1
|
Zheng M, Kong L, Gao J. Boron enabled bioconjugation chemistries. Chem Soc Rev 2024; 53:11888-11907. [PMID: 39479937 PMCID: PMC11525960 DOI: 10.1039/d4cs00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Indexed: 11/02/2024]
Abstract
Novel bioconjugation reactions have been heavily pursued for the past two decades. A myriad of conjugation reactions have been developed for labeling molecules of interest in their native context as well as for constructing multifunctional molecular entities or stimuli-responsive materials. A growing cluster of bioconjugation reactions were realized by tapping into the unique properties of boron. As a rare element in human biology, boronic acids and esters exhibit remarkable biocompatibility. A number of organoboron reagents have been evaluated for bioconjugation, targeting the reactivity of either native biomolecules or those incorporating bioorthogonal functional groups. Owing to the dynamic nature of B-O and B-N bond formation, a significant portion of the boron-enabled bioconjugations exhibit rapid reversibility and accordingly have found applications in the development of reversible covalent inhibitors. On the other hand, stable bioconjugations have been developed that display fast kinetics and significantly expand the repertoire of bioorthogonal chemistry. This contribution presents a summary and comparative analysis of the recently developed boron-mediated bioconjugations. Importantly, this article seeks to provide an in-depth discussion of the thermodynamic and kinetic profiles of these boron-enabled bioconjugations, which reveals structure-reactivity relationships and provides guidelines for bioapplications.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Lingchao Kong
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
2
|
Pradhan S, Sarker S, Thilagar P. Azobenzene-Tagged Photopeptides Exhibiting Excellent Selectivity and Light-Induced Cytotoxicity in MCF-7 Cells over HeLa and A549. J Med Chem 2024; 67:18794-18806. [PMID: 39487790 DOI: 10.1021/acs.jmedchem.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The precise regulation of proteasome activity has become a focal point in current research, particularly its implications in cancer treatment. Bortezomib is used for treating multiple myeloma and is found to be ineffective against solid tumors. A spatiotemporal control over the proteasome is one of the solutions to resolve these issues using external stimuli, such as light. Thus, we designed and synthesized azobenzene-containing tripeptide vinyl sulfones 1, 2, 3, and 4, as the azobenzene moiety can impart E↔Z isomerism upon exposure to UV light. Further, the hydrophobicity of these peptides was fine-tuned by systematically varying the size of hydrophobic amino acids at the P1, P2, and P3 positions. The light-induced Z isomers of these photopeptides showed excellent cellular potency in HeLa, MCF-7, and A549 cell lines. Photopeptide 4 with valine at the proximal position, phenylalanine at P2, and leucine at the P1 positions exhibited 19.3- and 6.6-fold cellular potency in MCF-7 and A549 cells, respectively.
Collapse
Affiliation(s)
- Sambit Pradhan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, INDIA
| | - Surajit Sarker
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, INDIA
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, INDIA
| |
Collapse
|
3
|
Zielke FM, Rutjes FPJT. Recent Advances in Bioorthogonal Ligation and Bioconjugation. Top Curr Chem (Cham) 2023; 381:35. [PMID: 37991570 PMCID: PMC10665463 DOI: 10.1007/s41061-023-00445-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
The desire to create biomolecules modified with functionalities that go beyond nature's toolbox has resulted in the development of biocompatible and selective methodologies and reagents, each with different scope and limitations. In this overview, we highlight recent advances in the field of bioconjugation from 2016 to 2023. First, (metal-mediated) protein functionalization by exploiting the specific reactivity of amino acids will be discussed, followed by novel bioorthogonal reagents for bioconjugation of modified biomolecules.
