1
|
Zhou L, Sun Q, Wang C, Long R, Hu M, Wan Q, Zhao W, Joshi S, Yang L, Liu H, Mao Y, Yang Y, Li Z, Chen Y, Wang L. Development of 18F-Labeled Positron Emission Tomography Agents Targeting Fibroblast Activation Protein. Mol Pharm 2025. [PMID: 40331863 DOI: 10.1021/acs.molpharmaceut.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Fibroblast activation protein (FAP) is expressed in activated fibroblasts but not in quiescent fibroblasts. Thus, it allows us to use this membrane-anchored enzyme as a target for radionuclide-based tumor diagnosis and treatment and the diagnosis of nonmalignant diseases. In this report, we synthesized and evaluated a series of 18F-labeled FAP inhibitors (FAPIs), aiming to obtain PET agents with good in vivo distribution and tumor specificity. These 18F-labeled arene- and aliphatic-vinyl sulfones were prepared with yields of 52.3-78.6%, which were then reacted with FAPIs to obtain corresponding imaging agents with yields of 47.3-88.7% (2nd step). When tested in the U87MG tumor-bearing mice, [18F]11 exhibited 8.2 ± 0.9%ID/g tumor uptake at 0.5 h p.i. with relatively low muscle uptake (T/M ratio of 10.5). In the presence of FAPI inhibitor SP-13786, the tumor uptake of [18F]11 was successfully reduced to 1.4%ID/g, confirming the receptor specificity of this agent. Autoradiography and immunohistochemical staining analysis revealed similar tumor distribution patterns of [18F]11 and FAP+ cells in U87MG tumor tissues. Our findings suggest that [18F]11 demonstrates great potential as an FAP-targeted PET agent for tumor detection and can be further evaluated in the future.
Collapse
Affiliation(s)
- Liu Zhou
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646608, China
| | - Qinghong Sun
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646608, China
| | - Changjiang Wang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646608, China
| | - Ruiling Long
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646608, China
| | - Mei Hu
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646608, China
| | - Qiang Wan
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Weiling Zhao
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sameer Joshi
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Liping Yang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646608, China
| | - Hao Liu
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646608, China
| | - Yifan Mao
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yunyi Yang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646608, China
| | - Zibo Li
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yue Chen
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Li Wang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| |
Collapse
|
2
|
Gundam SR, Callstrom MR, Pandey MK. Synthesis and Application of 1-[ 18F]Fluoro-4-isothiocyanatobenzene for Radiofluorination of Peptides in Aqueous Medium. J Org Chem 2025; 90:458-470. [PMID: 39668345 DOI: 10.1021/acs.joc.4c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Conjugation of radiofluorinated prosthetic groups to primary amines of peptides in an aqueous medium is still considerably challenging. Herein, we report a one-pot cascade synthesis of 1-[18F]fluoro-4-isothiocyanatobenzene ([18F]2d), an isothiocyanate-functionalized prosthetic group for radiolabeling of various peptides in aqueous medium. The developed compound [18F]2d was synthesized in >99% radiochemical purity with 22.9 ± 3.8% (n = 12) decay-corrected yield having molar activity of 0.65 ± 0.19 (n = 12) GBq/μmol. Various clinically important peptides including prostate-specific membrane antigen vector, octreotide acetate, biotin analogue, Arg-Gly-Asp analogue, and bradykinin were successfully conjugated with [18F]2d in an aqueous medium in a good to moderate radiochemical yield. The overall synthesis of [18F]2d and its conjugation with a peptide take around 155 min, including purification.
