1
|
Przybył AK, Janczak J, Huczyński A. Synthesis and Structural Analysis of New (-)-Cytisine Squaramides. Molecules 2025; 30:1135. [PMID: 40076358 PMCID: PMC11901779 DOI: 10.3390/molecules30051135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Derivatives of squaric acid are valuable building blocks with promising applications in the investigation of various bioactivities. In this study, we focus on squaramides functionalized with the (-)-cytisine moiety, an alkaloid known for its bioactivity as a nicotinic acetylcholine receptor agonist and its application in nicotine addiction treatment. Reactions of cytisine-monosquarate with several amines, such as ammonia, propargylamine, and morpholine, led to the formation of novel conjugates of cytisine-squaramides. Additionally, squaramide containing two cytisine moieties was synthesized via the reaction of diethyl squarate with cytisine at a 1:2 molar ratio. All obtained squaramides were thoroughly characterized by MS, FT-IR, and NMR methods and by single-crystal X-ray diffraction analysis. To gain deeper insights into their structural properties and intermolecular interactions, geometry optimizations were performed using DFT calculations, complemented with 3D molecular electrostatic potential maps.
Collapse
Affiliation(s)
- Anna K. Przybył
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2 Str., 50-422 Wrocław, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Tirolski G, Momekov G, Cherneva E. Squaric acid derivatives with cytotoxic activity-a review. Chem Biol Interact 2025; 406:111344. [PMID: 39647808 DOI: 10.1016/j.cbi.2024.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
3,4-Dihydroxycyclobut-3-ene-1,2-dione (squaric acid, SQ) is the most important representative of the oxocarbon acids family. Squaric acid derivatives can be promising pharmaceutical agents, due to their unique structural properties, from which novel drugs benefit: a planar aromatic ring, the ability to form hydrogen bonds, good reactivity and similarity with carboxylate, phosphate and amide groups. These properties make it suitable for three major applications in cancer treatment. Firstly, due to their excellent ion binding ability, the halogenated squaramides can be used as artificial ion transporters or mobile carriers to disrupt Na+/Cl- gradients in cancer cells, thus hindering lysosomal function and inducing apoptosis. Another advantage of this class is their bioisosteric properties. Such molecules have been reported to be selective inhibitors of HDACs, FAK, SNM1A, MMP and kinases, involved in tumor growth and metastasis. Finally, the cyclobutenedione moiety proves to be a great linker in complex radiopharmaceuticals, used in theranostics. Its aromaticity and good reactivity make the generation and stability of these drugs easy and efficient. Multiple derivatives containing the squamide motif have been the subject of in-vitro investigations and have demonstrated anti-cancer activity in the nanomolar range against tumor cell lines, including colorectal adenocarcinoma, breast cancer, gastric carcinoma and cervical cancer. On the other hand, squaric acid derivative-Navarixin, has already been evaluated in Phase II clinical trials for its potential efficacy in the treatment of solid tumors. In this context this review is the first looking into the potential applications of squaric acid derivatives as anticancer therapies. It analyzes experimental studies presented in articles published between 2000 and 2024.
Collapse
Affiliation(s)
- Georgi Tirolski
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Dunav -2 Street, 1000, Sofia, Bulgaria; Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113, Sofia, Bulgaria.
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Dunav -2 Street, 1000, Sofia, Bulgaria
| | - Emiliya Cherneva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113, Sofia, Bulgaria; Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Dunav -2 Street, 1000, Sofia, Bulgaria
| |
Collapse
|
3
|
Seidel RW, Kolev TM. Crystal structure of propane-1,3-diaminium squarate dihydrate. Acta Crystallogr E Crystallogr Commun 2024; 80:973-975. [PMID: 39267879 PMCID: PMC11389676 DOI: 10.1107/s2056989024008235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Propane-1,3-diaminium squarate dihydrate, C3H12N2 2+·C4O4 2-·2H2O, results from the proton-transfer reaction of propane-1,3-di-amine with squaric acid and subsequent crystallization from aqueous medium. The title compound crystallizes in the tetra-gonal crystal system (space group P4bm) with Z = 2. The squarate dianion belongs to the point group D 4h and contains a crystallographic fourfold axis. The propane-1,3-diaminium dication exhibits a C 2v -symmetric all-anti conformation and resides on a special position with mm2 site symmetry. The orientation of the propane-1,3-diaminium ions makes the crystal structure polar in the c-axis direction. The solid-state supra-molecular structure features a triperiodic network of strong hydrogen bonds of the N-H⋯O and O-H⋯O types.