Collapse
Affiliation(s)
- Florian M Zielke
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
van Hest J, Zheng G, Rotello VM. Bioorthogonal Chemistry and Bioconjugation: Synergistic Tools for Biology and Biomedicine. Bioconjug Chem 2021; 32:1409-1410. [PMID: 34323066 DOI: 10.1021/acs.bioconjchem.1c00355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Verhelst SHL, Bonger KM, Willems LI. Bioorthogonal Reactions in Activity-Based Protein Profiling. Molecules 2020; 25:E5994. [PMID: 33352858 PMCID: PMC7765892 DOI: 10.3390/molecules25245994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a powerful technique to label and detect active enzyme species within cell lysates, cells, or whole animals. In the last two decades, a wide variety of applications and experimental read-out techniques have been pursued in order to increase our understanding of physiological and pathological processes, to identify novel drug targets, to evaluate selectivity of drugs, and to image probe targets in cells. Bioorthogonal chemistry has substantially contributed to the field of ABPP, as it allows the introduction of tags, which may be bulky or have unfavorable physicochemical properties, at a late stage in the experiment. In this review, we give an overview of the bioorthogonal reactions that have been implemented in ABPP, provide examples of applications of bioorthogonal chemistry in ABPP, and share some thoughts on future directions.
Collapse
Affiliation(s)
- Steven H. L. Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Herestr. 49, Box 802, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Kimberly M. Bonger
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
6
|
Wang Y, Zhang C, Wu H, Feng P. Activation and Delivery of Tetrazine-Responsive Bioorthogonal Prodrugs. Molecules 2020; 25:E5640. [PMID: 33266075 PMCID: PMC7731009 DOI: 10.3390/molecules25235640] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 02/05/2023] Open
Abstract
Prodrugs, which remain inert until they are activated under appropriate conditions at the target site, have emerged as an attractive alternative to drugs that lack selectivity and show off-target effects. Prodrugs have traditionally been activated by enzymes, pH or other trigger factors associated with the disease. In recent years, bioorthogonal chemistry has allowed the creation of prodrugs that can be chemically activated with spatio-temporal precision. In particular, tetrazine-responsive bioorthogonal reactions can rapidly activate prodrugs with excellent biocompatibility. This review summarized the recent development of tetrazine bioorthogonal cleavage reaction and great promise for prodrug systems.
Collapse
Affiliation(s)
- Yayue Wang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Chang Zhang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Ping Feng
- Institute of Clinical Trials, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
8
|
Nguyen SS, Prescher JA. Developing bioorthogonal probes to span a spectrum of reactivities. Nat Rev Chem 2020; 4:476-489. [PMID: 34291176 DOI: 10.1038/s41570-020-0205-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction. Choosing the "best fit" for a desired application is critical. Correspondingly, there must be a variety of chemistries-spanning a spectrum of rates and other features-to choose from. Over the past few years, significant strides have been made towards not only expanding the number of bioorthogonal chemistries, but also fine-tuning existing reactions for particular applications. In this Review, we highlight recent advances in bioorthogonal reaction development, focusing on how physical organic chemistry principles have guided probe design. The continued expansion of this toolset will provide more precisely tuned reagents for manipulating bonds in distinct environments.
Collapse
Affiliation(s)
- Sean S Nguyen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
9
|
Peramo A, Dumas A, Remita H, Benoît M, Yen-Nicolay S, Corre R, Louzada RA, Dupuy C, Pecnard S, Lambert B, Young J, Desmaële D, Couvreur P. Selective modification of a native protein in a patient tissue homogenate using palladium nanoparticles. Chem Commun (Camb) 2019; 55:15121-15124. [PMID: 31782421 DOI: 10.1039/c9cc07803g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have developed new benign palladium nanoparticles able to catalyze the Suzuki-Miyaura cross-coupling reaction on human thyroglobulin (Tg), a naturally iodinated protein produced by the thyroid gland, in homogenates from patients' tissues. This represents the first example of a chemoselective native protein modification using transition metal nanoobjects in near-organ medium.
