1
|
Wang J, Liu M, Yang C, Huang X, Lin C, Zhu Y, Wang J, Zhang H, Chen B, Sun G. Photocrosslinked gelatin methacryloyl/hyaluronic acid methacryloyl composite hydrogels loaded with bone morphogenetic protein 2-black phosphorus nanosheets for bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-23. [PMID: 40202899 DOI: 10.1080/09205063.2025.2489846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Black phosphorus nanosheets (BP) have been widely used in bone tissue engineering due to their superior properties and good biocompatibility, as well as the fact that they are composed of only a single element of phosphorus, which is highly homologous to the inorganic components of natural bone. Hydrogels based on gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA) composites were prepared by photocrosslinking. The physicochemical properties of the prepared GelMA/HAMA, GelMA/HAMA/BP, GelMA/HAMA/BMP2 and GelMA/HAMA/BP@BMP2 hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). In addition, the mechanical properties, swelling rate and degradation rate of the hydrogels were investigated, and the results showed that GelMA/HAMA/BP@BMP2 possessed good physicochemical and mechanical properties, which were suitable for cell adhesion growth and proliferation. BP as a carrier could ensure the stable and sustained release of the bioactive factor: bone morphogenetic protein 2 (BMP2), which could promote the recruitment and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and its degradation and binding to surrounding calcium ions can promote biomineralization. Therefore, this BMP2-modified black phosphorus hydrogel system provides a new strategy for bone regeneration.
Collapse
Affiliation(s)
- Jiaming Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xixi Huang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, China
| | - Chenyu Lin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, China
| | - Yuqian Zhu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, China
| | - Jing Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, China
| | - Hongyi Zhang
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingdi Chen
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Wu A, Su J, Zhang Y, Zhang D, Chen Y. Prospects of black phosphorus nanosheets in the treatment of peri-implantitis. Biomed Mater 2025; 20:022007. [PMID: 39951892 DOI: 10.1088/1748-605x/adb66e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
Peri-implantitis represents an inflammatory condition characterized by the presence of plaque-related soft and hard tissue damage surrounding dental implants, often resulting in progressive alveolar bone loss and, ultimately, implant failure. Black phosphorus (BP), a novel two-dimensional (2D) material that has recently emerged in the biomedical field, has attracted increasing attention due to its unique osteogenic properties and exceptional antibacterial and antioxidant characteristics. Additionally, its outstanding biomedical attributes enhance angiogenesis and nerve regeneration. Compared to other biomaterials, its high specific surface area, high photothermal conversion efficiency, and complete biodegradability make BP a promising candidate for treating infection-related bone defects. This article reviews the biological properties of BP nanosheets (BPNSs) and discusses their potential applications in the context of peri-implantitis, aiming to provide fresh insights for future research and applications of BPNS.
Collapse
Affiliation(s)
- Ailin Wu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, People's Republic of China
| | - Jun Su
- The Fourth People's Hospital of Jinan, The Teaching Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Yongzhi Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, People's Republic of China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, People's Republic of China
| | - Yanhua Chen
- Jinan Stomatological hospital, Jinan, People's Republic of China
| |
Collapse
|
3
|
Zhang H, Shan C, Wu K, Pang M, Kong Z, Ye J, Li W, Yu L, Wang Z, Pak YL, An J, Gao X, Song J. Modification Strategies and Prospects for Enhancing the Stability of Black Phosphorus. Chempluschem 2025; 90:e202400552. [PMID: 39384535 DOI: 10.1002/cplu.202400552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Black phosphorus is a two-dimensional layer material with promising applications due to its many excellent physicochemical properties, including high carrier mobility, ambipolar field effect and unusual in-plane anisotropy. Currently, BP has been widely used in biomedical engineering, photocatalysis, semiconductor devices, and energy storage electrode materials. However, the unique structure of BP makes it highly chemically active, leading to its easy oxidation and degradation in air, which limits its practical applications. Recently, researchers have proposed a number of initiatives that can address the environmental instability of BP, and the application of these physical and chemical passivation techniques can effectively enhance the environmental stability of BP, including four modification methods: covalent functionalization, non-covalent functionalization, surface coordination, physical encapsulation and edge passivation. This review highlights the mechanisms of the above modification techniques in addressing the severe instability of BP in different application scenarios, as well as the advantages and disadvantages of each method. This review can provide guidance for more researchers in studying the marvellous properties of BP and accelerate the practical application of BP in different fields.
