1
|
Montgomery MT, Ortigoza M, Loomis C, Weiser JN. Neuraminidase-mediated enhancement of Streptococcus pneumoniae colonization is associated with altered mucus characteristics and distribution. mBio 2025; 16:e0257924. [PMID: 39660923 PMCID: PMC11708046 DOI: 10.1128/mbio.02579-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Upon entry into the upper respiratory tract (URT), Streptococcus pneumoniae (Spn) upregulates neuraminidases (NA) that cleave sialic acid (SA) from host glycans. Because sialylation is thought to contribute to the physical properties that determine mucus function, we posited that Spn directly alters host mucus through NA activity. By directly imaging the colonized URT, we demonstrated NA-mediated alterations to the characteristics and distribution of mucus along the respiratory epithelium, where colonizing bacteria are found. Mucus exposed to NA showed increased localization within goblet cells and lining the glycocalyx. By contrast, NA-naïve mucus was more likely to be observed sloughing away from the epithelial surface. We also visualized Spn in the URT and observed that NA promoted efficient bacterial localization to the firm mucus layer overlying the glycocalyx, whereas NA-deficient Spn was associated more with loose mucus. By facilitating tighter association with the glycocalyx, NA promoted increased Spn colonization density. The magnitude of the NA-mediated effect on colonization was widened during late colonization by increased evasion of host-mediated clearance mechanisms. Thus, Spn-encoded NAs directly modify the host environment by desialylating mucus, which allows close interaction with mucus at the epithelium, and this is associated with enhanced bacterial colonization. IMPORTANCE Although severe illness and death caused by Spn result from secondary invasive diseases including pneumonia, sepsis, and meningitis, stable colonization of the upper respiratory tract (URT) is a prerequisite to invasive disease. Therefore, understanding host-Spn dynamics during asymptomatic colonization of the URT is warranted with respect to the pathogenesis of Spn disease. In this study, we found that Spn NA activity directly alters mucus characteristics that result in increased density and duration of URT colonization. Therefore, targeting Spn NA activity during URT colonization may be a viable strategy to mitigate Spn infection.
Collapse
Affiliation(s)
- Matthew T. Montgomery
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Mila Ortigoza
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, USA
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
3
|
Reintjens NR, Yakovlieva L, Marinus N, Hekelaar J, Nuti F, Papini AM, Witte MD, Minnaard AJ, Walvoort M. Palladium‐Catalyzed Oxidation of Glucose in Glycopeptides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Niels R.M. Reintjens
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Liubov Yakovlieva
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Nittert Marinus
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Johan Hekelaar
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Francesca Nuti
- University of Florence: Universita degli Studi di Firenze Department of Chemistry “Ugo Schiff” ITALY
| | - Anna Maria Papini
- University of Florence: Universita degli Studi di Firenze Department of Chemistry “Ugo Schiff” ITALY
| | - Martin D. Witte
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Adriaan J. Minnaard
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Marthe Walvoort
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry Nijenborgh 7 9747 AG Groningen NETHERLANDS
| |
Collapse
|
4
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
5
|
Ji Y, Sasmal A, Li W, Oh L, Srivastava S, Hargett AA, Wasik BR, Yu H, Diaz S, Choudhury B, Parrish CR, Freedberg DI, Wang LP, Varki A, Chen X. Reversible O-Acetyl Migration within the Sialic Acid Side Chain and Its Influence on Protein Recognition. ACS Chem Biol 2021; 16:1951-1960. [PMID: 33769035 DOI: 10.1021/acschembio.0c00998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
O-Acetylation is a common naturally occurring modification of carbohydrates and is especially widespread in sialic acids, a family of nine-carbon acidic monosaccharides. O-Acetyl migration within the exocyclic glycerol-like side chain of mono-O-acetylated sialic acid reported previously was from the C7- to C9-hydroxyl group with or without an 8-O-acetyl intermediate, which resulted in an equilibrium that favors the formation of the 9-O-acetyl sialic acid. Herein, we provide direct experimental evidence demonstrating that O-acetyl migration is bidirectional, and the rate of equilibration is influenced predominantly by the pH of the sample. While the O-acetyl group on sialic acids and sialoglycans is stable under mildly acidic conditions (pH < 5, the rate of O-acetyl migration is extremely low), reversible O-acetyl migration is observed readily at neutral pH and becomes more significant when the pH increases to slightly basic. Sialoglycan microarray studies showed that esterase-inactivated porcine torovirus hemagglutinin-esterase bound strongly to sialoglycans containing a more stable 9-N-acetylated sialic acid analog, but these compounds were less resistant to periodate oxidation treatment compared to their 9-O-acetyl counterparts. Together with prior studies, the results support the possible influence of sialic acid O-acetylation and O-acetyl migration to host-microbe interactions and potential application of the more stable synthetic N-acetyl mimics.
