1
|
Ding H, Xu Y, Fang F, Wang H, Chen A. Functionalized primer initiated signal cycles and personal glucose meter for sensitive and portable miRNA analysis. Biotechniques 2024; 76:333-341. [PMID: 39185784 DOI: 10.1080/07366205.2024.2348347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 08/27/2024] Open
Abstract
MicroRNA (miRNA) has garnered considerable attention due to its diagnostic capabilities, such as in hypoxic cognitive impairment and cancers. However, the existing miRNA detection methods are commonly criticized for the drawbacks of low sensitivity and false-positive detection derived from interfering molecules. Here, we provide a novel, sensitive and portable method for miRNA detection by combining target identification based cyclization of padlocks, immobilized primer-based signal amplification and a personal glucose meter. The proposed method exhibits several advantages, including precise identification of specific sites, exceptional sensitivity and instrument-free feature. These attributes hold great promise for the diagnosis and clinical investigation of various diseases, such as cancer and hypoxic cognitive impairment, enabling a deeper understanding of their pathological and physiological aspects.
Collapse
Affiliation(s)
- Heguo Ding
- Geriatrics Department, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Zhejiang province, Huzhou 313000, China
| | - Yue Xu
- Department of Psychiatry, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Zhejiang province, Huzhou 313000, China
| | - Fei Fang
- Geriatrics Department, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Zhejiang province, Huzhou 313000, China
| | - Hong Wang
- Department of Psychiatry, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Zhejiang province, Huzhou 313000, China
| | - Anqi Chen
- The Research Institute of Advanced Technologies, Ningbo University, Zhejiang province, Ningbo 315211, China
| |
Collapse
|
2
|
Zhou X, Geng H, Shi P, Wang H, Zhang G, Cui Z, Lv S, Bi S. NIR-driven photoelectrochemical-fluorescent dual-mode biosensor based on bipedal DNA walker for ultrasensitive detection of microRNA. Biosens Bioelectron 2024; 247:115916. [PMID: 38104392 DOI: 10.1016/j.bios.2023.115916] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Optical biosensors have become powerful tools for bioanalysis, but most of them are limited by optic damage, autofluorescence, as well as poor penetration ability of ultraviolet (UV) and visible (Vis) light. Herein, a near-infrared light (NIR)-driven photoelectrochemical (PEC)-fluorescence (FL) dual-mode biosensor has been proposed for ultrasensitive detection of microRNA (miRNA) based on bipedal DNA walker with cascade amplification. Fueled by toehold-mediated strand displacement (TMSD), the bipedal DNA walker triggered by target miRNA-21 is formed through catalytic hairpin assembly (CHA), which can efficiently move along DNA tracks on CdS nanoparticles (CdS NPs)-modified fluorine doped tin oxide (FTO) electrode, resulting in the introduction of upconversion nanoparticles (UCNPs) on electrode surface. Under 980 nm laser irradiation, the UCNPs serve as the energy donor to emit UV/Vis light and excite CdS NPs to generate photocurrent for PEC detection, while the upconversion luminescence (UCL) at 803 nm is monitored for FL detection. This PEC-FL dual-mode biosensor has achieved the ultrasensitive and accurate analysis of miRNA-21 in human serum and different gynecological cancer cells. Overall, the proposed dual-mode biosensor can not only couple the inherent features of each single-mode biosensor but also provide mutual authentication of testing results, which opens up a new avenue for early diagnosis of miRNA-related diseases in clinic.
Collapse
Affiliation(s)
- Xuemin Zhou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; Department of Ultrasonic Medicine, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Hongyan Geng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Pengfei Shi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China; Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, PR China
| | - Huijie Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Guofang Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Shuzhen Lv
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China.
| | - Sai Bi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China.
| |
Collapse
|
3
|
Wang FP, Guan Y, Liu JW, Cheng H, Hu R. A functional nucleic acid-based fluorescence sensing platform based on DNA supersandwich nanowires and cation exchange reaction. Analyst 2023; 148:5033-5040. [PMID: 37667620 DOI: 10.1039/d3an01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Accurate and sensitive analysis of p53 DNA is important for early diagnosis of cancer. In this work, a fluorescence sensing system based on DNA supersandwich nanowires and cation exchange (CX)-triggered multiplex signal amplification was constructed for the detection of p53 DNA. In the presence of p53 DNA, the DNA self-assembles to form a DNA supersandwich nanowire that generates long double-stranded DNA. Subsequently, the cation exchange (CX) reaction between ZnS and Ag+ was utilized to release free Zn2+. With the participation of Zn2+, DNAzyme catalyzes the hydrolysis of numerous catalytic molecular beacons, resulting in a greatly enhanced fluorescence signal due to the cycling of DNAzyme. The fluorescence values increased in proportion to the concentrations of p53 DNA in the range of 10 pM to 200 nM, and a detection limit (LOD) of 2.34 pM (S/N = 3) was obtained. This method provides an effective strategy for the quantitative detection of p53 DNA.