Collapse
Affiliation(s)
- Haohao Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Chaoyue Shan
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Koulong Wu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Mingyuan Pang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Zhen Kong
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Jiajia Ye
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Wensi Li
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Lei Yu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Zhao Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Yen Leng Pak
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Juan An
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Jibin Song
- College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| |
Collapse
|
4
|
Sanità G, Alfieri ML, Carrese B, Damian S, Mele V, Calì G, Silvestri B, Marra S, Mohammadi S, Luciani G, Manini P, Lamberti A. Light enhanced cytotoxicity and antitumoral effect of a ruthenium-based photosensitizer inspired from natural alkaloids. RSC Med Chem 2024:d4md00600c. [PMID: 39553466 PMCID: PMC11565246 DOI: 10.1039/d4md00600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
In this work, we report on the synthesis and properties of a new sensitizer for photodynamic therapy applications, constituted by a ruthenium(ii) complex (1) featuring a ligand inspired from natural isoquinoline alkaloids. The spectroscopic analysis revealed that 1 is characterized by an intense red emission (λ em = 620 nm, Φ = 0.17) when excited at 550 nm, a low energy radiation warranting for a safe therapeutic approach. The phototoxicity of 1 on human breast cancer (Hs578T) and melanoma (A375) cell lines was assessed after irradiation using a LED lamp (525 nm, total fluence 10 J cm-2). In vitro biological assays indicated that the cytotoxicity of 1 was significantly enhanced by light reaching IC50 values below the micromolar threshold. The cell damage induced by 1 proved to be strictly connected with the overproduction of reactive oxygen species (ROS) responsible for mitochondrial dysfunction leading to the activation of caspases and then to apoptosis, and for DNA photocleavage leading to cell cycle arrest.
Collapse
Affiliation(s)
- Gennaro Sanità
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council Naples Italy
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples Federico II Naples Italy
| | - Barbara Carrese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II Naples Italy
| | - Serena Damian
- Department of Chemical Sciences, University of Naples Federico II Naples Italy
| | - Vincenza Mele
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II Naples Italy
| | - Gaetano Calì
- Institute of Endocrinology and Experimental Oncology, National Research Council Naples Italy
| | - Brigida Silvestri
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II Naples Italy
| | - Sebastiano Marra
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II Naples Italy
| | | | - Giuseppina Luciani
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II Naples Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II Naples Italy
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II Naples Italy
| |
Collapse
|
5
|
Qi W, Zhang R, Wang Z, Du H, Zhao Y, Shi B, Wang Y, Wang X, Wang P. Advances in the Application of Black Phosphorus-Based Composite Biomedical Materials in the Field of Tissue Engineering. Pharmaceuticals (Basel) 2024; 17:242. [PMID: 38399457 PMCID: PMC10892510 DOI: 10.3390/ph17020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Black Phosphorus (BP) is a new semiconductor material with excellent biocompatibility, degradability, and optical and electrophysical properties. A growing number of studies show that BP has high potential applications in the biomedical field. This article aims to systematically review the research progress of BP composite medical materials in the field of tissue engineering, mining BP in bone regeneration, skin repair, nerve repair, inflammation, treatment methods, and the application mechanism. Furthermore, the paper discusses the shortcomings and future recommendations related to the development of BP. These shortcomings include stability, photothermal conversion capacity, preparation process, and other related issues. However, despite these challenges, the utilization of BP-based medical materials holds immense promise in revolutionizing the field of tissue repair.
Collapse
Affiliation(s)
- Wanying Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (W.Q.); (R.Z.)
| | - Ru Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (W.Q.); (R.Z.)