Collapse
Affiliation(s)
- Yang Ji
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Aniruddha Sasmal
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Wanqing Li
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Lisa Oh
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Saurabh Srivastava
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Audra A. Hargett
- Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Brian R. Wasik
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Sandra Diaz
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Biswa Choudhury
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Colin R. Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Darón I. Freedberg
- Laboratory of Bacterial Polysaccharides, Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
6
|
Huxley KE, Willems LI. Chemical reporters to study mammalian O-glycosylation. Biochem Soc Trans 2021; 49:903-913. [PMID: 33860782 PMCID: PMC8106504 DOI: 10.1042/bst20200839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Glycans play essential roles in a range of cellular processes and have been shown to contribute to various pathologies. The diversity and dynamic nature of glycan structures and the complexities of glycan biosynthetic pathways make it challenging to study the roles of specific glycans in normal cellular function and disease. Chemical reporters have emerged as powerful tools to characterise glycan structures and monitor dynamic changes in glycan levels in a native context. A variety of tags can be introduced onto specific monosaccharides via the chemical modification of endogenous glycan structures or by metabolic or enzymatic incorporation of unnatural monosaccharides into cellular glycans. These chemical reporter strategies offer unique opportunities to study and manipulate glycan functions in living cells or whole organisms. In this review, we discuss recent advances in metabolic oligosaccharide engineering and chemoenzymatic glycan labelling, focusing on their application to the study of mammalian O-linked glycans. We describe current barriers to achieving glycan labelling specificity and highlight innovations that have started to pave the way to overcome these challenges.
Collapse
Affiliation(s)
- Kathryn E. Huxley
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| |
Collapse
|
7
|
Sender V, Hentrich K, Henriques-Normark B. Virus-Induced Changes of the Respiratory Tract Environment Promote Secondary Infections With Streptococcus pneumoniae. Front Cell Infect Microbiol 2021; 11:643326. [PMID: 33828999 PMCID: PMC8019817 DOI: 10.3389/fcimb.2021.643326] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Secondary bacterial infections enhance the disease burden of influenza infections substantially. Streptococcus pneumoniae (the pneumococcus) plays a major role in the synergism between bacterial and viral pathogens, which is based on complex interactions between the pathogen and the host immune response. Here, we discuss mechanisms that drive the pathogenesis of a secondary pneumococcal infection after an influenza infection with a focus on how pneumococci senses and adapts to the influenza-modified environment. We briefly summarize what is known regarding secondary bacterial infection in relation to COVID-19 and highlight the need to improve our current strategies to prevent and treat viral bacterial coinfections.
Collapse
Affiliation(s)
- Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karina Hentrich
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
8
|
Li Y, Peng C, Zhao D, Liu L, Guo B, Shi M, Xiao Y, Yu Z, Yu Y, Sun B, Wang W, Lin J, Yang X, Shao S, Zhang X. Outer membrane protein A inhibits the degradation of caspase-1 to regulate NLRP3 inflammasome activation and exacerbate the Acinetobacter baumannii pulmonary inflammation. Microb Pathog 2021; 153:104788. [PMID: 33571624 DOI: 10.1016/j.micpath.2021.104788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/29/2020] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
Acinetobacter baumannii (A. baumannii), one of the major pathogens that causes severe nosocomial infections, is characterised by a high prevalence of drug resistance. It has been reported that A. baumannii triggers the NOD-like receptor 3 (NLRP3) inflammasome, but the role of its virulence-related outer membrane protein A (ompA) remains unclear. Therefore, this study aimed to explore the effects of ompA on the NLRP3 inflammasome and its underlying molecular mechanisms. Results showed that ompA enhanced inflammatory damage, which was reduced as a result of knockout of the ompA gene. Additionally, ompA-stimulated expression of NLRP3 inflammasome was significantly blocked by silencing caspase-1, but activation of NLRP3 inflammasome was not altered after silencing ASC; this indicated that ompA was dependent on the caspase-1 pathway to activate the inflammatory response. Simultaneously, the wild-type (WT) strains triggered NLRP3 inflammasome after inhibition of caspase-1 degradation by proteasome inhibitor MG-132, aggravating tissue damage. These findings indicated that ompA may be dependent on the caspase-1 pathway to enhance inflammation and exacerbate tissue damage. Taken together, these results confirmed a novel capsase-1-modulated mechanism underpinning ompA activity, which further reveals the NLRP3 inflammasome pathway as a potential immunomodulatory target against A. baumannii infections.
