799 DOI: 10.1093/nar/gkz780] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
While biallelic mutations in the PALB2 tumor suppressor cause Fanconi anemia subtype FA-N, monoallelic mutations predispose to breast and familial pancreatic cancer. Although hundreds of missense variants in PALB2 have been identified in patients to date, only a few have clear functional and clinical relevance. Herein, we investigate the effects of 44 PALB2 variants of uncertain significance found in breast cancer patients and provide detailed analysis by systematic functional assays. Our comprehensive functional analysis reveals two hotspots for potentially deleterious variations within PALB2, one at each terminus. PALB2 N-terminus variants p.P8L [c.23C>T], p.Y28C [c.83A>G], and p.R37H [c.110G>A] compromised PALB2-mediated homologous recombination. At the C-terminus, PALB2 variants p.L947F [c.2841G>T], p.L947S [c.2840T>C], and most strikingly p.T1030I [c.3089C>T] and p.W1140G [c.3418T>C], stood out with pronounced PARP inhibitor sensitivity and cytoplasmic accumulation in addition to marked defects in recruitment to DNA damage sites, interaction with BRCA2 and homologous recombination. Altogether, our findings show that a combination of functional assays is necessary to assess the impact of germline missense variants on PALB2 function, in order to guide proper classification of their deleteriousness.
Collapse
Affiliation(s)
- Amélie Rodrigue
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Thiago Torres Gomes
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Yan Coulombe
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Gemma Montalban
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada.,CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Simone da Costa E Silva Carvalho
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Department of Genetics at Ribeirão Preto Medical School, University of São Paulo; Center for Cell-Based Therapy (CEPID/FAPESP); National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Ribeirão Preto, SP, Brazil
| | - Larissa Milano
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Mandy Ducy
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada.,CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Giuliana De-Gregoriis
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Wilson Araújo da Silva
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo; Center for Cell-Based Therapy (CEPID/FAPESP); National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Ribeirão Preto, SP, Brazil
| | | | - Marcelo A Carvalho
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Jacques Simard
- CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
17
|
Wu S, Zhou J, Zhang K, Chen H, Luo M, Lu Y, Sun Y, Chen Y. Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front Oncol 2020; 10:301. [PMID: 32185139 PMCID: PMC7059202 DOI: 10.3389/fonc.2020.00301] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/20/2020] [Indexed: 12/31/2022] Open
Abstract
Partner and localizer of BRCA2 (PALB2) is vital for homologous recombination (HR) repair in response to DNA double-strand breaks (DSBs). PALB2 functions as a tumor suppressor and participates in the maintenance of genome integrity. In this review, we summarize the current knowledge of the biological roles of the multifaceted PALB2 protein and of its regulation. Moreover, we describe the link between PALB2 pathogenic variants (PVs) and breast cancer predisposition, aggressive clinicopathological features, and adverse clinical prognosis. We also refer to both the opportunities and challenges that the identification of PALB2 PVs provides in breast cancer genetic counseling and precision medicine.
Collapse
Affiliation(s)
- Shijie Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Zhou
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Sun
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Deveryshetty J, Peterlini T, Ryzhikov M, Brahiti N, Dellaire G, Masson JY, Korolev S. Novel RNA and DNA strand exchange activity of the PALB2 DNA binding domain and its critical role for DNA repair in cells. eLife 2019; 8:e44063. [PMID: 31017574 PMCID: PMC6533086 DOI: 10.7554/elife.44063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
BReast Cancer Associated proteins 1 and 2 (BRCA1, -2) and Partner and Localizer of BRCA2 (PALB2) protein are tumour suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. PALB2 coordinates functions of BRCA1 and BRCA2 during homology-directed repair (HDR) and interacts with several chromatin proteins. In addition to protein scaffold function, PALB2 binds DNA. The functional role of this interaction is poorly understood. We identified a major DNA-binding site of PALB2, mutations in which reduce RAD51 foci formation and the overall HDR efficiency in cells by 50%. PALB2 N-terminal DNA-binding domain (N-DBD) stimulates the function of RAD51 recombinase. Surprisingly, it possesses the strand exchange activity without RAD51. Moreover, N-DBD stimulates the inverse strand exchange and can use DNA and RNA substrates. Our data reveal a versatile DNA interaction property of PALB2 and demonstrate a critical role of PALB2 DNA binding for chromosome repair in cells.
Collapse
Affiliation(s)
- Jaigeeth Deveryshetty
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| | - Thibaut Peterlini
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | - Mikhail Ryzhikov
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| | - Nadine Brahiti
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | | | - Jean-Yves Masson
- Genome Stability LaboratoryCHU de Québec-Université Laval, Oncology Division, Laval University Cancer Research CenterQuébec CityCanada
| | - Sergey Korolev
- Edward A Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisUnited States
| |
Collapse
|