| | - Zaishang Wang
- School of Pharmacy, Guilin Medical University, Guilin 541001, China;
| | - Haitao Du
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Yiwu Zhao
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Bin Shi
- Shandong Medicinal Biotechnology Center, Jinan 250062, China;
| | - Yi Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Xin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| |
Collapse
|
6
|
Kuang F, Hui T, Chen Y, Qiu M, Gao X. Post-Graphene 2D Materials: Structures, Properties, and Cancer Therapy Applications. Adv Healthc Mater 2024; 13:e2302604. [PMID: 37955406 DOI: 10.1002/adhm.202302604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Cancer is one of the most serious diseases challenging human health and life span. Cancer has claimed millions of lives worldwide. Early diagnosis and effective treatment of cancer are very important for the survival of patients. In recent years, 2D nanomaterials have shown great potential in the development of anticancer treatment by combining their inherent physicochemical properties after surface modification. 2D nanomaterials have attracted great interest due to their unique nanosheet structure, large surface area, and extraordinary physicochemical properties. This article reviews the advantages and application status of emerging 2D nanomaterials for targeted tumor synergistic therapy compared with traditional therapeutic strategies. In order to investigate novel potential anticancer strategies, this paper focuses on the surface modification, cargo delivery capability, and unique optical properties of emerging 2D nanomaterials. Finally, the current problems and challenges in cancer treatment are summarized and prospected.
Collapse
Affiliation(s)
- Fei Kuang
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Tiankun Hui
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Yingjie Chen
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| |
Collapse
|
7
|
Mitra KLW, Riehs M, Draguicevic A, Swann WA, Li CW, Velian A. Reaction Chemistry at Discrete Organometallic Fragments on Black Phosphorus. Angew Chem Int Ed Engl 2023; 62:e202311575. [PMID: 37844276 DOI: 10.1002/anie.202311575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Black phosphorus (bP) is a two-dimensional van der Waals material unique in its potential to serve as a support for single-site catalysts due to its similarity to molecular phosphines, ligands quintessential in homogeneous catalysis. However, there is a scarcity of synthetic methods to install single metal centers on the bP lattice. Here, we demonstrate the functionalization of bP nanosheets with molecular Re and Mo complexes. A suite of characterization techniques, including infrared, X-ray photoelectron and X-ray absorption spectroscopy as well as scanning transmission electron microscopy corroborate that the functionalized nanosheets contain a high density of discrete metal centers directly bound to the bP surface. Moreover, the supported metal centers are chemically accessible and can undergo ligand exchange transformations without detaching from the surface. The steric and electronic properties of bP as a ligand are estimated with respect to molecular phosphines. Sterically, bP resembles tri(tolyl)phosphine when monodentate to a metal center, and bis(diphenylphosphino)propane when bidentate, whereas electronically bP is a σ-donor as strong as a trialkyl phosphine. This work is foundational in elucidating the nature of black phosphorus as a ligand and underscores the viability of using bP as a basis for single-site catalysts.
Collapse
Affiliation(s)
| | - Michael Riehs
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrei Draguicevic
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - William A Swann
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Christina W Li
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Alexandra Velian
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Nene A, Geng S, Zhou W, Yu XF, Luo H, Ramakrishna S. Black Phosphorous Aptamer-based Platform for Biomarker Detection. Curr Med Chem 2023; 30:935-952. [PMID: 35220933 DOI: 10.2174/0929867329666220225110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Black phosphorus nanostructures (nano-BPs) mainly include BP nanosheets (BP NSs), BP quantum dots (BPQDs), and other nano-BPs-based particles at nanoscale. Firstly discovered in 2014, nano-BPs are one of the most popular nanomaterials. Different synthesis methods are discussed in short to understand the basic concepts and developments in synthesis. Exfoliated nano-BPs, i.e. nano-BPs possess high surface area, high photothermal conversion efficacy, excellent biocompatibility, high charge carrier mobility (~1000 cm-2V-1s-1), thermal conductivity of 86 Wm-1K-1; and these properties make it a highly potential candidate for fabrication of biosensing platform. These properties enable nano-BPs to be promising photothermal/drug delivery agents as well as in electrochemical data storage devices and sensing devices; and in super capacitors, photodetectors, photovoltaics and solar cells, LEDs, super-conductors, etc. Early diagnosis is very critical in the health sector scenarios. This review attempts to highlight the attempts made towards attaining stable BP, BP-aptamer conjugates for successful biosensing applications. BP-aptamer- based platforms are reviewed to highlight the significance of BP in detecting biological and physiological markers of cardiovascular diseases and cancer; to be useful in disease diagnosis and management.