Collapse
Affiliation(s)
- Yumei Li
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Chunhong Peng
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Dan Zhao
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Laibing Liu
- Department of Neurosurgery, Affiliated Baiyun Hospital, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Mingjun Shi
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Ying Xiao
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Zijiang Yu
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Yan Yu
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Baofei Sun
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Wenjuan Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jieru Lin
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Xiaoyan Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Songjun Shao
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China
| | - Xiangyan Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University/ Department of Respiratory and Critical Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
9
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
10
|
Hľasová Z, Košík I, Ondrejovič M, Miertuš S, Katrlík J. Methods and Current Trends in Determination of Neuraminidase Activity and Evaluation of Neuraminidase Inhibitors. Crit Rev Anal Chem 2018; 49:350-367. [DOI: 10.1080/10408347.2018.1531692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zuzana Hľasová
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
| | - Ivan Košík
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, Maryland, USA
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
- International Centre for Applied Research and Sustainable Technology, Bratislava, Slovakia
| | - Jaroslav Katrlík
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
11
|
Whited J, Zhang X, Nie H, Wang D, Li Y, Sun XL. Recent Chemical Biology Approaches for Profiling Cell Surface Sialylation Status. ACS Chem Biol 2018; 13:2364-2374. [PMID: 30053371 DOI: 10.1021/acschembio.8b00456] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sialic acids (SAs) often exist as the terminal sugars of glycans of either glycoproteins or glycolipids on the cell surface and thus are directly involved in biological processes, such as cell-cell, cell-ligand, and cell-pathogen interactions. Cell surface SA expression levels and their linkages are collectively termed cell surface sialylation status, which represent varying cellular states and contribute to the overall functionality of a cell. Accordingly, systemic and specific profiling of the cell surface sialyation status is critical in deciphering the structures and functions of cell surface glycoconjugates and the molecular mechanisms of their underlying biological processes. In recent decades, several advanced chemical biology approaches have been developed to profile the cell surface sialyation status of both in vitro and in vivo samples, including metabolic labeling, direct chemical modification, and boronic acid coupling approaches. Various investigative technologies have also been explored for their unique competence, including fluorescent imaging, flow cytometry, Raman imaging, magnetic resonance imaging (MRI), and matrix-assisted laser desorption ionization imaging mass spectrometry. In particular, the sialylation status of a specific glycoprotein on the cell surface has been investigated. This review highlights the recent advancements in chemical biology approaches for profiling cell surface sialyation status. It is expected that this review will provide researchers different choices for both biological and biomedical research and applications.
Collapse
Affiliation(s)
- Joshua Whited
- Department of Chemistry, Department of Chemical and Biomedical Engineering, and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Xiaoqing Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang 5001, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang 5001, China
| | - Dan Wang
- Department of Chemistry, Department of Chemical and Biomedical Engineering, and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang 5001, China
| | - Xue-Long Sun
- Department of Chemistry, Department of Chemical and Biomedical Engineering, and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| |
Collapse
|
12
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
13
|
Hui J, Bao L, Li S, Zhang Y, Feng Y, Ding L, Ju H. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingjing Hui
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| |
Collapse
|
14
|
Hui J, Bao L, Li S, Zhang Y, Feng Y, Ding L, Ju H. Localized Chemical Remodeling for Live Cell Imaging of Protein-Specific Glycoform. Angew Chem Int Ed Engl 2017; 56:8139-8143. [PMID: 28557363 DOI: 10.1002/anie.201703406] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Indexed: 11/07/2022]
Abstract
Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability.
Collapse
Affiliation(s)
- Jingjing Hui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Siqiao Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Yi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Yimei Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
15
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
16
|
Nischan N, Kohler JJ. Advances in cell surface glycoengineering reveal biological function. Glycobiology 2016; 26:789-96. [PMID: 27066802 DOI: 10.1093/glycob/cww045] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/04/2016] [Indexed: 12/31/2022] Open
Abstract
Cell surface glycans are critical mediators of cell-cell, cell-ligand, and cell-pathogen interactions. By controlling the set of glycans displayed on the surface of a cell, it is possible to gain insight into the biological functions of glycans. Moreover, control of glycan expression can be used to direct cellular behavior. While genetic approaches to manipulate glycosyltransferase gene expression are available, their utility in glycan engineering has limitations due to the combinatorial nature of glycan biosynthesis and the functional redundancy of glycosyltransferase genes. Biochemical and chemical strategies offer valuable complements to these genetic approaches, notably by enabling introduction of unnatural functionalities, such as fluorophores, into cell surface glycans. Here, we describe some of the most recent developments in glycoengineering of cell surfaces, with an emphasis on strategies that employ novel chemical reagents. We highlight key examples of how these advances in cell surface glycan engineering enable study of cell surface glycans and their function. Exciting new technologies include synthetic lipid-glycans, new chemical reporters for metabolic oligosaccharide engineering to allow tandem and in vivo labeling of glycans, improved chemical and enzymatic methods for glycoproteomics, and metabolic glycosyltransferase inhibitors. Many chemical and biochemical reagents for glycan engineering are commercially available, facilitating their adoption by the biological community.
Collapse
Affiliation(s)
- Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|