1
|
Feng S, Niu L, Wang X, Zhang Q, You R, Li M, Feng Y. Injectable self-crosslinking hyaluronic acid/silk fibroin blend hydrogel based on disulfide bond. Carbohydr Polym 2025; 356:123374. [PMID: 40049956 DOI: 10.1016/j.carbpol.2025.123374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025]
Abstract
Injectable hyaluronic acid (HA) hydrogels show significant potential for applications in soft tissue filling in vivo through minimally invasive interventions. However, HA hydrogels have several shortcomings, including weak bio-mechanical, rapid degradation, and poor cell affinity. In this study, sulfhydrylated HA (SH) and sulfhydrylated silk fibroin (SS) were self-crosslinked to form injectable SH/SS blend hydrogels with adjustable architecture and properties. The gelation time could be programmed from 0.4 to 32 h by varying the SH/SS mass ratio. FTIR analysis revealed that disulfide bonds mediated the formation of the blend hydrogels, in which SS was predominantly structured with β-sheet and significantly improved the mechanical robustness, and enzymatic degradation resistance of the blend hydrogels. The SH/SS hydrogels exhibited a Young's modulus of 1.2-10.9 kPa, showing a highly matched flexibility for various human soft tissues. The SH-containing hydrogels exerted low extrusion forces ranging from 2.3 to 4.6 N, which fall within the clinically acceptable range for injection. In vitro cell culture results demonstrated that the incorporation of SS significantly promoted the viability, migration and proliferation of encapsulated human umbilical vein endothelial cells (HUVECs). These appealing characteristics enable the SH/SS blend hydrogels as promising candidates for applications in soft tissue filling and regeneration.
Collapse
Affiliation(s)
- Siying Feng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xiaotian Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yanfei Feng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
2
|
Du J, Zhou T, Peng W. Functional polysaccharide-based hydrogel in bone regeneration: From fundamentals to advanced applications. Carbohydr Polym 2025; 352:123138. [PMID: 39843049 DOI: 10.1016/j.carbpol.2024.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
Bone regeneration is limited and generally requires external intervention to promote effective repair. Autografts, allografts, and xenografts as traditional methods for addressing bone defects have been widely utilized, their clinical applicability is limited due to their respective disadvantages. Fortunately, functional polysaccharide hydrogels have gained significant attention in bone regeneration due to their exceptional drug-loading capacity, biocompatibility, and ease of chemical modification. They also provide an optimal microenvironment for bone repair and regeneration. This review provides an overview of various functional polysaccharide hydrogels derived from biocompatible materials, focusing on their applications in intelligent delivery systems, bone tissue regeneration, and cartilage defect repair. Particularly, the incorporation of bioactive molecules into the design of functional polysaccharide hydrogels has been shown to significantly enhance bone regeneration. Additionally, this review emphasizes the preparation methods for functional polysaccharide hydrogels and associated the bone healing mechanisms. Finally, the limitations and future prospects of functional polysaccharide hydrogels are thoroughly evaluated.
Collapse
Affiliation(s)
- Jian Du
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China; Hebei North University, Zhangjiakou, 075000, China
| | - Tian Zhou
- Hebei North University, Zhangjiakou, 075000, China
| | - Wei Peng
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
3
|
Chhillar A, Jaiswal A. Hyaluronic Acid-Based Self-Healing Hydrogels for Diabetic Wound Healing. Adv Healthc Mater 2025; 14:e2404255. [PMID: 39722163 DOI: 10.1002/adhm.202404255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Indexed: 12/28/2024]
Abstract
Diabetic wounds, particularly diabetic foot ulcers (DFUs), are significant threats to human well-being due to their impaired healing from poor circulation and high blood sugar, increased risk of infection and potential for severe complications like amputation, all compounded by peripheral neuropathy and chronic inflammation. Most therapies and dressings for DFUs focus on one symptom at a time, however, multifunctional smart self-healing hydrogels can withstand multifactorial motional diabetic wounds. Motional wounds are easy-to-split wounds that experience tension, compression, and movement caused by stress now and then. Hyaluronic acid (HA) based self-healing hydrogels stand out among other biomaterials due to their ability to cover irregular wound surfaces, maintain a moist environment, repair themselves when ruptured, and exhibit excellent biocompatibility. These self-healing hydrogels can repair damages caused by movement and recover the functional properties during healing. These hydrogels can also act as therapeutic delivery vehicles and tissue regeneration systems. This review demonstrates the potential of HA-based self-healing hydrogels for diabetic wound healing. Due to its self-healing capabilities, these hydrogels offer a customized therapeutic approach for motional diabetic wounds. The review also critically examines the challenges and future directions for HA-based self-healing hydrogels in diabetic wound healing.