Collapse
Affiliation(s)
- Ajinkya Nene
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Shengyong Geng
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Wenhua Zhou
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Hongrong Luo
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, 117576, Singapore
| |
Collapse
|
9
|
Idumah CI. Phosphorene polymeric nanocomposites for biomedical applications: a review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2158333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
10
|
Li Z, Song J, Yang H. Emerging low-dimensional black phosphorus: from physical-optical properties to biomedical applications. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Recent progress in two-dimensional nanomaterials for cancer theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Li H, Li C, Zhao H, Tao B, Wang G. Two-Dimensional Black Phosphorus: Preparation, Passivation and Lithium-Ion Battery Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185845. [PMID: 36144580 PMCID: PMC9504651 DOI: 10.3390/molecules27185845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
As a new type of single element direct-bandgap semiconductor, black phosphorus (BP) shows many excellent characteristics due to its unique two-dimensional (2D) structure, which has great potential in the fields of optoelectronics, biology, sensing, information, and so on. In recent years, a series of physical and chemical methods have been developed to modify the surface of 2D BP to inhibit its contact with water and oxygen and improve the stability and physical properties of 2D BP. By doping and coating other materials, the stability of BP applied in the anode of a lithium-ion battery was improved. In this work, the preparation, passivation, and lithium-ion battery applications of two-dimensional black phosphorus are summarized and reviewed. Firstly, a variety of BP preparation methods are summarized. Secondly, starting from the environmental instability of BP, different passivation technologies are compared. Thirdly, the applications of BP in energy storage are introduced, especially the application of BP-based materials in lithium-ion batteries. Finally, based on preparation, surface functionalization, and lithium-ion battery of 2D BP, the current research status and possible future development direction are put forward.
Collapse
Affiliation(s)
- Hongda Li
- Correspondence: (H.L.); (B.T.); (G.W.)
| | | | | | - Boran Tao
- Correspondence: (H.L.); (B.T.); (G.W.)
| | | |
Collapse
|
13
|
Zeng Y, Guo Z. Synthesis and stabilization of black phosphorus and phosphorene: recent progress and perspectives. iScience 2021; 24:103116. [PMID: 34646981 PMCID: PMC8497852 DOI: 10.1016/j.isci.2021.103116] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-dimensional black phosphorus (BP) has triggered tremendous research interest owing to its unique crystal structure, high carrier mobility, and tunable direct bandgap. Preparation of few-layer BP with high quality and stability is very important for its related research and applications in biomedicine, electronics, and optoelectronics. In this review, the synthesis methods of BP, including the preparation of bulk BP crystal which is an important raw material for preparing few-layer BP, the popular top-down methods, and some direct growth strategies of few-layer BP are comprehensively overviewed. Then chemical ways to enhance the stability of few-layer BP are concretely introduced. Finally, we propose a selection rule of preparation methods of few-layer BP according to the requirement of specific BP properties for different applications. We hope this review would bring some insight for future researches on BP and contributes to the acceleration of BP's commercial progress.
Collapse
Affiliation(s)
- Yonghong Zeng
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhinan Guo
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
14
|
Giusti L, Landaeta VR, Vanni M, Kelly JA, Wolf R, Caporali M. Coordination chemistry of elemental phosphorus. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Li Y, Xiong J, Guo W, Jin Y, Miao W, Wang C, Zhang H, Hu Y, Huang H. Decomposable black phosphorus nano-assembly for controlled delivery of cisplatin and inhibition of breast cancer metastasis. J Control Release 2021; 335:59-74. [PMID: 33992704 DOI: 10.1016/j.jconrel.2021.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
Novel platforms for cisplatin delivery with a controllable manner and combinable with other treatment modality to achieve synergistic antitumor effect and inhibition metastasis for treatment of triple negative breast cancer (TNBC) are highly desirable. Herein, we report a black phosphorus (BP) nanosheets-based nano-assembly which consists of cisplatin, BP, polydopamine (PDA) and hyaluronic acid (HA), cisplatin/BP/PDA-HA (CBPH), for controlled delivery of cisplatin and inhibition tumor growth as well as lung metastasis of TNBC. For constructing CBPH, the surface of BP was dual modified by PDA and HA, resulting in enhanced stability, tumor target ability and photothermal efficiency of BP. Cisplatin was released in response both to internal and external stimuli existed in tumor microenvironment, including low pH, hydrogen peroxide and NIR light, as accompanied by decomposition of BP. In vitro experiments demonstrated CBPH-treated 4 T1 cells showed elevated intracellular content of Pt and Pt-DNA adduct, which was further improved when exposure to NIR light, leading to potent antitumor effect in a synergistic pattern. Anti-metastasis studies in 2D monolayers and 3D organoids revealed that CBPH plus NIR light treatment exhibited significantly decreased migration, invasion and regrowth ability of 4 T1 cells. Furthermore, TNBC-bearing mice with systemic administrate of CBPH showed enhanced tumor accumulation of cisplatin and light-triggered inhibition of tumor growth at primary site and lung metastasis, with alleviated toxicity. But CBPH is yet to be optimized for realizing smart cisplatin delivery in response to acidic and redox stimuli in vivo. Collectively, our study demonstrates that this novel BP-based nano-assembly with controllable tumor delivery of cisplatin and metastasis inhibition of breast cancer expand the use of BP in biomedicine field and hold great promise for further development.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Jianming Xiong
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenjing Guo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yangye Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.