Collapse
Affiliation(s)
| | - Mathew R Callstrom
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55906, United States
| | - Mukesh K Pandey
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55906, United States
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota 55906, United States
| |
Collapse
|
3
|
Zhang T, Ma X, Xu M, Cai J, Cai J, Cao Y, Zhang Z, Ji X, He J, Cabrera GOF, Wu X, Zhao W, Wu Z, Xie J, Li Z. Chelator boosted tumor-retention and pharmacokinetic properties: development of 64Cu labeled radiopharmaceuticals targeting neurotensin receptor. Eur J Nucl Med Mol Imaging 2024; 51:3322-3333. [PMID: 38771516 PMCID: PMC11368631 DOI: 10.1007/s00259-024-06754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Accumulating evidence suggests that neurotensin (NTS) and neurotensin receptors (NTSRs) play key roles in lung cancer progression by triggering multiple oncogenic signaling pathways. This study aims to develop Cu-labeled neurotensin receptor 1 (NTSR1)-targeting agents with the potential for both imaging and therapeutic applications. METHOD A series of neurotensin receptor antagonists (NRAs) with variable propylamine (PA) linker length and different chelators were synthesized, including [64Cu]Cu-CB-TE2A-iPA-NRA ([64Cu]Cu-4a-c, i = 1, 2, 3), [64Cu]Cu-NOTA-2PA-NRA ([64Cu]Cu-4d), [64Cu]Cu-DOTA-2PA-NRA ([64Cu]Cu-4e, also known as [64Cu]Cu-3BP-227), and [64Cu]Cu-DOTA-VS-2PA-NRA ([64Cu]Cu-4f). The series of small animal PET/CT were conducted in H1299 lung cancer model. The expression profile of NTSR1 was also confirmed by IHC using patient tissue samples. RESULTS For most of the compounds studied, PET/CT showed prominent tumor uptake and high tumor-to-background contrast, but the tumor retention was strongly influenced by the chelators used. For previously reported 4e, [64Cu]Cu-labeled derivative showed initial high tumor uptake accompanied by rapid tumor washout at 24 h. The newly developed [64Cu]Cu-4d and [64Cu]Cu-4f demonstrated good tumor uptake and tumor-to-background contrast at early time points, but were less promising in tumor retention. In contrast, our lead compound [64Cu]Cu-4b demonstrated 9.57 ± 1.35, 9.44 ± 2.38 and 9.72 ± 4.89%ID/g tumor uptake at 4, 24, and 48 h p.i., respectively. Moderate liver uptake (11.97 ± 3.85, 9.80 ± 3.63, and 7.72 ± 4.68%ID/g at 4, 24, and 48 h p.i.) was observed with low uptake in most other organs. The PA linker was found to have a significant effect on drug distribution. Compared to [64Cu]Cu-4b, [64Cu]Cu-4a had a lower background, including a greatly reduced liver uptake, while the tumor uptake was only moderately reduced. Meanwhile, [64Cu]Cu-4c showed increased uptake in both the tumor and the liver. The clinical relevance of NTSR1 was also demonstrated by the elevated tumor expression in patient tissue samples. CONCLUSIONS Through the side-by-side comparison, [64Cu]Cu-4b was identified as the lead agent for further evaluation based on its high and sustained tumor uptake and moderate liver uptake. It can not only be used to efficiently detect NTSR1 expression in lung cancer (for diagnosis, patient screening, and treatment monitoring), but also has the great potential to treat NTSR-positive lesions once chelating to the beta emitter 67Cu.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA.
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Transformation Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xinrui Ma
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, Raleigh, NC, North Carolina State University, NC 27599, USA
| | - Muyun Xu
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Jinghua Cai
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Jianhua Cai
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhihao Zhang
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Transformation Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Ji
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Transformation Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - German Oscar Fonseca Cabrera
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Xuedan Wu
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Weiling Zhao
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Zhanhong Wu
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA, 30602, USA.
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA.
| |
Collapse
|
4
|
Tong J, Shu J, Wang Y, Qi Y, Wang Y. A bioactive sprite: Recent advances in the application of vinyl sulfones in drug design and organic synthesis. Life Sci 2024; 352:122904. [PMID: 38986895 DOI: 10.1016/j.lfs.2024.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Vinyl sulfones, with their exceptional chemical properties, are known as the "chameleons" of organic synthesis and are widely used in the preparation of various sulfur-containing structures. However, their most alluring feature lies in their biological activity. The vinyl sulfone skeleton is ubiquitous in natural products and drug molecules and boasts a unique molecular structure and drug activity when compared to conventional drug molecules. As a result, vinyl sulfones have been extensively studied, playing a critical role in organic synthesis and pharmaceutical chemistry. In this review, we present a comprehensive analysis of the recent applications of vinyl sulfone structures in drug design, biology, and chemical synthesis. Furthermore, we explore the prospects of vinyl sulfones in diverse fields, offering insight into their potential future applications.