Collapse
Affiliation(s)
- Arnaud Peramo
- Institut Galien Paris-Sud, UMR 8612, CNRS Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie 5 rue Jean-Baptiste Clément, 92290 Chatenay-Malabry, France.
| | - Anaëlle Dumas
- Institut Galien Paris-Sud, UMR 8612, CNRS Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie 5 rue Jean-Baptiste Clément, 92290 Chatenay-Malabry, France.
| | - Hynd Remita
- Laboratoire de Chimie Physique, UMR 8000-CNRS, Bâtiment 349, Université Paris-Sud, Université Paris-Saclay, Rue Michel Magat, 91400 Orsay, 91405 Orsay, France
| | - Mireille Benoît
- Laboratoire de Chimie Physique, UMR 8000-CNRS, Bâtiment 349, Université Paris-Sud, Université Paris-Saclay, Rue Michel Magat, 91400 Orsay, 91405 Orsay, France
| | - Stephanie Yen-Nicolay
- Trans-Prot, UMS IPSIT, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie 5 rue JB Clément, 92296 Châtenay-Malabry, France
| | - Raphaël Corre
- Institut de Cancérologie Gustave Roussy, UMR8200 CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Ruy A Louzada
- Institut de Cancérologie Gustave Roussy, UMR8200 CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Corinne Dupuy
- Institut de Cancérologie Gustave Roussy, UMR8200 CNRS, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Shannon Pecnard
- Institut Galien Paris-Sud, UMR 8612, CNRS Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie 5 rue Jean-Baptiste Clément, 92290 Chatenay-Malabry, France.
| | - Benoit Lambert
- Hôpital Bicêtre, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Jacques Young
- Hôpital Bicêtre, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Didier Desmaële
- Institut Galien Paris-Sud, UMR 8612, CNRS Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie 5 rue Jean-Baptiste Clément, 92290 Chatenay-Malabry, France.
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR 8612, CNRS Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie 5 rue Jean-Baptiste Clément, 92290 Chatenay-Malabry, France.
| |
Collapse
|
10
|
Fang Y, Judkins JC, Boyd SJ, Am Ende CW, Rohlfing K, Huang Z, Xie Y, Johnson DS, Fox JM. Studies on the Stability and Stabilization of trans-Cyclooctenes through Radical Inhibition and Silver (I) Metal Complexation. Tetrahedron 2019; 75:4307-4317. [PMID: 32612312 PMCID: PMC7328862 DOI: 10.1016/j.tet.2019.05.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conformationally strained trans-cyclooctenes (TCOs) engage in bioorthogonal reactions with tetrazines with second order rate constants that can exceed 106 M-1s-1. The goal of this study was to provide insight into the stability of TCO reagents and to develop methods for stabilizing TCO reagents for long-term storage. The radical inhibitor Trolox suppresses TCO isomerization under high thiol concentrations and TCO shelf-life can be greatly extended by protecting them as stable Ag(I) metal complexes. 1H NMR studies show that Ag-complexation is thermodynamically favorable but the kinetics of dissociation are very rapid, and TCO•AgNO3 complexes are immediately dissociated upon addition of NaCl which is present in high concentration in cell media. The AgNO3 complex of a highly reactive s-TCO-TAMRA conjugate was shown to label a protein-tetrazine conjugate in live cells with faster kinetics and similar labeling yield relative to a 'traditional' TCO-TAMRA conjugate.