Collapse
Affiliation(s)
- Rüdiger W Seidel
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Tsonko M Kolev
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev-Str. Bl. 21, Sofia 1113, Bulgaria
| |
Collapse
|
4
|
Rudd SE, Noor A, Morgan KA, Donnelly PS. Diagnostic Positron Emission Tomography Imaging with Zirconium-89 Desferrioxamine B Squaramide: From Bench to Bedside. Acc Chem Res 2024; 57:1421-1433. [PMID: 38666539 DOI: 10.1021/acs.accounts.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Molecular imaging with antibodies radiolabeled with positron-emitting radionuclides combines the affinity and selectivity of antibodies with the sensitivity of Positron Emission Tomography (PET). PET imaging allows the visualization and quantification of the biodistribution of the injected radiolabeled antibody, which can be used to characterize specific biological interactions in individual patients. This characterization can provide information about the engagement of the antibody with a molecular target such as receptors present in elevated levels in tumors as well as providing insight into the distribution and clearance of the antibody. Potential applications of clinical PET with radiolabeled antibodies include identifying patients for targeted therapies, characterization of heterogeneous disease, and monitoring treatment response.Antibodies often take several days to clear from the blood pool and localize in tumors, so PET imaging with radiolabeled antibodies requires the use of a radionuclide with a similar radioactive half-life. Zirconium-89 is a positron-emitting radionuclide that has a radioactive half-life of 78 h and relatively low positron emission energy that is well suited to radiolabeling antibodies. It is essential that the zirconium-89 radionuclide be attached to the antibody through chemistry that provides an agent that is stable in vivo with respect to the dissociation of the radionuclide without compromising the biological activity of the antibody.This Account focuses on our research using a simple derivative of the bacterial siderophore desferrioxamine (DFO) with a squaramide ester functional group, DFO-squaramide (DFOSq), to link the chelator to antibodies. In our work, we produce conjugates with an average ∼4 chelators per antibody, and this does not compromise the binding of the antibody to the target. The resulting antibody conjugates of DFOSq are stable and can be easily radiolabeled with zirconium-89 in high radiochemical yields and purity. Automated methods for the radiolabeling of DFOSq-antibody conjugates have been developed to support multicenter clinical trials. Evaluation of several DFOSq conjugates with antibodies and low molecular weight targeting agents in tumor mouse models gave PET images with high tumor uptake and low background. The promising preclinical results supported the translation of this chemistry to human clinical trials using two different radiolabeled antibodies. The potential clinical impact of these ongoing clinical trials is discussed.The use of DFOSq to radiolabel relatively low molecular weight targeting molecules, peptides, and peptide mimetics is also presented. Low molecular weight molecules typically clear the blood pool and accumulate in target tissue more rapidly than antibodies, so they are usually radiolabeled with positron-emitting radionuclides with shorter radioactive half-lives such as fluorine-18 (t1/2 ∼ 110 min) or gallium-68 (t1/2 ∼ 68 min). Radiolabeling peptides and peptide mimetics with zirconium-89, with its longer radioactive half-life (t1/2 = 78 h), could facilitate the centralized manufacture and distribution of radiolabeled tracers. In addition, the ability to image patients at later time points with zirconium-89 based agents (e.g. 4-24 h after injection) may also allow the delineation of small or low-uptake disease sites as the delayed imaging results in increased clearance of the tracer from nontarget tissue and lower background signal.
Collapse
Affiliation(s)
- Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
5
|
Wayment AX, Johnson NC, Moreno MR, Stewart C, Felix BM, Lambert I, Traynor SA, Nielson PM, Lofgreen GQ, Smith SL, Newton MP, Tretbar JW, Nygaard JM, Harrell KG, Kinghorn MJ, Michaelis DJ. Squaric esters as peptide stapling reagents. Tetrahedron Lett 2024; 140:155010. [PMID: 38736688 PMCID: PMC11087058 DOI: 10.1016/j.tetlet.2024.155010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
We report that squaric esters can serve as bifunctional reagents for selective peptide stapling reactions. Formation of the squaric amide staple occurs under mild conditions with amine-containing side chains. We show that short resin-bound peptides are readily stapled on solid phase and that stapling can occur at various relative positions along the peptide and with various amine tether lengths (e.g. Lysine, ornithine, etc). The squaric amide staples are stable to strong acid conditions used to cleave the stapled peptide from the resin and the stapled peptides show an increase in helicity as analyzed through circular dichroism.