Collapse
Affiliation(s)
- Jiangtao Tong
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiong Shu
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuhua Wang
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yajuan Qi
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Mushtaq S, Lee KC, Park JA, Kim JY. Efficient Radiolabeling of Proteins and Antibodies via Maleamate-Cysteine Bioconjugation. ACS Med Chem Lett 2024; 15:691-695. [PMID: 38746876 PMCID: PMC11089560 DOI: 10.1021/acsmedchemlett.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/04/2024] [Indexed: 05/11/2025] Open
Abstract
The study introduces a novel maleamate-based prosthetic group specifically designed for efficient, site-specific radioiodination of biomolecules that contain or are modified with cysteine residues. This strategy is a compelling alternative to the conventional maleimide-based approach, demonstrating outstanding attributes such as high radiochemical yield, rapid reaction kinetics, applicability in aqueous media at neutral pH, and exceptional stability under a competitive environment.
Collapse
Affiliation(s)
- Sajid Mushtaq
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic
of Korea
- Department
of Nuclear Engineering, Pakistan Institute
of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650, Pakistan
| | - Kyo Chul Lee
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic
of Korea
| | - Ji Ae Park
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic
of Korea
| | - Jung Young Kim
- Division
of Applied RI, Korea Institute of Radiological
& Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic
of Korea
| |
Collapse
|
6
|
Zhong X, Yan J, Ding X, Su C, Xu Y, Yang M. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjug Chem 2023; 34:457-476. [PMID: 36811499 DOI: 10.1021/acs.bioconjchem.2c00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to their high reaction rate and reliable selectivity, bioorthogonal click reactions have been extensively investigated in numerous research fields, such as nanotechnology, drug delivery, molecular imaging, and targeted therapy. Previous reviews on bioorthogonal click chemistry for radiochemistry mainly focus on 18F-labeling protocols employed to produce radiotracers and radiopharmaceuticals. In fact, besides fluorine-18, other radionuclides such as gallium-68, iodine-125, and technetium-99m are also used in the field of bioorthogonal click chemistry. Herein, to provide a more comprehensive perspective, we provide a summary of recent advances in radiotracers prepared using bioorthogonal click reactions, including small molecules, peptides, proteins, antibodies, and nucleic acids as well as nanoparticles based on these radionuclides. The combination of pretargeting with imaging modalities or nanoparticles, as well as the clinical translations study, are also discussed to illustrate the effects and potential of bioorthogonal click chemistry for radiopharmaceuticals.
Collapse
Affiliation(s)
- Xinlin Zhong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Xiang Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chen Su
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, P. R. China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
7
|
Si Z, Cheng Y, Xu Z, Shi D, Shi H, Cheng D. Exploration of 68Ga-DOTA-MAL as a Versatile Vehicle for Facile Labeling of a Variety of Thiol-Containing Bioactive Molecules. ACS OMEGA 2023; 8:4747-4755. [PMID: 36777559 PMCID: PMC9909812 DOI: 10.1021/acsomega.2c06720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Efficient and site-specific radiolabeling reactions are essential in molecular probe synthesis. Thus, selecting an effective method for radiolabeling that does not affect bioactivity of the molecule is critical. Varieties of bifunctional chelating agents provide a solution in this matter. As a chemo-specific chelator, maleimido-mono-amide-DOTA (DOTA-Mal) holds significant potential for 68Ga labeling of bioactive molecules; it can react specifically with free sulfhydryl groups under mild conditions. Compared with amino and carboxylic acid groups, free sulfhydryl groups are relatively less common in most biomolecules and can serve as site-specific radiolabeling targets. Labeling of 68Ga usually employs a two-step labeling strategy; first, chelators are conjugated to the biomolecules, which is followed by radiolabeling. However, the bioactivity of biomolecules may be affected by harsh labeling conditions. In this study, three 68Ga-labeled bioactive molecules, namely, 68Ga-DOTA-RGD, 68Ga-DOTA-FA, and 68Ga-DOTA-BSA, were prepared using a novel strategy under mild conditions (pH of 8.0 at room temperature). Using this strategy, DOTA-Mal was labeled by 68Ga before it reacted with the sulfhydryl group-containing biomolecules, which avoided damage to said biomolecules caused by the harsh reaction conditions required in 68Ga-labeling procedures. The biological and chemical properties of these three radiotracers synthesized using this strategy are well manifested. Through a series of experiments, the effectiveness of this strategy is demonstrated, and we believe that this site-specific bioactivity-friendly reaction strategy will facilitate developments and translation applications of varieties of 68Ga-labeled positron emission tomography probes.
