1
|
Randhawa S, Saini TC, Bathla M, Bhardwaj R, Dhiman R, Acharya A. Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:561-580. [PMID: 40297247 PMCID: PMC12035877 DOI: 10.3762/bjnano.16.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
The amyloid cascade hypothesis posits that amyloid-β oligomers (AβOs) are the most neurotoxic species in Alzheimer's disease (AD). These oligomers, characterized by their high β-sheet content, have been shown to significantly disrupt cell membranes, induce local inflammation, and impair autophagy processes, which collectively contribute to neuronal loss. As such, targeting AβOs specifically, rather than solely focusing on amyloid-β fibrils (AβFs), may offer a more effective therapeutic approach for AD. Recent advances in detection and diagnosis have emphasized the importance of accurately identifying AβOs in patient samples, enhancing the potential for timely intervention. In recent years, nanomaterials (NMs) have emerged as promising agents for addressing AβOs regarding their multivalent interactions, which can more effectively detect and inhibit AβO formation. This review provides an in-depth analysis of various nanochaperones developed to target AβOs, detailing their mechanisms of action and therapeutic potential via focusing on two main strategies, namely, disruption of AβOs through direct interaction and the inhibition of AβO nucleation by binding to intermediates of the oligomerization process. Evidence from in vivo studies indicate that NMs hold promise for ameliorating AD symptoms. Additionally, the review explores the different interaction mechanisms through which nanoparticles exhibit their inhibitory effects on AβOs, providing insights into their potential for clinical application. This comprehensive overview highlights the current advancements in NM-based therapies for AD and outlines future research directions aimed at optimizing these innovative treatments.
Collapse
Affiliation(s)
- Shiwani Randhawa
- Biotechnology Division, C.S.I.R – Institute of Himalayan Bioresource Technology, Palampur, Himachal Prasesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Trilok Chand Saini
- Biotechnology Division, C.S.I.R – Institute of Himalayan Bioresource Technology, Palampur, Himachal Prasesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Manik Bathla
- Biotechnology Division, C.S.I.R – Institute of Himalayan Bioresource Technology, Palampur, Himachal Prasesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rahul Bhardwaj
- Biotechnology Division, C.S.I.R – Institute of Himalayan Bioresource Technology, Palampur, Himachal Prasesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rubina Dhiman
- Biotechnology Division, C.S.I.R – Institute of Himalayan Bioresource Technology, Palampur, Himachal Prasesh, 176061, India
| | - Amitabha Acharya
- Biotechnology Division, C.S.I.R – Institute of Himalayan Bioresource Technology, Palampur, Himachal Prasesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
2
|
Zhou S, Zhang M, Wang J, Chen X, Xu Z, Yan Y, Li Y. Nanofibers in Glioma Therapy: Advances, Applications, and Overcoming Challenges. Int J Nanomedicine 2025; 20:4677-4703. [PMID: 40255668 PMCID: PMC12008729 DOI: 10.2147/ijn.s510363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
Despite relentless effort to study glioma treatment, the prognosis for glioma patients remains poor. The main obstacles include the high rate of recurrence and the difficulty of passing the blood-brain barrier (BBB) for therapeutic drugs. Nanomaterials owing to their special physicochemical properties have been used in a wide range of fields thus far. The nanodrug delivery system (NDDS) with the ability of crossing the BBB, targeting glioma site, maintaining drug stability and controlling drug release, has significantly enhanced the anti-tumor therapeutic effect, improving the prognosis of glioma patients. Aligned nanofibers (NFs) are ideal materials to establish in vitro models of glioma microenvironment (GME), enabling the exploration of the mechanism of glioma cell migration and invasion to discover novel therapeutic targets. Moreover, NFs are now widely used in glioma applications such as radiotherapy, phototherapy, thermotherapy and immunotherapy. Despite the absolute dominance of NFs in anti-glioma applications, there are still some problems such as the further optimization of NDDS, and the impact of interactions between nanofibers and the protein corona (PC) on glioma therapy. This paper will shed light on the latest glioma applications of NFs in drug delivery systems and mimicking the tumor microenvironment (TME), and discuss how to further optimize the NDDS and eliminate or utilize the nanomedicine-PC interactions.