Collapse
Affiliation(s)
- Fu-Peng Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Jia-Wen Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Huan Cheng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| |
Collapse
|
4
|
Ma Q, Yang Y, Yang W, Yun W, Zhang M. AuNPs-DNAzyme motor triggered two colors DNA tweezer for fluorescent amplified detection of bisphenol A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122261. [PMID: 36571865 DOI: 10.1016/j.saa.2022.122261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
An AuNPs-DNAzyme motor triggered ultrasensitive, two colors DNA tweezer was developed for fluorescent detection of bisphenol A (BPA). BPA can bind with its aptamer on the gold nanoparticles (AuNPs) and reactivate the Pb2+ enzyme strands. Thus, Pb2+ enzyme strands can cleave the substrate strand on AuNPs and release a DNA fragment from AuNPs. The released DNA fragment can bind with the loop of the Y shaped DNA tweezer to form Mg2+-specific DNAzyme, the following cleavage causing the leaving of another two DNA fragments. Then, these two DNA fragments can open the two ends of the Y shaped DNA tweezer, causing the recovery of fluorescent signals. This strategy shows a good linear relationship for BPA detection from 0.44 to 2.2 × 103 pM. The sensitivity has been significantly improved by the two levels of amplification strategy DNAzyme motor and cyclic cleavage of the loop. Importantly, it also can significantly reduce the false positive result by two colors signals. Moreover, it also exhibits satisfactory performance in practical sample detection.
Collapse
Affiliation(s)
- Qin Ma
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Yang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenming Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Mingming Zhang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Hui Y, Huang Z, Alahi MEE, Nag A, Feng S, Mukhopadhyay SC. Recent Advancements in Electrochemical Biosensors for Monitoring the Water Quality. BIOSENSORS 2022; 12:bios12070551. [PMID: 35884353 PMCID: PMC9313366 DOI: 10.3390/bios12070551] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 05/06/2023]
Abstract
The release of chemicals and microorganisms from various sources, such as industry, agriculture, animal farming, wastewater treatment plants, and flooding, into water systems have caused water pollution in several parts of our world, endangering aquatic ecosystems and individual health. World Health Organization (WHO) has introduced strict standards for the maximum concentration limits for nutrients and chemicals in drinking water, surface water, and groundwater. It is crucial to have rapid, sensitive, and reliable analytical detection systems to monitor the pollution level regularly and meet the standard limit. Electrochemical biosensors are advantageous analytical devices or tools that convert a bio-signal by biorecognition elements into a significant electrical response. Thanks to the micro/nano fabrication techniques, electrochemical biosensors for sensitive, continuous, and real-time detection have attracted increasing attention among researchers and users worldwide. These devices take advantage of easy operation, portability, and rapid response. They can also be miniaturized, have a long-life span and a quick response time, and possess high sensitivity and selectivity and can be considered as portable biosensing assays. They are of special importance due to their great advantages such as affordability, simplicity, portability, and ability to detect at on-site. This review paper is concerned with the basic concepts of electrochemical biosensors and their applications in various water quality monitoring, such as inorganic chemicals, nutrients, microorganisms' pollution, and organic pollutants, especially for developing real-time/online detection systems. The basic concepts of electrochemical biosensors, different surface modification techniques, bio-recognition elements (BRE), detection methods, and specific real-time water quality monitoring applications are reviewed thoroughly in this article.