Collapse
Affiliation(s)
- Zhan Si
- Department
of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute
of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai
Institute of Medical Imaging, Shanghai 200032, China
| | - Yuan Cheng
- Department
of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute
of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai
Institute of Medical Imaging, Shanghai 200032, China
| | - Zhan Xu
- Department
of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute
of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai
Institute of Medical Imaging, Shanghai 200032, China
| | - Dai Shi
- Department
of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute
of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai
Institute of Medical Imaging, Shanghai 200032, China
| | - Hongcheng Shi
- Department
of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute
of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai
Institute of Medical Imaging, Shanghai 200032, China
| | - Dengfeng Cheng
- Department
of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institute
of Nuclear Medicine, Fudan University, Shanghai 200032, China
- Shanghai
Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
8
|
Hu M, Yang L, Liu N, Long R, Zhou L, Zhao W, Feng Y, Wang C, Li Z, Chen Y, Wang L. Evaluation of sulfone-labeled amino acid derivatives as potential PET agents for cancer imaging. Nucl Med Biol 2023; 116-117:108311. [PMID: 36580767 DOI: 10.1016/j.nucmedbio.2022.108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION As one of the most important and frequently used molecular imaging techniques in the clinic, positron emission tomography (PET) features high sensitivity and specificity, which generally involves the use of PET contrast agents. Despite the exceptional promise, the availability of novel PET agents could limit its application and there is a clear need to develop new PET agents to improve our understanding of targets of interest and increase the diagnostic specificity. METHODS Based on the fact that amino acid transport and protein anabolism are increased in tumor tissues, a series of 18F-labeled amino acid analog was labeled with 18F by using [18F]fluoro-4-(vinylsulfonyl)benzene as the radionuclide linker. The obtained probes were subjected to in vitro and in vivo evaluation, including stability, cell line transport channel specificity, PET/CT imaging on tumor and inflammation bearing mice, and biodistribution. RESULTS Our data shows that [18F]2a had moderate decay corrected labeling yield (>42 %) and high radiochemical purity (>99 %). When tested in vivo, the uptake of [18F]2a was 1.5 ± 0.2%ID/g in NCI-H1975 tumors and 1.1 ± 0.2%ID/g in inflammatory tissues. In contrast, the values for [18F]FDG were 5.7 ± 0.2%ID/g and 4.8 ± 0.1%ID/g, respectively. The inflammatory lesion-to-muscle contrast is 2.4 for [18F]2a, which is 3.0 for [18F]FDG. CONCLUSION Clearly, [18F]2a hold the great potential for cancer imaging. Its application in distinguishing tumor from inflammatory lesion would still need to be investigated further.