Collapse
Affiliation(s)
- Shangjun Zhou
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Mingcheng Zhang
- Center of Endoscopy, The Second Affiliated Hospital of Shandong First Medical University Tai’an, Shandong, People’s Republic of China
| | - Jiayu Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
3
|
Patle RY, Dongre RS. Recent advances in PAMAM mediated nano-vehicles for targeted drug delivery in cancer therapy. J Drug Target 2025; 33:437-457. [PMID: 39530737 DOI: 10.1080/1061186x.2024.2428966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
3-D multi-faceted, nano-globular PAMAM dendritic skeleton is a highly significant polymer that offers applications in biomedical, industrial, environmental and agricultural fields. This is mainly due to its enhanced properties, including adjustable surface functionalities, biocompatibility, non-toxicity, high uniformity and reduced cytotoxicity, as well as its numerous internal cavities. This trait inspires further exploration and advancements in tailoring approaches. The implementation of deliberate strategic modifications in the morphological characteristics of PAMAM is crucial through chemical and biological interventions, in addition to its therapeutic advancements. Thus, the production of peripheral groups remains a prominent and highly advanced technique in molecular fabrication, aimed at boosting the potential of PAMAM conjugates. Currently, there exist numerous dendritic-hybrid materials, despite the widespread use of PAMAM-conjugated frameworks as drug delivery systems, which are well regarded for their efficacy in enhancing potency through the incorporation of surface functions. This paper provides a comprehensive review of recent progress in the design and assembly of various components of PAMAM conjugates, focusing on their unique formulations. The review encompasses synthetic methodologies, a thorough evaluation of their applicability, and an analysis of their potential functions in the context of Drug Delivery Systems (DDS) in the current period.
Collapse
Affiliation(s)
- Ramkrishna Y Patle
- PGTD Chemistry, RTM Nagpur University, Nagpur, India
- Mahatma Gandhi College of Science, Chandrapur, India
| | | |
Collapse
|
4
|
Liu J, Wang T, Dong J, Lu Y. The blood-brain barriers: novel nanocarriers for central nervous system diseases. J Nanobiotechnology 2025; 23:146. [PMID: 40011926 DOI: 10.1186/s12951-025-03247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
The central nervous system (CNS) diseases are major contributors to death and disability worldwide. However, the blood-brain barrier (BBB) often prevents drugs intended for CNS diseases from effectively crossing into the brain parenchyma to deliver their therapeutic effects. The blood-brain barrier is a semi-permeable barrier with high selectivity. The BBB primarily manages the transport of substances between the blood and the CNS. To enhance drug delivery for CNS disease treatment, various brain-based drug delivery strategies overcoming the BBB have been developed. Among them, nanoparticles (NPs) have been emphasized due to their multiple excellent properties. This review starts with an overview of the BBB's anatomical structure and physiological roles, and then explores the mechanisms, both endogenous and exogenous, that facilitate the NP passage across the BBB. The text also delves into how nanoparticles' shape, charge, size, and surface ligands affect their ability to cross the BBB and offers an overview of different nanoparticle classifications. This review concludes with an examination of the current challenges in utilizing nanomaterials for brain drug delivery and discusses corresponding directions for solutions. This review aims to propose innovative diagnostic and therapeutic approaches for CNS diseases and enhance drug design for more effective delivery across the BBB.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Wang
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Dong
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan Lu
- State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating Neurotoxicity and Safety Assessment of Nanocarriers for Brain Delivery: Strategies and Insights. Acta Biomater 2024; 189:25-56. [PMID: 39307261 DOI: 10.1016/j.actbio.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Nanomedicine, an area that uses nanomaterials for theragnostic purposes, is advancing rapidly, particularly in the detection and treatment of neurodegenerative diseases. The design of nanocarriers can be optimized to enhance drug bioavailability and targeting to specific organs, improving therapeutic outcomes. However, clinical translation hinges on biocompatibility and safety. Nanocarriers can cross the blood-brain barrier (BBB), potentially causing neurotoxic effects through mechanisms such as oxidative stress, DNA damage, and neuroinflammation. Concerns about their accumulation and persistence in the brain make it imperative to carry out a nanotoxicological risk assessment. Generally, this involves identifying exposure sources and routes, characterizing physicochemical properties, and conducting cytotoxicity assays both in vitro and in vivo. The lack of a specialized regulatory