| | - Cong Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Hongman Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yi Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
16
|
An D, Fu J, Xie Z, Xing C, Zhang B, Wang B, Qiu M. Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. J Mater Chem B 2021; 8:7076-7120. [PMID: 32648567 DOI: 10.1039/d0tb00824a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wonderful black phosphorus (BP) and some BP analogs (BPAs) have been increasingly studied for their biomedical applications owing to their fascinating properties and biodegradability, but opportunities and challenges have always coexisted in their study. Poor stability upon exposure to the natural environment is the major obstacle hampering their in vivo applications. BP/polymer and BPAs/polymer nanocomposites can not only efficiently prevent their oxidation and aggregation but also exhibit "biological activity" due to synergistic effects. In this review, we briefly describe the synthesis methods and stability strategies of BP/polymer and BPAs/polymer. Then, advances pertaining to their exciting therapeutic applications in various fields are systematically introduced, such as cancer therapy (phototherapy, drug delivery, and synergistic immunotherapy), bone regeneration, and neurogenesis. Some challenges for future clinical trials and possible directions for further study are finally discussed.
Collapse
Affiliation(s)
- Dong An
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Jianye Fu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, P. R. China
| | - Chenyang Xing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bin Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bing Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| |
Collapse
|
17
|
Pandey A, Nikam AN, Fernandes G, Kulkarni S, Padya BS, Prassl R, Das S, Joseph A, Deshmukh PK, Patil PO, Mutalik S. Black Phosphorus as Multifaceted Advanced Material Nanoplatforms for Potential Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E13. [PMID: 33374716 PMCID: PMC7822462 DOI: 10.3390/nano11010013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Black phosphorus is one of the emerging members of two-dimensional (2D) materials which has recently entered the biomedical field. Its anisotropic properties and infrared bandgap have enabled researchers to discover its applicability in several fields including optoelectronics, 3D printing, bioimaging, and others. Characterization techniques such as Raman spectroscopy have revealed the structural information of Black phosphorus (BP) along with its fundamental properties, such as the behavior of its photons and electrons. The present review provides an overview of synthetic approaches and properties of BP, in addition to a detailed discussion about various types of surface modifications available for overcoming the stability-related drawbacks and for imparting targeting ability to synthesized nanoplatforms. The review further gives an overview of multiple characterization techniques such as spectroscopic, thermal, optical, and electron microscopic techniques for providing an insight into its fundamental properties. These characterization techniques are not only important for the analysis of the synthesized BP but also play a vital role in assessing the doping as well as the structural integrity of BP-based nanocomposites. The potential role of BP and BP-based nanocomposites for biomedical applications specifically, in the fields of drug delivery, 3D printing, and wound dressing, have been discussed in detail to provide an insight into the multifunctional role of BP-based nanoplatforms for the management of various diseases, including cancer therapy. The review further sheds light on the role of BP-based 2D platforms such as BP nanosheets along with BP-based 0D platforms-i.e., BP quantum dots in the field of therapy and bioimaging of cancer using techniques such as photoacoustic imaging and fluorescence imaging. Although the review inculcates the multimodal therapeutic as well as imaging role of BP, there is still research going on in this field which will help in the development of BP-based theranostic platforms not only for cancer therapy, but various other diseases.