Collapse
Affiliation(s)
- Yun Hui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Zhaoling Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
| | - Md Eshrat E. Alahi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Correspondence: (M.E.E.A.); (S.F.)
| | - Anindya Nag
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany;
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069 Dresden, Germany
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (M.E.E.A.); (S.F.)
| | | |
Collapse
|
6
|
Zhang J, Yang H, Liu W, Wen H, He F. Rapid 16S rDNA electrochemical sensor for detection of bacteria based on the integration of target-triggered hairpin self-assembly and tripedal DNA walker amplification. Anal Chim Acta 2022; 1190:339266. [PMID: 34857142 DOI: 10.1016/j.aca.2021.339266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Diseases caused by bacteria pose great challenges to human health. The key to reduce disease transmission and mortality is to develop accurate and rapid methods for the detection and identification of bacteria. Herein, a rapid bacteria 16S rDNA electrochemical sensor based on target-triggered hairpin self-assembly and tripedal DNA walker (TD walker) amplification strategy was constructed. Specific variable region of 16S rDNA fragment of bacteria was used as biomarker. The target-triggered hairpin self-assembly strategy was used to prepare a TD walker. The hairpin DNA probes labeled with ferrocene (Fc) were designed and modified on surface of electrode. The "legs" of TD walker hybridized with three hairpin probes and opened their hairpin structures. Exo III enzyme recognised hybrid duplexes and selectively digest hairpin probes. The "legs" of TD walker was released and hybridized with the other three hairpin probes. In this way, the enzyme drived the walkers to walk along electrode interface, until hairpin DNA probes were all removed from the electrode, the Fc was far away from electrode interface. A significantly current reduction signal was obtained and bacteria were detected by recording this response. This strategy was low-cost and scalable, it could continuously recycle low-concentration targets, thus enhanced the detection sensitivity. As the proof-of-concept work, the electrochemical sensor was utilized as detector. The limit of detection (LOD) of detecting Staphylococcus aureus (S. aureus) was 20 CFU mL-1 and detection time was less than 3 h. It was expected to be widely used in clinical early diagnosis.
Collapse
Affiliation(s)
- Jialin Zhang
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Hongli Yang
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Wenjing Liu
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Herui Wen
- Institute of Molecular Materials Chemistry and Technology, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
7
|
Chen C, He R, Zhang Z, Chen Y. Dual-recognition-based determination of ctDNA via the clamping function of peptide nucleic acid and terminal protection of small-molecule-linked DNA. Analyst 2021; 145:7603-7608. [PMID: 32990694 DOI: 10.1039/d0an01305f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new dual-recognition fluorescent biosensor for circulating tumor DNA (ctDNA) detection has been developed, which combines the clamping function of peptide nucleic acid (PNA) and terminal protection of small-molecule-linked DNA (TPSMLD). Taking the tumor-specific E542K mutation and methylation of the PIK3CA gene as the target ctDNA, a low detection limit of 0.3161 pM ctDNA is achieved with good selectivity. This study not only offers a sensitive, selective and accurate ctDNA detection method, but can also be used to detect the target in complex biological samples.
Collapse
Affiliation(s)
- Chaohui Chen
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, P. R. China.
| | | | | | | |
Collapse
|
8
|
Shirani M, Kalantari H, Khodayar MJ, Kouchak M, Rahbar N. An ultra-sensitive optical aptasensor based on gold nanoparticles/poly vinyl alcohol hydrogel as acceptor/emitter pair for fluorometric detection of digoxin with on/off/on strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119345. [PMID: 33465528 DOI: 10.1016/j.saa.2020.119345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A novel nanobiosensor was prepared by aptamer and gold nanoparticles conjugate in poly vinyl alcohol hydrogel for sensitive detection of digoxin in human plasma samples. The developed nanobiosensor was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and dynamic light scattering instrument. In this sensor the hydrogel acted as a fluorescent probe. The fluorescence intensity of the hydrogel was quenched by aptamer stabilized gold nanoparticles as energy acceptor. Upon addition of digoxin, the aptamer/drug complex was formed and the fluorescence of the hydrogel was restored because of destabilization and aggregation of gold nanoparticles in the presence of salt. The affecting parameters on the nanobiosensor performance were assessed and under the optimized conditions the external and in plasma calibration curves were linear in the 10-1000 ng L-1 digoxin concentration range with detection limits of 2.9 and 3.1 ng L-1, respectively. The relative standard deviations for 5 replicate determinations of 50, 250, and 500 ng L-1 of digoxin, were 7.3, 5.1, and 3.8%, respectively. This nanofluoroprobe was successfully applied for determination of digoxin in spiked plasma samples without any pretreatment procedure.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Wang S, Kang G, Cui F, Zhang Y. Dual-color graphene quantum dots and carbon nanoparticles biosensing platform combined with Exonuclease III-assisted signal amplification for simultaneous detection of multiple DNA targets. Anal Chim Acta 2021; 1154:338346. [PMID: 33736804 DOI: 10.1016/j.aca.2021.338346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
Sensitive and simultaneous detection of multiple biomarkers such as target DNA or proteins using biocompatible materials with good analysis performance remains an important challenge. Herein, we successfully developed a signal "off-on" highly sensitive multiplex detection platform based on the combination of dual-color graphene quantum dots (blue GQDs and green GQDs) modified DNA probes with carbon nanoparticles (CNPs), which is a cheap, effective nonfluorescent quencher to simultaneously quench the fluorescence of both GQDs-DNA probes. The Exo III-assisted sequence-independent target recycling and signal amplification strategy was integrated into this sensing platform, which endows it with high sensitivity towards the multiplex detection of targets DNA. The detection limits of 6.6 pM for HIV and 9.5 pM for HBV were achieved respectively, which is about 60-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. Our proposed multiplex detecting platform is advantageous in both respective and simultaneous detection of multiple targets and can also discriminate perfectly matched targets from mismatched targets in both PBS buffer and 1% human serum samples, demonstrating its potential to be a reliable strategy for highly sensitive simultaneous detection of multiple target genes in practical diagnosis applications.