Collapse
Affiliation(s)
- Adam X. Wayment
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Nye C. Johnson
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | - Christopher Stewart
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Braxton M. Felix
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Isaac Lambert
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Sarah A. Traynor
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - P. Michael Nielson
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Grant Q. Lofgreen
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Shannon L. Smith
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Madison P. Newton
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Jordan W. Tretbar
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joseph M.L. Nygaard
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Kylie G. Harrell
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Michael J. Kinghorn
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - David J. Michaelis
- Department of Chemsitry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
6
|
Sato K, Fujita T, Takeuchi T, Suzuki T, Ikeuchi K, Tanino K. Alcohol synthesis based on the S N2 reactions of alkyl halides with the squarate dianion. Org Biomol Chem 2024; 22:1369-1373. [PMID: 38232248 DOI: 10.1039/d3ob01507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A convenient method has been developed for transforming alkyl halides into the corresponding alcohols via an SN2 reaction. Treatment of an alkyl halide with the squarate dianion at high temperature produces mono-alkyl squarate, and a one-pot basic hydrolysis of the intermediate affords the alcohol in good yield.
Collapse
Affiliation(s)
- Kazuto Sato
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomoyuki Fujita
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Takeuchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
7
|
Souche C, Fouillet J, Rubira L, Donzé C, Deshayes E, Fersing C. Bisphosphonates as Radiopharmaceuticals: Spotlight on the Development and Clinical Use of DOTAZOL in Diagnostics and Palliative Radionuclide Therapy. Int J Mol Sci 2023; 25:462. [PMID: 38203632 PMCID: PMC10779041 DOI: 10.3390/ijms25010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bisphosphonates are therapeutic agents that have been used for almost five decades in the treatment of various bone diseases, such as osteoporosis, Paget disease and prevention of osseous complications in cancer patients. In nuclear medicine, simple bisphosphonates such as 99mTc-radiolabelled oxidronate and medronate remain first-line bone scintigraphic imaging agents for both oncology and non-oncology indications. In line with the growing interest in theranostic molecules, bifunctional bisphosphonates bearing a chelating moiety capable of complexing a variety of radiometals were designed. Among them, DOTA-conjugated zoledronate (DOTAZOL) emerged as an ideal derivative for both PET imaging (when radiolabeled with 68Ga) and management of bone metastases from various types of cancer (when radiolabeled with 177Lu). In this context, this report provides an overview of the main medicinal chemistry aspects concerning bisphosphonates, discussing their roles in molecular oncology imaging and targeted radionuclide therapy with a particular focus on bifunctional bisphosphonates. Particular attention is also paid to the development of DOTAZOL, with emphasis on the radiochemistry and quality control aspects of its preparation, before outlining the preclinical and clinical data obtained so far with this radiopharmaceutical candidate.
Collapse
Affiliation(s)
- Céleste Souche
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Charlotte Donzé
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
8
|
Nguyen AT, Kim HK. Recent Developments in PET and SPECT Radiotracers as Radiopharmaceuticals for Hypoxia Tumors. Pharmaceutics 2023; 15:1840. [PMID: 37514026 PMCID: PMC10385036 DOI: 10.3390/pharmaceutics15071840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Hypoxia, a deficiency in the levels of oxygen, is a common feature of most solid tumors and induces many characteristics of cancer. Hypoxia is associated with metastases and strong resistance to radio- and chemotherapy, and can decrease the accuracy of cancer prognosis. Non-invasive imaging methods such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using hypoxia-targeting radiopharmaceuticals have been used for the detection and therapy of tumor hypoxia. Nitroimidazoles are bioreducible moieties that can be selectively reduced under hypoxic conditions covalently bind to intracellular macromolecules, and are trapped within hypoxic cells and tissues. Recently, there has been a strong motivation to develop PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazole moieties for the visualization and treatment of hypoxic tumors. In this review, we summarize the development of some novel PET and SPECT radiotracers as radiopharmaceuticals containing nitroimidazoles, as well as their physicochemical properties, in vitro cellular uptake values, in vivo biodistribution, and PET/SPECT imaging results.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
9
|
Szepesi Kovács D, Chiovini B, Müller D, Tóth EZ, Fülöp A, Ábrányi-Balogh P, Wittner L, Várady G, Farkas Ö, Turczel G, Katona G, Győrffy B, Keserű GM, Mucsi Z, Rózsa BJ, Kovács E. Synthesis and Application of Two-Photon Active Fluorescent Rhodol Dyes for Antibody Conjugation and In Vitro Cell Imaging. ACS OMEGA 2023; 8:22836-22843. [PMID: 37396252 PMCID: PMC10308389 DOI: 10.1021/acsomega.3c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023]
Abstract
A novel family of julolidine-containing fluorescent rhodols equipped with a wide variety of substituents was synthesized in a versatile two-step process. The prepared compounds were fully characterized and exhibited excellent fluorescence properties for microscopy imaging. The best candidate was conjugated to the therapeutic antibody trastuzumab through a copper-free strain-promoted azide-alkyne click reaction. The rhodol-labeled antibody was successfully applied for in vitro confocal and two-photon microscopy imaging of Her2+ cells.