Collapse
Affiliation(s)
- Anish Chhillar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
4
|
Ueki T, Uto K, Yamamoto S, Tamate R, Kamiyama Y, Jia X, Noguchi H, Minami K, Ariga K, Wang H, Nakanishi J. Ionic Liquid Interface as a Cell Scaffold. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310105. [PMID: 38234135 DOI: 10.1002/adma.202310105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/07/2024] [Indexed: 01/19/2024]
Abstract
In sharp contrast to conventional solid/hydrogel platforms, water-immiscible liquids, such as perfluorocarbons and silicones, allow the adhesion of mammalian cells via protein nanolayers (PNLs) formed at the interface. However, fluorocarbons and silicones, which are typically used for liquid cell culture, possess only narrow ranges of physicochemical parameters and have not allowed for a wide variety of cell culturing environments. In this paper, it is proposed that water-immiscible ionic liquids (ILs) are a new family of liquid substrates with tunable physicochemical properties and high solvation capabilities. Tetraalkylphosphonium-based ILs are identified as non-cytotoxic ILs, whereon human mesenchymal stem cells are successfully cultured. By reducing the cation charge distribution, or ionicity, via alkyl chain elongation, the interface allows cell spreading with matured focal contacts. High-speed atomic force microscopy observations of the PNL formation process suggest that the cation charge distribution significantly altered the protein adsorption dynamics, which are associated with the degree of protein denaturation and the PNL mechanics. Moreover, by exploiting dissolution capability of ILs, an ion-gel cell scaffold is fabricated. This enables to further identify the significant contribution of bulk subphase mechanics to cellular mechanosensing in liquid-based culture scaffolds.
Collapse
Affiliation(s)
- Takeshi Ueki
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku Sapporo, 060-0810, Japan
| | - Koichiro Uto
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Shota Yamamoto
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ryota Tamate
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yuji Kamiyama
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku Sapporo, 060-0810, Japan
| | - Xiaofang Jia
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hidenori Noguchi
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku Sapporo, 060-0810, Japan
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kosuke Minami
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Chiba, 277-0882, Japan
| | - Hongxin Wang
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jun Nakanishi
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Tokyo, Shinjuku-ku, 169-8555, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo, Katsushika-ku, 125-8585, Japan
| |
Collapse
|
5
|
Agrawal P, Tiwari A, Chowdhury SK, Vohra M, Gour A, Waghmare N, Bhutani U, Kamalnath S, Sangwan B, Rajput J, Raj R, Rajendran NP, Kamath AV, Haddadin R, Chandru A, Sangwan VS, Bhowmick T. Kuragel: A biomimetic hydrogel scaffold designed to promote corneal regeneration. iScience 2024; 27:109641. [PMID: 38646166 PMCID: PMC11031829 DOI: 10.1016/j.isci.2024.109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Cornea-related injuries are the most common cause of blindness worldwide. Transplantation remains the primary approach for addressing corneal blindness, though the demand for donor corneas outmatches the supply by millions. Tissue adhesives employed to seal corneal wounds have shown inefficient healing and incomplete vision restoration. We have developed a biodegradable hydrogel - Kuragel, with the ability to promote corneal regeneration. Functionalized gelatin and hyaluronic acid form photo-crosslinkable hydrogel with transparency and compressive modulus similar to healthy human cornea. Kuragel composition was tuned to achieve sufficient adhesive strength for sutureless integration to host tissue, with minimal swelling post-administration. Studies in the New Zealand rabbit mechanical injury model affecting corneal epithelium and stroma demonstrate that Kuragel efficiently promotes re-epithelialization within 1 month of administration, while stroma and sub-basal nerve plexus regenerate within 3 months. We propose Kuragel as a regenerative treatment for patients suffering from corneal defects including thinning, by restoration of transparency and thickness.