Collapse
Affiliation(s)
- Song Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100082, China
| | - Guangjie Kang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100082, China
| | - Fangli Cui
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100082, China
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100082, China.
| |
Collapse
|
10
|
Improving the sensitivity and selectivity of a DNA probe using graphene oxide-protected and T7 exonuclease-assisted signal amplification. Anal Bioanal Chem 2020; 412:3029-3035. [PMID: 32206848 DOI: 10.1007/s00216-020-02556-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/18/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022]
Abstract
The accurate analysis of single-nucleotide polymorphisms is of great significance for clinical detection and diagnosis. Based on the hybridization hindrance caused by graphene oxide (GO) and hairpin probe, we report a T7 Exo-assisted cyclic amplification technique to distinguish single-base mismatch for highly sensitive and selective detection of mutant-type DNA. When the mutant-type target is completely complementary to the probe, the T7 Exo hydrolyzes the probe and releases the fluorescent molecule from the GO surface, resulting in a fluorescence signal. Conversely, when the wild-type mismatch target is present, the weak hybridization prevents the release of FAM-labeled probe from the GO surface. Therefore, the FAM-labeled probe cannot be degraded efficiently by T7 Exo, and the fluorescence is still quenched by GO. The detection limit of the proposed method can be as low as 34 fM due to the cyclic signal amplification. The experimental results showed that the established method could be used to detect single-nucleotide polymorphisms accurately and sensitively at low cost.
Collapse
|
11
|
You Q, Wang P, Zhang D, Li Z, Yamaguchi Y. High‐Performance Sieving Electrophoresis for Single‐Nucleotide Polymorphisms with a Structuring Hydrogel Network. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qingxiang You
- Engineering Research Centre of Optical Instrument and SystemMinistry of EducationKey Lab of Optical Instruments and Equipment for Medical EngineeringMinistry of EducationShanghai Key Lab of Modern Optical SystemUniversity of Shanghai for Science and Technology Shanghai 200093 China
- College of Optoelectronic EngineeringChangzhou Institute of Technology No.299, Tongjiangnan Road Changzhou 213002 China
| | - Ping Wang
- Department of Clinical LaboratoryXinhua HospitalShanghai Jiao Tong University School of Medicine 1665 Kongjiang Road Shanghai 200092 China
| | - Dawei Zhang
- Engineering Research Centre of Optical Instrument and SystemMinistry of EducationKey Lab of Optical Instruments and Equipment for Medical EngineeringMinistry of EducationShanghai Key Lab of Modern Optical SystemUniversity of Shanghai for Science and Technology Shanghai 200093 China
| | - Zhenqing Li
- Engineering Research Centre of Optical Instrument and SystemMinistry of EducationKey Lab of Optical Instruments and Equipment for Medical EngineeringMinistry of EducationShanghai Key Lab of Modern Optical SystemUniversity of Shanghai for Science and Technology Shanghai 200093 China
| | - Yoshinori Yamaguchi
- Department of Applied PhysicsGraduate School of EngineeringOsaka University Osaka 5650871 Japan
- Institute of Photonics and Bio‐Medicine (IPBM)Graduate School of ScienceEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
12
|
Miao P, Tang Y. Gold Nanoparticles-Based Multipedal DNA Walker for Ratiometric Detection of Circulating Tumor Cell. Anal Chem 2019; 91:15187-15192. [PMID: 31674765 DOI: 10.1021/acs.analchem.9b04000] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sensitive and accurate quantification of circulating tumor cell (CTC) can provide new insights for early diagnosis and prognosis of cancers. Herein, we have developed a multipedal DNA walker for ultrasensitive detection of CTC for the first time. Generally, a number of walker strands are simply modified on gold nanoparticle (AuNPs). The integrated aptamer sequence can specially interact with the transmembrane receptor protein of CTC and facilitate the enrichment of AuNPs on the surface of cells. After a low speed centrifugation, the complex of CTC and AuNPs could be precipitated and the supernate represents decreased UV-vis absorbance response of AuNPs. On the other hand, since multiple walker strands are modified on a single AuNP, hybridization