Collapse
Affiliation(s)
- Dénes Szepesi Kovács
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Balázs Chiovini
- Faculty
of Information Technology and Bionics, Pázmány
Péter Catholic University, H-1444 Budapest, Hungary
| | - Dalma Müller
- Oncology
Biomarker Research Group, Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Bioinformatics, Semmelweis University, H-1094 Budapest, Hungary
- Semmelweis
University Doctoral School, H-1085 Budapest Hungary
| | - Estilla Zsófia Tóth
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Semmelweis
University Doctoral School, H-1085 Budapest Hungary
- Integrative
Neuroscience Research Group, Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
| | - Anna Fülöp
- Femtonics
Ltd., H-1094 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Lucia Wittner
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Integrative
Neuroscience Research Group, Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
| | - György Várady
- Molecular
Cell Biology Research Group, Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
| | - Ödön Farkas
- Department
of Organic Chemistry, Eötvös
Loránd University, H-1117 Budapest, Hungary
| | - Gábor Turczel
- NMR
Research Laboratory, Research Centre for
Natural Sciences, H-1117 Budapest, Hungary
| | - Gergely Katona
- Faculty
of Information Technology and Bionics, Pázmány
Péter Catholic University, H-1444 Budapest, Hungary
| | - Balázs Győrffy
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Oncology
Biomarker Research Group, Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Bioinformatics, Semmelweis University, H-1094 Budapest, Hungary
- Department
of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - György Miklós Keserű
- Medicinal
Chemistry Research Group, Research Centre
for Natural Sciences, H-1117 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, H-1111 Budapest, Hungary
- National
Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Zoltán Mucsi
- Brain Vision Center, H-1094 Budapest, Hungary
- Faculty
of Materials and Chemical Sciences, University
of Miskolc, Miskolc H-3515, Hungary
| | - Balázs J. Rózsa
- Faculty
of Information Technology and Bionics, Pázmány
Péter Catholic University, H-1444 Budapest, Hungary
- Brain Vision Center, H-1094 Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Ervin Kovács
- Femtonics
Ltd., H-1094 Budapest, Hungary
- Polymer
Chemistry and Physics Research Group, Research
Centre for Natural Sciences, H-1117 Budapest, Hungary
| |
Collapse
|
10
|
Nguyen AT, Kim HK. Recent Advances of 68Ga-Labeled PET Radiotracers with Nitroimidazole in the Diagnosis of Hypoxia Tumors. Int J Mol Sci 2023; 24:10552. [PMID: 37445730 DOI: 10.3390/ijms241310552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging method extensively applied in the detection and treatment of various diseases. Hypoxia is a common phenomenon found in most solid tumors. Nitroimidazole is a group of bioreducible pharmacophores that selectively accumulate in hypoxic regions of the body. Over the past few decades, many scientists have reported the use of radiopharmaceuticals containing nitroimidazole for the detection of hypoxic tumors. Gallium-68, a positron-emitting radioisotope, has a favorable half-life time of 68 min and can be conveniently produced by 68Ge/68Ga generators. Recently, there has been significant progress in the preparation of novel 68Ga-labeled complexes bearing nitroimidazole moieties for the diagnosis of hypoxia. This review provides a comprehensive overview of the current status of developing 68Ga-labeled radiopharmaceuticals with nitroimidazole moieties, their pharmacokinetics, and in vitro and in vivo studies, as well as PET imaging studies for hypoxic tumors.