Collapse
Affiliation(s)
| | - Anil Tiwari
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | - Mehak Vohra
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Abha Gour
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | | | - S. Kamalnath
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Jyoti Rajput
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Ritu Raj
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | | | - Ramez Haddadin
- Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Arun Chandru
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Tuhin Bhowmick
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Pandorum International Inc, San Francisco, CA, USA
| |
Collapse
|
6
|
Skelton M, Gentry JL, Astrab LR, Goedert JA, Earl EB, Pham EL, Bhat T, Caliari SR. Modular Multiwell Viscoelastic Hydrogel Platform for Two- and Three-Dimensional Cell Culture Applications. ACS Biomater Sci Eng 2024; 10:3280-3292. [PMID: 38608136 PMCID: PMC11094681 DOI: 10.1021/acsbiomaterials.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Hydrogels have gained significant popularity as model platforms to study reciprocal interactions between cells and their microenvironment. While hydrogel tools to probe many characteristics of the extracellular space have been developed, fabrication approaches remain challenging and time-consuming, limiting multiplexing or widespread adoption. Thus, we have developed a modular fabrication approach to generate distinct hydrogel microenvironments within the same 96-well plate for increased throughput of fabrication as well as integration with existing high-throughput assay technologies. This approach enables in situ hydrogel mechanical characterization and is used to generate both elastic and viscoelastic hydrogels across a range of stiffnesses. Additionally, this fabrication method enabled a 3-fold reduction in polymer and up to an 8-fold reduction in fabrication time required per hydrogel replicate. The feasibility of this platform for two-dimensional (2D) cell culture applications was demonstrated by measuring both population-level and single-cell-level metrics via microplate reader and high-content imaging. Finally, a 96-well hydrogel array was utilized for three-dimensional (3D) cell culture, demonstrating the ability to support high cell viability. Together, this work demonstrates a versatile and easily adaptable fabrication approach that can support the ever-expanding tool kit of hydrogel technologies for cell culture applications.
Collapse
Affiliation(s)
- Mackenzie
L. Skelton
- Department
of Biomedical Engineering, Department of Psychology, Department of Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - James L. Gentry
- Department
of Biomedical Engineering, Department of Psychology, Department of Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Leilani R. Astrab
- Department
of Biomedical Engineering, Department of Psychology, Department of Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Joshua A. Goedert
- Department
of Biomedical Engineering, Department of Psychology, Department of Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - E. Brynn Earl
- Department
of Biomedical Engineering, Department of Psychology, Department of Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Emily L. Pham
- Department
of Biomedical Engineering, Department of Psychology, Department of Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Tanvi Bhat
- Department
of Biomedical Engineering, Department of Psychology, Department of Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Steven R. Caliari
- Department
of Biomedical Engineering, Department of Psychology, Department of Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
7
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
8
|
Skelton ML, Gentry JL, Astrab LR, Goedert JA, Earl EB, Pham EL, Bhat T, Caliari SR. Modular multiwell viscoelastic hydrogel platform for two- and three-dimensional cell culture applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561449. [PMID: 37873098 PMCID: PMC10592709 DOI: 10.1101/2023.10.09.561449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Hydrogels have gained significant popularity as model platforms to study the reciprocal interactions between cells and their microenvironment. While hydrogel tools to probe many characteristics of the extracellular space have been developed, fabrication approaches remain challenging and time-consuming, limiting multiplexing or widespread adoption. Thus, we have developed a modular fabrication approach to generate distinct hydrogel microenvironments within 96-well plates for increased throughput of fabrication as well as integration with existing high-throughput assay technologies. This approach enables in situ hydrogel mechanical characterization and was used to generate both elastic and viscoelastic hydrogels across a range of stiffnesses. Additionally, this fabrication method enabled a 3-fold reduction in polymer and up to an 8-fold reduction in fabrication time required per hydrogel replicate. The feasibility of this platform for cell culture applications was demonstrated by measuring both population-level and single cell-level metrics via microplate reader and high-content imaging. Finally, the 96-well hydrogel array was utilized for 3D cell culture, demonstrating the ability to support high cell viability. Together, this work demonstrates a versatile and easily adoptable fabrication approach that can support the ever-expanding tool kit of hydrogel technologies for cell culture applications.