framework creates substantial gaps, making it challenging to translate findings across development stages. Additionally, there is a pressing need for innovative testing methods due to constraints on animal use and the demand for high-throughput screening. This review examines the mechanisms of nanocarrier-induced neurotoxicity and the challenges in risk assessment, highlighting the impact of physicochemical properties and the advantages and limitations of current neurotoxicity evaluation models. Future perspectives are also discussed. Additional guidance is crucial to improve the safety of nanomaterials and reduce associated uncertainty. STATEMENT OF SIGNIFICANCE: Nanocarriers show tremendous potential for theragnostic purposes in neurological diseases, enhancing drug targeting to the brain, and improving biodistribution and pharmacokinetics. However, their neurotoxicity is still a major field to be explored, with only 5% of nanotechnology-related publications addressing this matter. This review focuses on the issue of neurotoxicity and safety assessment of nanocarriers for brain delivery. Neurotoxicity-relevant exposure sources, routes, and molecular mechanisms, along with the impact of the physicochemical properties of nanomaterials, are comprehensively described. Moreover, the different experimental models used for neurotoxicity evaluation are explored at length, including their main advantages and limitations. To conclude, we discuss current challenges and future perspectives for a better understanding of risk assessment of nanocarriers for neurobiomedical applications.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla M Lopes
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| | - Maria Helena Amaral
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C Costa
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Yang M, Ding C, Zhao T, Song G, Liu T, Li Z, Zhang Y. Nanoparticle-Based Therapies for Neurotropic Viral Infections: Mechanisms, Challenges, and Future Prospects. Rev Med Virol 2024; 34:e2575. [PMID: 39160646 DOI: 10.1002/rmv.2575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Neurotropic viral infections pose a significant challenge due to their ability to target the central nervous system and cause severe neurological complications. Traditional antiviral therapies face limitations in effectively treating these infections, primarily due to the blood-brain barrier, which restricts the delivery of therapeutic agents to the central nervous system. Nanoparticle-based therapies have emerged as a promising approach to overcome these challenges. Nanoparticles offer unique properties that facilitate drug delivery across biological barriers, such as the blood-brain barrier, and can be engineered to possess antiviral activities.
Collapse
Affiliation(s)
- Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ge Song
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Tingting Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zeqi Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
7
|
Sierri G, Patrucco M, Ferrario D, Renda A, Comi S, Ciprandi M, Fontanini V, Sica FS, Sesana S, Costa Verdugo M, Kravicz M, Salassa L, Busnelli M, Re F. Targeting specific brain districts for advanced nanotherapies: A review from the perspective of precision nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1991. [PMID: 39251878 PMCID: PMC11670049 DOI: 10.1002/wnan.1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Numerous studies are focused on nanoparticle penetration into the brain functionalizing them with ligands useful to cross the blood-brain barrier. However, cell targeting is also crucial, given that cerebral pathologies frequently affect specific brain cells or areas. Functionalize nanoparticles with the most appropriate targeting elements, tailor their physical parameters, and consider the brain's complex anatomy are essential aspects for precise therapy and diagnosis. In this review, we addressed the state of the art on targeted nanoparticles for drug delivery in diseased brain regions, outlining progress, limitations, and ongoing challenges. We also provide a summary and overview of general design principles that can be applied to nanotherapies, considering the areas and cell types affected by the most common brain disorders. We then emphasize lingering uncertainties that hinder the translational possibilities of nanotherapies for clinical use. Finally, we offer suggestions for continuing preclinical investigations to enhance the overall effectiveness of precision nanomedicine in addressing neurological conditions. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Giulia Sierri
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Michela Patrucco
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano‐Bicocca, Italy
| | - Davide Ferrario
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Antonio Renda
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Susanna Comi
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Matilde Ciprandi
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | | | | | - Silvia Sesana
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | | | - Marcelo Kravicz
