1
|
Abstract
Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.
Collapse
Affiliation(s)
- Vikram V Shende
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Knox HL, Allen KN. Expanding the viewpoint: Leveraging sequence information in enzymology. Curr Opin Chem Biol 2023; 72:102246. [PMID: 36599282 PMCID: PMC10251232 DOI: 10.1016/j.cbpa.2022.102246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023]
Abstract
The use of protein sequence to inform enzymology in terms of structure, mechanism, and function has burgeoned over the past two decades. Referred to as genomic enzymology, the utilization of bioinformatic tools such as sequence similarity networks and phylogenetic analyses has allowed the identification of new substrates and metabolites, novel pathways, and unexpected reaction mechanisms. The holistic examination of superfamilies can yield insight into the origins and paths of evolution of enzymes and the range of their substrates and mechanisms. Herein, we highlight advances in the use of genomic enzymology to address problems which the in-depth analyses of a single enzyme alone could not enable.
Collapse
Affiliation(s)
- Hayley L Knox
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA.
| |
Collapse
|
3
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
4
|
Cantwell C, Song X, Li X, Zhang B. Prediction of adsorption capacity and biodegradability of polybrominated diphenyl ethers in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12207-12222. [PMID: 36109482 DOI: 10.1007/s11356-022-22996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants with strong toxicity concerns. Understanding the behaviors of PBDEs in soil is essential to evaluate their environmental impact. However, the limited, incoherent, and inaccurate data has challenged predicting the adsorption capacity and biodegradability of all 209 PBDE congeners in the soil. Moreover, there are minimal studies regarding the interactions between adsorption and biodegradation behaviors of PBDEs in the soil. Herein, in this study, we adopted quantitative structure-property relationship (QSAR) modeling to predict the adsorption behavior of 209 PBDE congeners by estimating their organic carbon-water partition coefficient (KOC) values. In addition, the biodegradability of commonly occurring PBDE congeners was evaluated by analyzing their affinity to extracellular enzymes responsible for biodegradation using molecular docking. The results highlight that the degree of bromination plays a significant role in both the absorption and biodegradation of PBDEs in the soil due to compound stability and molecular geometry. Our findings help to advance the knowledge on PBDE behaviors in the soil and facilitate PBDE remediation associated with a soil environment.
Collapse
Affiliation(s)
- Cuirin Cantwell
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Xing Song
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Xixi Li
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
5
|
Adak S, Moore BS. Cryptic halogenation reactions in natural product biosynthesis. Nat Prod Rep 2021; 38:1760-1774. [PMID: 34676862 DOI: 10.1039/d1np00010a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: Up to December 2020Enzymatic halogenation reactions are essential for the production of thousands of halogenated natural products. However, in recent years, scientists discovered several halogenases that transiently incorporate halogen atoms in intermediate biosynthetic molecules to activate them for further chemical reactions such as cyclopropanation, terminal alkyne formation, C-/O-alkylation, biaryl coupling, and C-C rearrangements. In each case, the halogen atom is lost in the course of biosynthesis to the final product and is hence termed "cryptic". In this review, we provide an overview of our current knowledge of cryptic halogenation reactions in natural product biosynthesis.
Collapse
Affiliation(s)
- Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA. .,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
6
|
Xia X, Weng Y, Zhang L, Tang R, Zhang X. A facile SERS strategy to detect glucose utilizing tandem enzyme activities of Au@Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119889. [PMID: 34015600 DOI: 10.1016/j.saa.2021.119889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Surface-Enhanced Raman Scattering (SERS) is a powerful analysis technology, attracting more and more attention due to its high sensitivity and selectivity. Herein, we report a simple seed-mediated method to synthesize Au@Ag nanoparticles (NPs) as a multifunctional biosensor for the label-free detection of hydrogen peroxide (H2O2) and glucose by SERS. Au@Ag NPs, as an ultrasensitive SERS substrate, show the dual activities (peroxidase-like and GOx-like activities). Under the condition of pH 4.0 NaAc buffer solution, the glucose and H2O can be catalyzed by Au@Ag NPs to produce glucose acid and H2O2, and then H2O2 can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form a blue oxidation product oxidic TMB (oxTMB) which exhibits strong SERS signals at 1188, 1330, 1605 cm-1. Thus, we have developed a new SERS strategy for analysis of glucose with a detection limit of 5 × 10-10molL-1, suggesting that Au@Ag NPs have the potential for biosensor, immunoassay and medical treatment.
Collapse
Affiliation(s)
- Xuemin Xia
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yijin Weng
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lei Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ruyi Tang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xia Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
7
|
Hüttel W, Müller M. Regio- and stereoselective intermolecular phenol coupling enzymes in secondary metabolite biosynthesis. Nat Prod Rep 2020; 38:1011-1043. [PMID: 33196733 DOI: 10.1039/d0np00010h] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2005 to 2020Phenol coupling is a key reaction in the biosynthesis of important biopolymers such as lignin and melanin and of a plethora of biarylic secondary metabolites. The reaction usually leads to several different regioisomeric products due to the delocalization of a radical in the reaction intermediates. If axial chirality is involved, stereoisomeric products are obtained provided no external factor influences the selectivity. Hence, in non-enzymatic organic synthesis it is notoriously difficult to control the selectivity of the reaction, in particular if the coupling is intermolecular. From biosynthesis, it is known that especially fungi, plants, and bacteria produce biarylic compounds regio- and stereoselectively. Nonetheless, the involved enzymes long evaded discovery. First progress was made in the late 1990s; however, the breakthrough came only with the genomic era and, in particular, in the last few years the number of relevant publications has dramatically increased. The discoveries reviewed in this article reveal a remarkable diversity of enzymes that catalyze oxidative intermolecular phenol coupling, including various classes of laccases, cytochrome P450 enzymes, and heme peroxidases. Particularly in the case of laccases, the catalytic systems are often complex and additional proteins, substrates, or reaction conditions have a strong influence on activity and regio- and atroposelectivity. Although the field of (selective) enzymatic phenol coupling is still in its infancy, the diversity of enzymes identified recently could make it easier to select suitable candidates for biotechnological development and to approach this challenging reaction through biocatalysis.