Collapse
Affiliation(s)
- Mei Hu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Liping Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Nan Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Ruiling Long
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Liu Zhou
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Weiling Zhao
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Changjiang Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China; School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zibo Li
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China; Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Il’in AV, Gubaev AF, Zarzhitskaya EV, Islamov DR, Kuchaev ES. Phosphine-Catalyzed Reactions of Imides and Hydrophosphoryl Compounds Addition to Divinyl Sulfone. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222070039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Richard M, Hinnen F, Kuhnast B. Novel [ 18F]-labeled thiol for the labeling of Dha- or maleimide-containing biomolecules. EJNMMI Radiopharm Chem 2022; 7:7. [PMID: 35384570 PMCID: PMC8986957 DOI: 10.1186/s41181-022-00160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prosthetic approach for the radiolabeling of biologics with fluorine-18 is a robust strategy and has been employed for many years. It requires fast, biocompatible and selective reactions suited to these fragile molecules. Michael addition of a nucleophilic thiol moiety on α,β-unsaturated carbonyl entities is an interesting compromise between simplicity of preparation of the prosthetic reagent and control of the selectivity of the addition. The α,β-unsaturated carbonyl entity of the biologic can easily be generated by addition of a maleimide function using adequate heterobifunctional linkers or generated by selective modification of a cysteine residue leading to a dehydroalanine moiety. We report here the design, synthesis and radiosynthesis of a new fluoropyridine-based thiol [18F]FPySH and its conjugation via Michael addition on model dehydroalanine- or maleimide-containing biologics. RESULTS The preparation of cold reference and labeling precursor of [18F]FPySH was achieved and its radiosynthesis was fully automated, enabling production of the thiol prosthetic group with a 7 ± 2.1% radiochemical yield after two steps. The conjugation of [18F]FPySH to two model Dha-containing molecules was then carried out in reducing conditions, yielding the corresponding adducts in 30-45 min reaction time. Furthermore, [18F]FPySH was employed to radiolabel the maleimide-modified c(RGDfK) peptide, affording the radiofluorinated analogue in 15 min. CONCLUSION We have developed an original [18F]-labeled thiol for site-selective conjugation and radiolabeling of Dha or maleimide-containing biomolecules of interest. Labeling of three model compounds was successfully carried out and gave the expected radiofluorinated adducts in less than 45 min, thus compatible with fluorine-18 half-life.
Collapse
Affiliation(s)
- Mylène Richard
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401, Orsay, France.
| | - Françoise Hinnen
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401, Orsay, France
| | - Bertrand Kuhnast
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401, Orsay, France
| |
Collapse
|
11
|
Ahmadi R, Emami S. Recent applications of vinyl sulfone motif in drug design and discovery. Eur J Med Chem 2022; 234:114255. [DOI: 10.1016/j.ejmech.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
|
12
|
Zhang T, Cai J, Xu M, Ma X, Wang H, Wang M, Han Z, Wang J, Smith E, Li Z, Wu Z. Development of 18F-Labeled Vinyl Sulfone-PSMAi Conjugates as New PET Agents for Prostate Cancer Imaging. Mol Pharm 2022; 19:720-727. [PMID: 34936367 DOI: 10.1021/acs.molpharmaceut.1c00743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Radiolabeled prostate-specific membrane antigen (PSMA) ligands have been rapidly adopted as part of patient care for prostate cancer. In this study, a new series of 18F-labeled PSMA-targeting agents was developed based on the high-affinity Glu-ureido-Lys scaffold and 18F-vinyl sulfones (VSs), the tumor uptake and tumor/major organ contrast of which could be tuned by pharmacokinetic linkers within the molecules. In particular, 18F-PEG3-VS-PSMAi showed the highest tumor uptake (12.1 ± 2.2%ID/g at 0.5 h p.i.) and 18F-PEG2-VS-PSMAi showed the highest tumor-to-liver ratio (T/L = 3.7 ± 1.0, 4.8 ± 1.2, and 6.3 ± 1.1 at 0.5, 1.5, and 3 h p.i. respectively). Significantly, compared with the FDA-approved 68Ga-PSMA-11, the newly developed 18F-PEG3-VS-PSMAi has an almost double tumor uptake (P < 0.0001) when tested in the same animal model. In conclusion, 18F-VS-labeled PSMA ligands are promising PET agents with prominent tumor uptake and high contrast. The lead agents 18F-PEG2-VS-PSMAi and 18F-PEG3-VS-PSMAi warrant further evaluation in prostate cancer patients.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jinghua Cai