Collapse
Affiliation(s)
- Mackenzie L. Skelton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - James L. Gentry
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Leilani R. Astrab
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Joshua A. Goedert
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - E. Brynn Earl
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Emily L. Pham
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Tanvi Bhat
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22903
| | - Steven R. Caliari
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
9
|
Li Z, Wang Z, Wang C, Li W, Fan W, Zhao R, Feng H, Peng D, Huang W. Mechanoluminescent Materials Enable Mechanochemically Controlled Atom Transfer Radical Polymerization and Polymer Mechanotransduction. RESEARCH (WASHINGTON, D.C.) 2023; 6:0243. [PMID: 37795336 PMCID: PMC10546606 DOI: 10.34133/research.0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Organic mechanophores have been widely adopted for polymer mechanotransduction. However, most examples of polymer mechanotransduction inevitably experience macromolecular chain rupture, and few of them mimic mussel's mechanochemical regeneration, a mechanically mediated process from functional units to functional materials in a controlled manner. In this paper, inorganic mechanoluminescent (ML) materials composed of CaZnOS-ZnS-SrZnOS: Mn2+ were used as a mechanotransducer since it features both piezoelectricity and mechanolunimescence. The utilization of ML materials in polymerization enables both mechanochemically controlled radical polymerization and the synthesis of ML polymer composites. This procedure features a mechanochemically controlled manner for the design and synthesis of diverse mechanoresponsive polymer composites.
Collapse
Affiliation(s)
- Zexuan Li
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenxi Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenru Fan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Haoyang Feng
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
10
|
Zhang Y, Wang Z, Sun Q, Li Q, Li S, Li X. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5161. [PMID: 37512435 PMCID: PMC10386333 DOI: 10.3390/ma16145161] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
The extracellular matrix (ECM) of natural cells typically exhibits dynamic mechanical properties (viscoelasticity and dynamic stiffness). The viscoelasticity and dynamic stiffness of the ECM play a crucial role in biological processes, such as tissue growth, development, physiology, and disease. Hydrogels with viscoelasticity and dynamic stiffness have recently been used to investigate the regulation of cell behavior and fate. This article first emphasizes the importance of tissue viscoelasticity and dynamic stiffness and provides an overview of characterization techniques at both macro- and microscale. Then, the viscoelastic hydrogels (crosslinked via ion bonding, hydrogen bonding, hydrophobic interactions, and supramolecular interactions) and dynamic stiffness hydrogels (softening, stiffening, and reversible stiffness) with different crosslinking strategies are summarized, along with the significant impact of viscoelasticity and dynamic stiffness on cell spreading, proliferation, migration, and differentiation in two-dimensional (2D) and three-dimensional (3D) cell cultures. Finally, the emerging trends in the development of dynamic mechanical hydrogels are discussed.
Collapse
Affiliation(s)
- Yuhang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zhuofan Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohui Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China (Q.L.)