Collapse
Affiliation(s)
- Anh Thu Nguyen
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
11
|
Wang X, Chen Y, Xiong Y, Zhang L, Wang B, Liu Y, Cui M. Design and Characterization of Squaramic Acid-Based Prostate-Specific Membrane Antigen Inhibitors for Prostate Cancer. J Med Chem 2023; 66:6889-6904. [PMID: 37161996 DOI: 10.1021/acs.jmedchem.3c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Prostate-specific membrane antigen (PSMA) overexpressed on prostate cancer (PCa) cells is a satisfactory theranostic target in PCa. To seek novel non-glutamate-urea-based PSMA inhibitors by the strategy of bioisosterism, 10 ligands were designed, synthesized, and characterized. Among them, ligands 17, 18, and 21-24 bearing the squaramic acid moiety proved to be potent PSMA inhibitors, with Ki values ranging from 0.40 to 2.49 nM, which are comparable or higher in inhibitory potency compared to previously reported glutamate-urea-based inhibitors. Docking studies of 15, 17, and 19 were carried out to explore their binding mode in the active site of PSMA. Two near-infrared (NIR) probes, 23 (λEM = 650 nm) and 24 (λEM = 1088 nm), displayed favorable in vivo NIR imaging and successful NIR-II image-guided tumor resection surgery in PSMA-positive tumor-bearing mice, which demonstrated the effectiveness of these new squaramic acid-based inhibitors.
Collapse
Affiliation(s)
- Xinlin Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yimin Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yuqing Xiong
- Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Longfei Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Beibei Wang
- Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Yajun Liu
- Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| |
Collapse
|
12
|
Lahnif H, Grus T, Salvanou EA, Deligianni E, Stellas D, Bouziotis P, Rösch F. Old Drug, New Delivery Strategy: MMAE Repackaged. Int J Mol Sci 2023; 24:ijms24108543. [PMID: 37239890 DOI: 10.3390/ijms24108543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Targeting therapy is a concept that has gained significant importance in recent years, especially in oncology. The severe dose-limiting side effects of chemotherapy necessitate the development of novel, efficient and tolerable therapy approaches. In this regard, the prostate specific membrane antigene (PSMA) has been well established as a molecular target for diagnosis of, as well as therapy for, prostate cancer. Although most PSMA-targeting ligands are radiopharmaceuticals used in imaging or radioligand therapy, this article evaluates a PSMA-targeting small molecule-drug conjugate, and, thus, addresses a hitherto little-explored field. PSMA binding affinity and cytotoxicity were determined in vitro using cell-based assays. Enzyme-specific cleavage of the active drug was quantified via an enzyme-based assay. Efficacy and tolerability in vivo were assessed using an LNCaP xenograft model. Histopathological characterization of the tumor in terms of apoptotic status and proliferation rate was carried out using caspase-3 and Ki67 staining. The binding affinity of the Monomethyl auristatin E (MMAE) conjugate was moderate, compared to the drug-free PSMA ligand. Cytotoxicity in vitro was in the nanomolar range. Both binding and cytotoxicity were found to be PSMA-specific. Additionally, complete MMAE release could be reached after incubation with cathepsin B. In vivo, the MMAE conjugate displayed good tolerability and dose-dependent inhibition of tumor growth. Immunohistochemical and histological studies revealed the antitumor effect of MMAE.VC.SA.617, resulting in the inhibition of proliferation and the enhancement of apoptosis. The developed MMAE conjugate showed good properties in vitro, as well as in vivo, and should, therefore, be considered a promising candidate for a translational approach.