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Muyun Xu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xinrui Ma
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hui Wang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mengzhe Wang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhaoguo Han
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason Wang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric Smith
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Zhang X, Wang L, Fu W, Feng Y, Zeng C, Zhou L, Zhang T, Xu T, Cao J, Li Z, Chen Y. 18F-PEG1-Vinyl Sulfone-Labeled Red Blood Cells as Positron Emission Tomography Agent to Image Intra-Abdominal Bleeding. Front Med (Lausanne) 2021; 8:646862. [PMID: 34291057 PMCID: PMC8287037 DOI: 10.3389/fmed.2021.646862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/02/2021] [Indexed: 12/01/2022] Open
Abstract
18F-Labeled blood pool agents (BPAs) have attracted great attention for identifying bleeding sites. However, many BPAs are not sufficiently evaluated partially due to the limitations of labeling methods. In our previous work, we noticed that 18F-PEG1-vinyl sulfone (18F-VS) could efficiently label red blood cells (RBCs) ex vivo and in situ. However, its application as BPA is not fully evaluated. In this study, we systematically explored the feasibility of using 18F-VS-labeled RBCs as a positron emission tomography (PET) BPA for intra-abdominal bleeding diagnosis. In brief, we first optimized the labeling conditions, which lead to an 80% labeling yield of RBCs after incubating with 18F-VS in phosphate-buffered saline (PBS) at 37°C for 20 min. 18F-VS-labeled RBCs were found to be stable in vitro, which could simplify its transportation/storage for in vivo applications. In normal rat PET study, the cardiovascular system could be clearly imaged up to 5 h post injection (p.i.). An intra-abdominal hemorrhage rat model demonstrated that the 18F-VS-labeled RBCs clearly showed the dynamic changes of extravascular radioactivity due to intra-abdominal hemorrhage. Validation in the model of gastrointestinal bleeding clearly demonstrated the great potential of using 18F-VS-labeled RBCs as a BPA, which could be further evaluated in future studies.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou, China.,Academician (Expert) Workstation of Sichuan, Luzhou, China
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou, China.,Academician (Expert) Workstation of Sichuan, Luzhou, China
| | - Wenhui Fu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou, China.,Academician (Expert) Workstation of Sichuan, Luzhou, China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou, China.,Academician (Expert) Workstation of Sichuan, Luzhou, China
| | - Chengrun Zeng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou, China.,Academician (Expert) Workstation of Sichuan, Luzhou, China
| | - Liu Zhou
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou, China.,Academician (Expert) Workstation of Sichuan, Luzhou, China.,School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Tao Zhang
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, United States
| | - Tingting Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou, China.,Academician (Expert) Workstation of Sichuan, Luzhou, China
| | - Jianpeng Cao
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou, China.,Academician (Expert) Workstation of Sichuan, Luzhou, China
| | - Zibo Li
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, United States
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan, Luzhou, China.,Academician (Expert) Workstation of Sichuan, Luzhou, China
| |
Collapse
|
14
|
Humpert S, Omrane MA, Urusova EA, Gremer L, Willbold D, Endepols H, Krasikova RN, Neumaier B, Zlatopolskiy BD. Rapid 18F-labeling via Pd-catalyzed S-arylation in aqueous medium. Chem Commun (Camb) 2021; 57:3547-3550. [PMID: 33870341 DOI: 10.1039/d1cc00745a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report radiolabeling of thiol-containing substrates via Pd-catalyzed S-arylation with 2-[18F]fluoro-5-iodopyridine, which is readily accessible using the "minimalist" radiofluorination method. The practicality of the procedure was confirmed by preparation of a novel PSMA-specific PET-tracer as well as labeling of glutathione, Aβ oligomer-binding RD2 peptide, bovine serum albumin and PSMA I&S.
Collapse
Affiliation(s)
- Swen Humpert
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Jülich 52428, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|