with several tracks on the electrode occurs simultaneously for the following nicking endonuclease-catalyzed cleaving. Experimental results verify that the rate of multipedal walking is much faster. In addition, TCEP-mediated electrochemical amplification is employed to further enhance the electrochemical signal. By comparing the variations of electrochemical and UV-vis absorbance responses, ultrahigh sensitivity for CTC assay is achieved. The limit of detection is down to 1 cell/mL. The results of selectivity confirmation and blood sample test are also satisfactory. This AuNPs-based multipedal DNA walker offers a speedy analysis of CTC and shows great potential use for early clinical diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , P. R. China.,Department of Chemistry , New York University , New York 10003 , United States
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , P. R. China
| |
Collapse
|
13
|
Su D, Li N, Liu Y, Wang M, Su X. Ratiometric fluorescence strategy for p53 gene assay by using nitrogen doped graphene quantum dots and berberine as fluorescence reporters. Anal Chim Acta 2019; 1084:78-84. [DOI: 10.1016/j.aca.2019.07.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/10/2023]
|
14
|
Graphene oxide and enzyme-assisted dual-cycling amplification method for sensitive fluorometric determination of DNA. Mikrochim Acta 2019; 186:716. [PMID: 31654133 DOI: 10.1007/s00604-019-3825-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/14/2019] [Indexed: 12/30/2022]
Abstract
A fluorometric method is described for the determination of DNA. It involves the use of graphene oxide (GO), exonuclease III (Exo III), and two specially designed fluorophore-labeled hairpin probes (HP1 and HP2). Different from other GO-based DNA assays, the method takes advantage of the distinct binding abilities of GO with hairpin DNA probes and single nucleotides. GO serves as a strong quencher for fluorescent labels to ensure a very low background signal. Two reaction cycles mediated by Exo III are employed to enhance the signals. The combination of GO-induced quenching and Exo III-mediated dual regeneration of analytes leads to a detection limit as low as 1 pM for the model analyte human hemochromatosis protein (HFE) gene. The method is also applicable for the determination of HFE gene spiked into fetal bovine serum. Graphical abstract Schematic representation of a GO-based, Exo III-assisted method for dual-signal amplified detection of DNA, for which human haemochromatosis protein (HFE) gene is designed as the model target. The assay involves graphene oxide (GO), exonuclease (Exo III), and two specially designed, fluorophore-labelled hairpin probes (HP1 and HP2).
Collapse
|
15
|
Liu X, Yu S, Feng C, Mao D, Li J, Zhu X. In situ Analysis of Cancer Cells Based on DNA Signal Amplification and DNA Nanodevices. Crit Rev Anal Chem 2019; 51:8-19. [PMID: 31613139 DOI: 10.1080/10408347.2019.1674631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cancer is a global disease which has been disturbing researchers in medicine and seriously threatens patients' health and lifetime around the world in the past several decades. Due to the characteristics of cancer cells, such as uncontrollable cell proliferation, cell invasion and metastasis to surrounding tissues, lower grade of differentiation, higher telomerase activity and others, it has been one of the most usual lethal factors, next to heart disease in incidence. Cancer mortality can be decreased by early diagnosis, and the people who with treatment at an early stage have an obvious improved survival rate. Consequently, early detection is significant for better understanding the pathogenesis of cancer and improving the prognosis of patients. In situ detection technique is a vital tool for imaging and cellular pathology research, which can provide effective information about tumor markers in the early cancer detection. In view of low expression of most tumor markers in the early stage of cancers, detection techniques based on DNA signal amplification and DNA nanodevices can provide a strong support for the diagnosis and detection of cancers. In this review, we summarize the research progress of different analytical techniques for detecting various tumor markers that have been reported in recent years. We compare different DNA amplification and nanodevices, then provide guidance and suggestions for better understanding in situ analysis of cancer cells.