Collapse
Affiliation(s)
- Hanane Lahnif
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Tilmann Grus
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Evangelia-Alexandra Salvanou
- Radiochemical Studies Laboratory, INRASTES, National Center for Scientific Research "Demokritos", Ag. Paraskevi, 15341 Athens, Greece
| | - Elisavet Deligianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Penelope Bouziotis
- Radiochemical Studies Laboratory, INRASTES, National Center for Scientific Research "Demokritos", Ag. Paraskevi, 15341 Athens, Greece
| | - Frank Rösch
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
13
|
Squaric acid driven supramolecular metallogels of Cd(II) and Zn(II): Sensitive inhibitors for multi-drug resistance ESKAPE pathogens. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. Int J Mol Sci 2022; 23:ijms23147685. [PMID: 35887037 PMCID: PMC9318203 DOI: 10.3390/ijms23147685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: carbonic anhydrases (CAs) are attractive targets for the development of new anticancer therapies; in particular, CAs IX and XII isoforms are overexpressed in numerous tumors. (2) Methods: following the tail approach, we have appended a hydrophobic aromatic tail to a pharmacophore responsible for the CA inhibition (aryl sulfonamide, coumarin). As a linker, we have used squaramides, featured with strong hydrogen bond acceptor and donor capacities. (3) Results: Starting from easily accessible dimethyl squarate, the title compounds were successfully obtained as crystalline solids, avoiding the use of chromatographic purifications. Interesting and valuable SARs could be obtained upon modification of the length of the hydrocarbon chain, position of the sulfonamido moiety, distance of the aryl sulfonamide scaffold to the squaramide, stereoelectronic effects on the aromatic ring, as well as the number and type of substituents on C-3 and C-4 positions of the coumarin. (4) Conclusions: For sulfonamides, the best profile was achieved for the m-substituted derivative 11 (Ki = 29.4, 9.15 nM, CA IX and XII, respectively), with improved selectivity compared to acetazolamide, a standard drug. Coumarin derivatives afforded an outstanding selectivity (Ki > 10,000 nM for CA I, II); the lead compound (16c) was a strong CA IX and XII inhibitor (Ki = 19.2, 7.23 nM, respectively). Docking simulations revealed the key ligand-enzyme interactions.
Collapse
|
15
|
Grus T, Lahnif H, Bausbacher N, Miederer M, Rösch F. DOTA Conjugate of Bisphosphonate and PSMA-Inhibitor: A Promising Combination for Therapy of Prostate Cancer Related Bone Metastases. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:892147. [PMID: 39354968 PMCID: PMC11440839 DOI: 10.3389/fnume.2022.892147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 10/03/2024]
Abstract
Prostate cancer (PCa) is one of the most common cancer types worldwide. 90% of men with late stage PCa will develop bone metastases. Since the expression level of PSMA (prostate-specific membrane antigen) in bone metastases can vary significantly, a compound is being searched for which accumulates in bone metastases independently of PSMA level. With DOTA-L-Lys(SA.Pam)-PSMA-617, we present a compound that, in addition to a PSMA inhibitor as a target vector, also contains a bisphosphonate that is established as a bone tracer and thus combines the advantages of PSMA targeting and bone targeting. This is a class of small molecules combining targeting of two different targets with the potential advantages for treatment of biologically heterogeneous bone metastasis from prostate cancer. The molecule can be labeled with lutetium-177 and used for the therapy of PCa-related bone metastases. DOTA-L-Lys(SA.Pam)-PSMA-617 was synthesized and radiolabelled in 1 M ammonium acetate buffer pH 5.5 at 95°C. Different amounts of precursor were evaluated. Complex stability was evaluated in three different media. LogD7.4 value was evaluated via the determination of the equilibrium distribution in a PBS/n-octanol mixture. A hydroxyapatite binding assay was used to evaluate the potential binding to bone metastases. In vitro affinity was determined and Ki value was evaluated. To evaluate the binding potential in mice, ex vivo biodistribution studies were carried out in LNCaP tumor-bearing Balb/c mice. [177Lu]Lu-labeling of DOTA-L-Lys(SA.Pam)-PSMA-617 showed quantitative RCY within 10 min and high complex stability over 14 days. The lipophilicity of the labeled compound was similar to the lipophilicity of the reference compound [177Lu]Lu-PSMA-617 and showed an excellent and selective HAP binding of 98.2 ± 0.11%. With a Ki of 42.3 ± 7.7 nM PSMA binding affinity is lower in comparison to [177Lu]Lu-PSMA-617. First ex vivo biodistribution studies with LNCaP tumor-bearing Balb/c mice showed a PSMA dependent tumor accumulation of 4.2 ± 0.7%ID/g and a femur accumulation of 3.4 ± 0.4%ID/g. [177Lu]Lu-DOTA-L-Lys(SA.Pam)-PSMA-617 is a promising compound for therapy of PCa related bone and tissue metastases. Accumulation on the bone metastases via two mechanisms also enables the treatment of bone metastases that show little or no PSMA expression.