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Luca Salassa
- Donostia International Physics Center (DIPC)DonostiaEuskadiSpain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika FakultateaEuskal Herriko Unibertsitatea UPV/EHUDonostiaSpain
- Basque Foundation for ScienceIkerbasqueBilbaoSpain
| | - Marta Busnelli
- Institute of Neuroscience, National Research CouncilItaly
| | - Francesca Re
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| |
Collapse
|
8
|
Hameedat F, Mendes BB, Conniot J, Di Filippo LD, Chorilli M, Schroeder A, Conde J, Sousa F. Engineering nanomaterials for glioblastoma nanovaccination. NATURE REVIEWS MATERIALS 2024; 9:628-642. [DOI: 10.1038/s41578-024-00684-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 01/03/2025]
|
9
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
10
|
Kuo YC, Yen MH, De S, Rajesh R, Tai CK. Optimized lipopolymers with curcumin to enhance AZD5582 and GDC0152 activity and downregulate inhibitors of apoptosis proteins in glioblastoma multiforme. BIOMATERIALS ADVANCES 2023; 154:213639. [PMID: 37793310 DOI: 10.1016/j.bioadv.2023.213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Inhibition to glioblastoma multiforme (GBM) propagation is a critical challenge in clinical practice because binding of inhibitors of apoptosis proteins (IAPs) to caspase prevents cancer cells from death. In this study, folic acid (FA), lactoferrin (Lf) and rabies virus glycoprotein (RVG) were grafted on lipopolymers (LPs) composed of poly(ε-caprolactone) and Compritol 888 ATO to encapsulate AZD5582 (AZD), GDC0152 (GDC) and curcumin (CURC). The standard deviations of initial particle diameter and particle diameter after storage for 30 days were involved in LP composition optimization. The functionalized LPs were used to permeate the blood-brain barrier (BBB) and constrain IAP quantity in GBM cells. Experimental results revealed that an increase in Span 20 (emulsifier) concentration enlarged the size of LPs, and enhanced the entrapment and releasing efficiency of AZD, DGC and CURC. 1H nuclear magnetic resonance spectra showed that the hydrogen bonds between the LPs and drugs supported the sustained release of AZD, DGC and CURC from the LPs. The LPs modified with the three targeting biomolecules facilitated the penetration of AZD, GDC and CURC across the BBB, and could recognize U87MG cells and human brain cancer stem cells. Immunofluorescence staining, flow cytometry and western blot demonstrated that CURC-incorporated LPs enhanced AZD and GDC activity in suppressing cellular IAP 1 (cIAP1) and X-linked IAP (XIAP) levels, and raising caspase-3 level in GBM. Surface FA, Lf and RVG also promoted the ability of the drug-loaded LPs to avoid carcinoma growth. The current FA-, Lf- and RVG-crosslinked LPs carrying AZD, DGC and CURC can be promising in hindering IAP expressions for GBM management.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
| | - Meng-Hui Yen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Sourav De
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Chien-Kuo Tai
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| |
Collapse
|
11
|
Shi S, Ren H, Xie Y, Yu M, Chen Y, Yang L. Engineering advanced nanomedicines against central nervous system diseases. MATERIALS TODAY 2023; 69:355-392. [DOI: 10.1016/j.mattod.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Research Status and Prospect of Non-Viral Vectors Based on siRNA: A Review. Int J Mol Sci 2023; 24:ijms24043375. [PMID: 36834783 PMCID: PMC9962405 DOI: 10.3390/ijms24043375] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Gene therapy has attracted much attention because of its unique mechanism of action, non-toxicity, and good tolerance, which can kill cancer cells without damaging healthy tissues. siRNA-based gene therapy can downregulate, enhance, or correct gene expression by introducing some nucleic acid into patient tissues. Routine treatment of hemophilia requires frequent intravenous injections of missing clotting protein. The high cost of combined therapy causes most patients to lack the best treatment resources. siRNA therapy has the potential of lasting treatment and even curing diseases. Compared with traditional surgery and chemotherapy, siRNA has fewer side effects and less damage to normal cells. The available therapies for degenerative diseases can only alleviate the symptoms of patients, while siRNA therapy drugs can upregulate gene expression, modify epigenetic changes, and stop the disease. In addition, siRNA also plays an important role in cardiovascular diseases, gastrointestinal diseases, and hepatitis B. However, free siRNA is easily degraded by nuclease and has a short half-life in the blood. Research has found that siRNA can be delivered to specific cells through appropriate vector selection and design to improve the therapeutic effect. The application of viral vectors is limited because of their high immunogenicity and low capacity, while non-viral vectors are widely used because of their low immunogenicity, low production cost, and high safety. This paper reviews the common non-viral vectors in recent years and introduces their advantages and disadvantages, as well as the latest application examples.