Collapse
Affiliation(s)
- Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Joshua C Judkins
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and Groton, Connecticut 06340
- current address: Thermo Fisher Scientific, 5791 Van Allen Way, Carlsbad, CA 92008, United States
| | - Samantha J Boyd
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Christopher W Am Ende
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and Groton, Connecticut 06340
| | - Katarina Rohlfing
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Zhen Huang
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and Groton, Connecticut 06340
| | - Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| | - Douglas S Johnson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and Groton, Connecticut 06340
- current address: Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716
| |
Collapse
|
11
|
Cheng Y, Zong L, López‐Andarias J, Bartolami E, Okamoto Y, Ward TR, Sakai N, Matile S. Cell-Penetrating Dynamic-Covalent Benzopolysulfane Networks. Angew Chem Int Ed Engl 2019; 58:9522-9526. [PMID: 31168906 PMCID: PMC6618005 DOI: 10.1002/anie.201905003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Cyclic oligochalcogenides (COCs) are emerging as promising systems to penetrate cells. Clearly better than and different to the reported diselenolanes and epidithiodiketopiperazines, we introduce the benzopolysulfanes (BPS), which show efficient delivery, insensitivity to inhibitors of endocytosis, and compatibility with substrates as large as proteins. This high activity coincides with high reactivity, selectively toward thiols, exceeding exchange rates of disulfides under tension. The result is a dynamic-covalent network of extreme sulfur species, including cyclic oligomers, from dimers to heptamers, with up to nineteen sulfurs in the ring. Selection from this unfolding adaptive network then yields the reactivities and selectivities needed to access new uptake pathways. Contrary to other COCs, BPS show high retention on thiol affinity columns. The identification of new modes of cell penetration is important because they promise new solutions to challenges in delivery and beyond.
Collapse
Affiliation(s)
- Yangyang Cheng
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Lili Zong
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- Current address: School of Pharmaceutical SciencesXiamen UniversityXiamen361102China
| | | | - Eline Bartolami
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
- Current address: SyMMES, UMR 5819CEA38054GrenobleFrance
| | | | - Thomas R. Ward
- Department of ChemistryUniversity of BaselBaselSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
12
|
Cheng Y, Zong L, López‐Andarias J, Bartolami E, Okamoto Y, Ward TR, Sakai N, Matile S. Cell‐Penetrating Dynamic‐Covalent Benzopolysulfane Networks. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yangyang Cheng
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Lili Zong
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
- Current address: School of Pharmaceutical SciencesXiamen University Xiamen 361102 China
| | | | - Eline Bartolami
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
- Current address: SyMMES, UMR 5819CEA 38054 Grenoble France
| | | | - Thomas R. Ward
- Department of ChemistryUniversity of Basel Basel Switzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| |
Collapse
|
13
|
Lelieveldt LPWM, Eising S, Wijen A, Bonger KM. Vinylboronic acid-caged prodrug activation using click-to-release tetrazine ligation. Org Biomol Chem 2019; 17:8816-8821. [DOI: 10.1039/c9ob01881f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vinylboronic acids react selectively with tetrazines containing a boron-coordinating substituent. The authors explore this coordination-assisted cycloaddition for the click-to-release activation of a therapeutic drug.
Collapse
Affiliation(s)
- Lianne P. W. M. Lelieveldt
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| | - Selma Eising
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| | - Abel Wijen
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| | - Kimberly M. Bonger
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| |
Collapse
|
14
|
Yu S, de Bruijn HM, Svatunek D, Hamlin TA, Bickelhaupt FM. Factors Controlling the Diels-Alder Reactivity of Hetero-1,3-Butadienes. ChemistryOpen 2018; 7:995-1004. [PMID: 30524925 PMCID: PMC6276106 DOI: 10.1002/open.201800193] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
We have quantum chemically explored the Diels-Alder reactivities of a systematic series of hetero-1,3-butadienes with ethylene by using density functional theory at the BP86/TZ2P level. Activation strain analyses provided physical insight into the factors controlling the relative cycloaddition reactivity of aza- and oxa-1,3-butadienes. We find that dienes with a terminal heteroatom, such as 2-propen-1-imine (NCCC) or acrolein (OCCC), are less reactive than the archetypal 1,3-butadiene (CCCC), primarily owing to weaker orbital interactions between the more electronegative heteroatoms with ethylene. Thus, the addition of a second heteroatom at the other terminal position (NCCN and OCCO) further reduces the reactivity. However, the introduction of a nitrogen atom in the backbone (CNCC) leads to enhanced reactivity, owing to less Pauli repulsion resulting from polarization of the diene HOMO in CNCC towards the nitrogen atom and away from the terminal carbon atom. The Diels-Alder reactions of ethenyl-diazene (NNCC) and 1,3-diaza-butadiene (NCNC), which contain heteroatoms at both the terminal and backbone positions, are much more reactive due to less activation strain compared to CCCC.