Collapse
Affiliation(s)
- Tilmann Grus
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| | - Hanane Lahnif
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| | - Nicole Bausbacher
- Department of Nuclear Medicine, University Medical Center Mainz, Mainz, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Medical Center Mainz, Mainz, Germany
| | - Frank Rösch
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
16
|
Bauer D, Visca H, Weerakkody A, Carter LM, Samuels Z, Kaminsky S, Andreev OA, Reshetnyak YK, Lewis JS. PET Imaging of Acidic Tumor Environment With 89Zr-labeled pHLIP Probes. Front Oncol 2022; 12:882541. [PMID: 35664740 PMCID: PMC9160799 DOI: 10.3389/fonc.2022.882541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Acidosis of the tumor microenvironment is a hallmark of tumor progression and has emerged as an essential biomarker for cancer diagnosis, prognosis, and evaluation of treatment response. A tool for quantitatively visualizing the acidic tumor environment could significantly advance our understanding of the behavior of aggressive tumors, improving patient management and outcomes. 89Zr-labeled pH-low insertion peptides (pHLIP) are a class of radiopharmaceutical imaging probes for the in vivo analysis of acidic tumor microenvironments via positron emission tomography (PET). Their unique structure allows them to sense and target acidic cancer cells. In contrast to traditional molecular imaging agents, pHLIP's mechanism of action is pH-dependent and does not rely on the presence of tumor-specific molecular markers. In this study, one promising acidity-imaging PET probe ([89Zr]Zr-DFO-Cys-Var3) was identified as a candidate for clinical translation.
Collapse
Affiliation(s)
- David Bauer
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hannah Visca
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Anuradha Weerakkody
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Lukas M. Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Zachary Samuels
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Spencer Kaminsky
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Oleg A. Andreev
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Yana K. Reshetnyak
- Department of Physics, University of Rhode Island, Kingston, RI, United States
| | - Jason S. Lewis
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
- Department of Pharmacology Program, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
17
|
Greifenstein L, Engelbogen N, Máthé D, Grus T, Rösch F, Bergmann R. Squaric Acid Bisphposphonates for Theranostics of Bone Metastasis - the Easy DOTA-Zoledronate. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:870910. [PMID: 39354958 PMCID: PMC11440830 DOI: 10.3389/fnume.2022.870910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 10/03/2024]
Abstract
Bisphosponates are an interesting molecular class and in recent years their application has found its way into radiopharmaceutical research and thus into molecular imaging. In addition to great imaging of bone metastases, bisphospnate-based tracers for imaging also have some significant drawbacks. For example, their synthesis is often difficult. Additionally, this can lead to complex and almost impossible purification and quality control. This has limited the production and labeling of suitable molecular and their widespread use to a few facilities. Our squaric acid-based approach provides a way to overcome these problems and makes the synthesis as well as the purification of the compounds much easier. In addition, we were able to demonstrate that labeling with 68Ga is possible under the typical conditions.
Collapse
Affiliation(s)
| | - Nils Engelbogen
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Domokos Máthé
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Tilmann Grus
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ralf Bergmann
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden Rossendorf, Dresden Rossendorf, Germany
| |
Collapse
|
18
|
Fersing C, Masurier N, Rubira L, Deshayes E, Lisowski V. AAZTA-Derived Chelators for the Design of Innovative Radiopharmaceuticals with Theranostic Applications. Pharmaceuticals (Basel) 2022; 15:234. [PMID: 35215346 PMCID: PMC8879111 DOI: 10.3390/ph15020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
With the development of 68Ga and 177Lu radiochemistry, theranostic approaches in modern nuclear medicine enabling patient-centered personalized medicine applications have been growing in the last decade. In conjunction with the search for new relevant molecular targets, the design of innovative chelating agents to easily form stable complexes with various radiometals for theranostic applications has gained evident momentum. Initially conceived for magnetic resonance imaging applications, the chelating agent AAZTA features a mesocyclic seven-membered diazepane ring, conferring some of the properties of both acyclic and macrocyclic chelating agents. Described in the early 2000s, AAZTA and its derivatives exhibited interesting properties once complexed with metals and radiometals, combining a fast kinetic of formation with a slow kinetic of dissociation. Importantly, the extremely short coordination reaction times allowed by AAZTA derivatives were particularly suitable for short half-life radioelements (i.e., 68Ga). In view of these particular characteristics, the scope of this review is to provide a survey on the design, synthesis, and applications in the nuclear medicine/radiopharmacy field of AAZTA-derived chelators.