Collapse
Affiliation(s)
- Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Ajinkya N. Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| | - Ruth Prassl
- Gottfried Schatz Research Centre for Cell Signalling, Metabolism and Aging, Medical University of Graz, 8036 Graz, Austria;
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.D.); (A.J.)
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.D.); (A.J.)
| | - Prashant K. Deshmukh
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Buldhana 443101, Maharashtra, India;
| | - Pravin O. Patil
- Department of Pharmaceutical Chemistry, H R Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist Dhule 425405, Maharashtra, India;
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (A.P.); (A.N.N.); (G.F.); (S.K.); (B.S.P.)
| |
Collapse
|
18
|
Zeng G, Chen Y. Surface modification of black phosphorus-based nanomaterials in biomedical applications: Strategies and recent advances. Acta Biomater 2020; 118:1-17. [PMID: 33038527 DOI: 10.1016/j.actbio.2020.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Black phosphorus-based nanomaterials (BPNMs), an emerging member of two-dimensional (2D) nanomaterials, possess excellent physicochemical properties and hold great potential for application in advanced nanomedicines. However, the bare BPNMs easily decrease their biomedical activities due to their degradability and in vivo interactions with biological macromolecules such as plasma proteins, largely restricting their biomedical application. A variety of surface modifications, via chemical, physical or biological approaches, have been developed for BPNMs to avoid these limitations and achieve stable, long-lasting and safe therapeutic effects, thus enlighten the development of the multifunctional BPNMs for more practical application in the field of biomedicine. The present review summarizes the recent advances in the surface modification of BPNMs and the resultant expansion of their biomedical applications. Focus is put on the strategy and method of modification while the effects incurred on the behavior and potential toxicity of BPNMs are also included. The future and challenge of the surface modification of the therapeutic BPNMs are finally discussed.
Collapse
Affiliation(s)
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research; Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
19
|
Cheng L, Cai Z, Zhao J, Wang F, Lu M, Deng L, Cui W. Black phosphorus-based 2D materials for bone therapy. Bioact Mater 2020; 5:1026-1043. [PMID: 32695934 PMCID: PMC7355388 DOI: 10.1016/j.bioactmat.2020.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Since their discovery, Black Phosphorus (BP)-based nanomaterials have received extensive attentions in the fields of electromechanics, optics and biomedicine, due to their remarkable properties and excellent biocompatibility. The most essential feature of BP is that it is composed of a single phosphorus element, which has a high degree of homology with the inorganic components of natural bone, therefore it has a full advantage in the treatment of bone defects. This review will first introduce the source, physicochemical properties, and degradation products of BP, then introduce the remodeling process of bone, and comprehensively summarize the progress of BP-based materials for bone therapy in the form of hydrogels, polymer membranes, microspheres, and three-dimensional (3D) printed scaffolds. Finally, we discuss the challenges and prospects of BP-based implant materials in bone immune regulation and outlook the future clinical application.
Collapse
Affiliation(s)
- Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| |
Collapse
|
20
|
Thurakkal S, Zhang X. Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902359. [PMID: 31993294 PMCID: PMC6974947 DOI: 10.1002/advs.201902359] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/10/2019] [Indexed: 05/25/2023]
Abstract
Owing to their tunable direct bandgap, high charge carrier mobility, and unique in-plane anisotropic structure, black phosphorus nanosheets (BPNSs) have emerged as one of the most important candidates among the 2D materials beyond graphene. However, the poor ambient stability of black phosphorus limits its practical application, due to the chemical degradation of phosphorus atoms to phosphorus oxides in the presence of oxygen and/or water. Chemical functionalization is demonstrated as an efficient approach to enhance the ambient stability of BPNSs. Herein, various covalent strategies including radical addition, nitrene addition, nucleophilic substitution, and metal coordination are summarized. In addition, efficient noncovalent functionalization methods such as van der Waals interactions, electrostatic interactions, and cation-π interactions are described in detail. Furthermore, the preparations, characterization, and diverse applications of functionalized BPNSs in various fields are recapped. The challenges faced and future directions for the chemical functionalization of BPNSs are also highlighted.
Collapse
Affiliation(s)
- Shameel Thurakkal
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4SE‐412 96GöteborgSweden
| | - Xiaoyan Zhang
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4SE‐412 96GöteborgSweden
| |
Collapse
|