Collapse
|
13
|
Sharma S, Dang S. Nanocarrier-Based Drug Delivery to Brain: Interventions of Surface Modification. Curr Neuropharmacol 2023; 21:517-535. [PMID: 35794771 PMCID: PMC10207924 DOI: 10.2174/1570159x20666220706121412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022] Open
Abstract
Brain disorders are a prevalent and rapidly growing problem in the medical field as they adversely affect the quality of life of a human. With an increase in life expectancy, it has been reported that diseases like Alzheimer's, Parkinson's, stroke and brain tumors, along with neuropsychological disorders, are also being reported at an alarmingly high rate. Despite various therapeutic methods for treating brain disorders, drug delivery to the brain has been challenging because of a very complex Blood Brain Barrier, which precludes most drugs from entering the brain in effective concentrations. Nano-carrier-based drug delivery systems have been reported widely by researchers to overcome this barrier layer. These systems due to their small size, offer numerous advantages; however, their short residence time in the body owing to opsonization hinders their success in vivo. This review article focuses on the various aspects of modifying the surfaces of these nano-carriers with polymers, surfactants, protein, antibodies, cell-penetrating peptides, integrin binding peptides and glycoproteins such as transferrin & lactoferrin leading to enhanced residence time, desirable characteristics such as the ability to cross the blood-brain barrier (BBB), increased bioavailability in regions of the brain and targeted drug delivery.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
14
|
Josowitz AD, Bindra RS, Saltzman WM. Polymer nanocarriers for targeted local delivery of agents in treating brain tumors. NANOTECHNOLOGY 2022; 34:10.1088/1361-6528/ac9683. [PMID: 36179653 PMCID: PMC9940943 DOI: 10.1088/1361-6528/ac9683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Glioblastoma (GBM), the deadliest brain cancer, presents a multitude of challenges to the development of new therapies. The standard of care has only changed marginally in the past 17 years, and few new chemotherapies have emerged to supplant or effectively combine with temozolomide. Concurrently, new technologies and techniques are being investigated to overcome the pharmacokinetic challenges associated with brain delivery, such as the blood brain barrier (BBB), tissue penetration, diffusion, and clearance in order to allow for potent agents to successful engage in tumor killing. Alternative delivery modalities such as focused ultrasound and convection enhanced delivery allow for the local disruption of the BBB, and the latter in particular has shown promise in achieving broad distribution of agents in the brain. Furthermore, the development of polymeric nanocarriers to encapsulate a variety of cargo, including small molecules, proteins, and nucleic acids, have allowed for formulations that protect and control the release of said cargo to extend its half-life. The combination of local delivery and nanocarriers presents an exciting opportunity to address the limitations of current chemotherapies for GBM toward the goal of improving safety and efficacy of treatment. However, much work remains to establish standard criteria for selection and implementation of these modalities before they can be widely implemented in the clinic. Ultimately, engineering principles and nanotechnology have opened the door to a new wave of research that may soon advance the stagnant state of GBM treatment development.
Collapse
Affiliation(s)
- Alexander D Josowitz
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, United States of America
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, United States of America
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, United States of America
- Department of Dermatology, Yale University, New Haven, CT, United States of America
| |
Collapse
|
15
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|