Collapse
Affiliation(s)
- Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
| | - Nicolas Masurier
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France; (L.R.); (E.D.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, 34298 Montpellier, France
| | - Vincent Lisowski
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (N.M.); (V.L.)
- Department of Pharmacy, Lapeyronie Hospital, CHU Montpellier, 191 Av. du Doyen Gaston Giraud, 34295 Montpellier, France
| |
Collapse
|
19
|
Neels OC, Kopka K, Liolios C, Afshar-Oromieh A. Radiolabeled PSMA Inhibitors. Cancers (Basel) 2021; 13:6255. [PMID: 34944875 PMCID: PMC8699044 DOI: 10.3390/cancers13246255] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022] Open
Abstract
PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review.
Collapse
Affiliation(s)
- Oliver C. Neels
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Christos Liolios
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
- INRASTES, Radiochemistry Laboratory, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Bern University Hospital (Inselspital), Freiburgstrasse 18, 3010 Bern, Switzerland;
| |
Collapse
|
20
|
Lahnif H, Grus T, Pektor S, Greifenstein L, Schreckenberger M, Rösch F. Hybrid Chelator-Based PSMA Radiopharmaceuticals: Translational Approach. Molecules 2021; 26:molecules26216332. [PMID: 34770742 PMCID: PMC8588462 DOI: 10.3390/molecules26216332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
(1) Background: Prostate-specific membrane antigen (PSMA) has been extensively studied in the last decade. It became a promising biological target in the diagnosis and therapy of PSMA-expressing cancer diseases. Although there are several radiolabeled PSMA inhibitors available, the search for new compounds with improved pharmacokinetic properties and simplified synthesis is still ongoing. In this study, we developed PSMA ligands with two different hybrid chelators and a modified linker. Both compounds have displayed a promising pharmacokinetic profile. (2) Methods: DATA5m.SA.KuE and AAZTA5.SA.KuE were synthesized. DATA5m.SA.KuE was labeled with gallium-68 and radiochemical yields of various amounts of precursor at different temperatures were determined. Complex stability in phosphate-buffered saline (PBS) and human serum (HS) was examined at 37 °C. Binding affinity and internalization ratio were determined in in vitro assays using PSMA-positive LNCaP cells. Tumor accumulation and biodistribution were evaluated in vivo and ex vivo using an LNCaP Balb/c nude mouse model. All experiments were conducted with PSMA-11 as reference. (3) Results: DATA5m.SA.KuE was synthesized successfully. AAZTA5.SA.KuE was synthesized and labeled according to the literature. Radiolabeling of DATA5m.SA.KuE with gallium-68 was performed in ammonium acetate buffer (1 M, pH 5.5). High radiochemical yields (>98%) were obtained with 5 nmol at 70 °C, 15 nmol at 50 °C, and 60 nmol (50 µg) at room temperature. [68Ga]Ga-DATA5m.SA.KuE was stable in human serum as well as in PBS after 120 min. PSMA binding affinities of AAZTA5.SA.KuE and DATA5m.SA.KuE were in the nanomolar range. PSMA-specific internalization ratio was comparable to PSMA-11. In vivo and ex vivo studies of [177Lu]Lu-AAZTA5.SA.KuE, [44Sc]Sc-AAZTA5.SA.KuE and [68Ga]Ga-DATA5m.SA.KuE displayed specific accumulation in the tumor along with fast clearance and reduced off-target uptake. (4) Conclusions: Both KuE-conjugates showed promising properties especially in vivo allowing for translational theranostic use.
Collapse
Affiliation(s)
- Hanane Lahnif
- Department of Chemistry—TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (H.L.); (T.G.); (L.G.)
| | - Tilmann Grus
- Department of Chemistry—TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (H.L.); (T.G.); (L.G.)
| | - Stefanie Pektor
- Department of Nuclear Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (S.P.); (M.S.)
| | - Lukas Greifenstein
- Department of Chemistry—TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (H.L.); (T.G.); (L.G.)
- Curanosticum Wiesbaden–Frankfurt, 65191 Wiesbaden, Germany
| | - Mathias Schreckenberger
- Department of Nuclear Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (S.P.); (M.S.)
| | - Frank Rösch
- Department of Chemistry—TRIGA Site, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (H.L.); (T.G.); (L.G.)
- Correspondence: ; Tel.: +49-6131-39-25302
| |
Collapse
|