Collapse
Affiliation(s)
- Song Yu
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Hans M de Bruijn
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Leiden Institute of Chemistry, Gorlaeus Laboratories Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Dennis Svatunek
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Institut für Angewandte Synthesechemie Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Institute for Molecules and Materials (IMM) Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
15
|
Akgun B, Hall DG. Boronic Acids as Bioorthogonal Probes for Site‐Selective Labeling of Proteins. Angew Chem Int Ed Engl 2018; 57:13028-13044. [DOI: 10.1002/anie.201712611] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/23/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Burcin Akgun
- Department of Chemistry—CCIS 4–010University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Dennis G. Hall
- Department of Chemistry—CCIS 4–010University of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
16
|
Akgun B, Hall DG. Boronsäuren als bioorthogonale Sonden für zentrenselektives Protein‐Labeling. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Burcin Akgun
- Department of Chemistry – CCIS 4-010University of Alberta Edmonton Alberta T6G 2G2 Kanada
| | - Dennis G. Hall
- Department of Chemistry – CCIS 4-010University of Alberta Edmonton Alberta T6G 2G2 Kanada
| |
Collapse
|
17
|
Eising S, Engwerda AHJ, Riedijk X, Bickelhaupt FM, Bonger KM. Highly Stable and Selective Tetrazines for the Coordination-Assisted Bioorthogonal Ligation with Vinylboronic Acids. Bioconjug Chem 2018; 29:3054-3059. [PMID: 30080405 PMCID: PMC6148442 DOI: 10.1021/acs.bioconjchem.8b00439] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Bioorthogonal
reactions are selective transformations that are
not affected by any biological functional group and are widely used
for chemical modification of biomolecules. Recently, we reported that
vinylboronic acids (VBAs) gave exceptionally high reaction rates in
the bioorthogonal inverse electron-demand Diels–Alder (iEDDA)
reaction with tetrazines bearing a boron-coordinating pyridyl moiety
compared to tetrazines lacking such a substituent. In this integrated
experimental and theoretical study, we show how the reaction rate
of the VBA-tetrazine ligation can be accelerated by shifting the equilibrium
from boronic acid to the boronate anion in the reaction mixture. Quantum
chemical activation strain analyses reveal that this rate enhancement
is a direct consequence of the excellent electron-donating capability
of the boronate anion in which the π HOMO is pushed to a higher
energy due to the net negative potential of this species. We have
explored the second-order rate constants of several tetrazines containing
potential VBA-coordinating hydroxyl substituents. We observed an increase
in rate constants of several orders of magnitude compared to the tetrazines
lacking a hydroxyl substituent. Furthermore, we find the hydroxyl-substituted
tetrazines to be more selective toward VBAs than toward the commonly
used bioorthogonal reactant norbornene, and more stable in aqueous
environment than the previously studied tetrazines containing a pyridyl
substituent.
Collapse
Affiliation(s)
| | | | | | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM) , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | | |
Collapse
|
18
|
Eising S, Xin BT, Kleinpenning F, Heming JJA, Florea BI, Overkleeft HS, Bonger KM. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene. Chembiochem 2018; 19:1648-1652. [DOI: 10.1002/cbic.201800275] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Selma Eising
- Department of Biomolecular Chemistry; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Bo-Tao Xin
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Fleur Kleinpenning
- Department of Biomolecular Chemistry; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Jurriaan J. A. Heming
- Department of Biomolecular Chemistry; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Kimberly M. Bonger
- Department of Biomolecular Chemistry; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|