Collapse
Affiliation(s)
- Xiaohao Liu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Sinuo Yu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Jinlong Li
- Department of Laboratory Medicine, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| |
Collapse
|
16
|
Tian Y, Zhang L, Wang L. DNA-Functionalized Plasmonic Nanomaterials for Optical Biosensing. Biotechnol J 2019; 15:e1800741. [PMID: 31464360 DOI: 10.1002/biot.201800741] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Plasmonic nanomaterials, especially Au and Ag nanomaterials, have shown attractive physicochemical properties, such as easy functionalization and tunable optical bands. The development of this active subfield paves the way to the fascinating biosensing platforms. In recent years, plasmonic nanomaterials-based sensors have been extensively investigated because they are useful for genetic diseases, biological processes, devices, and cell imaging. In this account, a brief introduction of the development of optical biosensors based on DNA-functionalized plasmonic nanomaterials is presented. Then the common strategies for the application of the optical sensors are summarized, including colorimetry, fluorescence, localized surface plasmon resonance, and surface-enhanced resonance scattering detection. The focus is on the fundamental aspect of detection methods, and then a few examples of each method are highlighted. Finally, the opportunities and challenges for the plasmonic nanomaterials-based biosensing are discussed with the development of modern technologies.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.,Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
17
|
Chen X, Chen W, Tang L, Hu W, Wang M, Miao P. Electrochemical impedance spectroscopic analysis of nucleic acids through DNA tetrahedron self-walking machine. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
18
|
Meng F, Chen X, Cheng W, Hu W, Tang Y, Miao P. Ratiometric Electrochemical Sensing Strategy for the Ultrasensitive Detection of Telomerase Activity. ChemElectroChem 2019. [DOI: 10.1002/celc.201900019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fanyu Meng
- University of Science and Technology of China Hefei 230026 P. R. China
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
| | - Xifeng Chen
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
- Tianjin Guokeyigong Science & Technology Development Co., Ltd. Tianjin 300399 P. R. China
| | - Wei Hu
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
- Tianjin Guokeyigong Science & Technology Development Co., Ltd. Tianjin 300399 P. R. China
| | - Yuguo Tang
- University of Science and Technology of China Hefei 230026 P. R. China
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
| | - Peng Miao
- University of Science and Technology of China Hefei 230026 P. R. China
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of Sciences Suzhou 215163 P. R. China
| |
Collapse
|
19
|
Zhu S, Wang X, Jing C, Yin Y, Zhou N. A colorimetric ATP assay based on the use of a magnesium(II)-dependent DNAzyme. Mikrochim Acta 2019; 186:176. [PMID: 30771011 DOI: 10.1007/s00604-019-3244-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/05/2019] [Indexed: 11/30/2022]
Abstract
A colorimetric assay for ATP is described that uses a strategy that combines the concept of split Mg(II)-dependent DNAzyme, split aptamer, and hybridization-induced aggregation of gold nanoparticles (AuNPs). Both ATP aptamer and Mg(II)-dependent DNAzyme are split into two fragments which are allocated to two well-designed DNA probes. The probes also possess mutually complementary stem sequences and spacer sequences. In the presence of ATP, the separated DNAzyme sequences in the two probes assemble via the synchronous recognition of ATP with two fragments of the aptamer. Then, the activated DNAzyme catalyzes multiple cycles of the cleavage of its substrate DNA sequence. The latter acts as a linker and induces the aggregation of two types of ssDNA-modified AuNP through the hybridization between the complementary sequences. Thus, the color of the AuNP solution remains red. However, in the absence of ATP, the detached aptamer cannot induce the assembly of DNAzyme to cleave the linker DNA. This results in the aggregation of AuNP and a concomitant color transition from red to purple. This ATP assay, performed at a wavelength of 530 nm, has a linear detection range that extends from 10 pM to 100 nM, with a detection limit of 5.3 pM. It was applied to the detection of ATP in human serum. Conceivably, the strategy has a wide scope in that it may be applied to the colorimetric detection of various other analytes through the split aptamer configuration. Graphical abstract Schematic presentation of colorimetric assay for adenosine triphosphate (ATP) based on the use of a split Mg(II)-dependent DNAzyme, a split aptamer, and by exploiting the hybridization-induced aggregation of gold nanoparticles that leads to a color change from red to purple.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Oncology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214000, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoying Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Cheng Jing
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiang nan University, Wuxi, 214122, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiang nan University, Wuxi, 214122, China.
| |
Collapse
|
20
|
Star trigon structure-aided DNA walker for amplified electrochemical detection of DNA. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|