Collapse
Affiliation(s)
- Wolfgang Hüttel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104 Freiburg, Germany.
| | | |
Collapse
|
8
|
Alker AT, Delherbe N, Purdy TN, Moore BS, Shikuma NJ. Genetic examination of the marine bacterium Pseudoalteromonas luteoviolacea and effects of its metamorphosis-inducing factors. Environ Microbiol 2020; 22:4689-4701. [PMID: 32840026 PMCID: PMC8214333 DOI: 10.1111/1462-2920.15211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Pseudoalteromonas luteoviolacea is a globally distributed marine bacterium that stimulates the metamorphosis of marine animal larvae, an important bacteria-animal interaction that can promote the recruitment of animals to benthic ecosystems. Recently, different P. luteoviolacea isolates have been shown to produce two stimulatory factors that can induce tubeworm and coral metamorphosis; Metamorphosis-Associated Contractile structures (MACs) and tetrabromopyrrole (TBP) respectively. However, it remains unclear what proportion of P. luteoviolacea isolates possess the genes encoding MACs, and what phenotypic effect MACs and TBP have on other larval species. Here, we show that 9 of 19 sequenced P. luteoviolacea genomes genetically encode both MACs and TBP. While P. luteoviolacea biofilms producing MACs stimulate the metamorphosis of the tubeworm Hydroides elegans, TBP biosynthesis genes had no effect under the conditions tested. Although MACs are lethal to larvae of the cnidarian Hydractinia symbiologicarpus, P. luteoviolacea mutants unable to produce MACs are capable of stimulating metamorphosis. Our findings reveal a hidden complexity of interactions between a single bacterial species, the factors it produces and two species of larvae belonging to different phyla.
Collapse
Affiliation(s)
- Amanda T. Alker
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| | - Nathalie Delherbe
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| | - Trevor N. Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093
| | - Nicholas J. Shikuma
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, CA, 92182
| |
Collapse
|
9
|
Zhao L, Jeong S, Zhang J, Jung JH, Choi JI, Lim S, Kim MK. Crystal structure of the AhpD-like protein DR1765 from Deinococcus radiodurans R1. Biochem Biophys Res Commun 2020; 529:444-449. [PMID: 32703449 DOI: 10.1016/j.bbrc.2020.06.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Deinococcus radiodurans is well known for its extreme resistance to ionizing radiation (IR). Since reactive oxygen species generated by IR can damage various cellular components, D. radiodurans has developed effective antioxidant systems to cope with this oxidative stress. dr1765 from D. radiodurans is predicted to encode an alkyl hydroperoxidase-like protein (AhpD family), which is implicated in the reduction of hydrogen peroxide (H2O2) and organic hydroperoxides. In this study, we constructed a dr1765 mutant strain (Δdr1765) and examined the survival rate after H2O2 treatment. Δdr1765 showed a significant decrease in the H2O2 resistance compared to the wild-type strain. We also determined the crystal structure of DR1765 at 2.27 Å resolution. DR1765 adopted an all alpha helix protein fold representative of the AhpD-like superfamily. Structural comparisons of DR1765 with its structural homologues revealed that DR1765 possesses the Glu74-Cys86-Tyr88-Cys89-His93 signature motif, which is conserved in the proton relay system of AhpD. Complementation of Δdr1765 with dr1765 encoding C86A or C89A mutation failed to restore the survival rate to wild-type level. Taken together, these results suggest that DR1765 might function as an AhpD to protect cells from oxidative stress.
Collapse
Affiliation(s)
- Lei Zhao
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Soyoung Jeong
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Jing Zhang
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sangyong Lim
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Min-Kyu Kim
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
10
|
Abstract
:In this review, we examined the possibility that some halogenated organic derivatives were used in the primitive ocean at the beginning of life on Earth. Firstly, we described the existence of extraterrestrial halogenated molecules, then we studied their nonbiological syntheses on the present Earth, especially in volcanic environments. In order to demonstrate the diversity of today’s halogenated biomolecules, representative examples are given and the biosynthesis of some of them is summarized. Finally, we proposed two aspects of the chemistry of halogenated compounds that may have been useful en route to biomolecules, firstly the use of methyl chloride as the first methylation reagent, secondly the synthesis and use of α-chloro-carbonyl derivatives.
Collapse
Affiliation(s)
- Sparta Youssef-Saliba
- Department of Molecular Chemistry, University Grenoble Alpes, CNRS, DCM, Campus, F-38058 Grenoble, France
| | - Yannick Vallée
- Department of Molecular Chemistry, University Grenoble Alpes, CNRS, DCM, Campus, F-38058 Grenoble, France
| |
Collapse
|