- National Center for International Joint Research of Micro-Nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Yang X, He S, Wang J, Liu Y, Ma W, Yu CY, Wei H. Hyaluronic acid-based injectable nanocomposite hydrogels with photo-thermal antibacterial properties for infected chronic diabetic wound healing. Int J Biol Macromol 2023; 242:124872. [PMID: 37217062 DOI: 10.1016/j.ijbiomac.2023.124872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
A hydrogel wound dressing with a single functionality fails to meet the requirements for successful clinical treatment of chronic diabetic wounds that generally possess complicated microenvironments. A multifunctional hydrogel is thus highly desirable for improved clinical treatment. For this purpose, we reported herein construction of an injectable nanocomposite hydrogel with self-healing and photo-thermal properties as an antibacterial adhesive via dynamic Michael addition reaction and electrostatic interactions among three building moieties, i.e., catechol and thiol-modified hyaluronic acid (HA-CA and HA-SH), poly(hexamethylene guanidine) (PHMG), and black phosphorus nanosheets (BPs). An optimized hydrogel formulation eliminated over 99.99 % of bacteria (E. coli and S. aureus) and exhibited a free radical scavenging capability >70 % as well as photo-thermal properties in addition to viscoelastic characteristics, degradation properties in vitro, good adhesion and self-adaptation capacity. Wound healing experiments in vivo further confirmed the better performance of the developed hydrogels than that of a commercially available dressing (Tegaderm™) in promoting the healing of infected chronic wounds by preventing wound infection, decreasing inflammation, supporting collagen deposition, facilitating angiogenesis, and improving granulation tissues formation in the wound sites. Overall, the HA-based injectable composite hydrogels developed herein represent promising multifunctional wound dressings for infected diabetic wound repair.
Collapse
Affiliation(s)
- Xu Yang
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, China; Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China
| | - Suisui He
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China
| | - Jun Wang
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China
| | - Ying Liu
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China
| | - Wei Ma
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, China; Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China
| | - Cui-Yun Yu
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China
| | - Hua Wei
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
12
|
Kikani T, Dave S, Thakore S. Functionalization of hyaluronic acid for development of self-healing hydrogels for biomedical applications: A review. Int J Biol Macromol 2023; 242:124950. [PMID: 37207760 DOI: 10.1016/j.ijbiomac.2023.124950] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Materials that are capable of undergoing self-repair following any physical damage or rupture due to external stimuli are identified as self-healing materials. Such materials are engineered by crosslinking the polymer backbone chains typically through reversible linkages. These reversible linkages include imines, metal-ligand coordination, polyelectrolyte interaction, disulfide, etc. These bonds are reversibly responsive to changes in various stimuli. Newer self-healing materials are now being developed in the field of biomedicine. Chitosan, cellulose, starch etc. are a few examples of polysaccharides that are generally used to synthesize such materials. Hyaluronic acid has been a very recent addition to the list of polysaccharides that are being investigated for construction of self-healing materials. It is non-toxic, non-immunogenic, has good gelation property and good injectability. Hyaluronic acid based self-healing materials are particularly employed for targeted drug delivery, protein and cell delivery, electronics, biosensors and many such biomedical applications. This review critically focuses on the functionalization of hyaluronic acid to fabricate self-healing hydrogels for biomedical applications. It also explores and sums up the mechanical data as well as self-healing efficiency of the hydrogels across wide range of interactions as discussed in the review below.
Collapse
Affiliation(s)
- Twara Kikani
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Sanskruti Dave
- Department of Pharmacy, Babaria Institute of Pharmacy, Gujarat Technological University, Vadodara 391240, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India.
| |
Collapse
|
13
|
Sekar MP, Suresh S, Zennifer A, Sethuraman S, Sundaramurthi D. Hyaluronic Acid as Bioink and Hydrogel Scaffolds for Tissue Engineering Applications. ACS Biomater Sci Eng 2023. [PMID: 37115515 DOI: 10.1021/acsbiomaterials.3c00299] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that focuses on developing living tissue constructs using bioinks. Bioink is crucial in determining the stability of printed patterns, which remains a major challenge in bioprinting. Thus, the choices of bioink composition, modifications, and cross-linking methods are being continuously researched to augment the clinical translation of bioprinted constructs. Hyaluronic acid (HA) is a naturally occurring polysaccharide with the repeating unit of N-acetyl-glucosamine and d-glucuronic acid disaccharides. It is present in the extracellular matrix (ECM) of tissues (skin, cartilage, nerve, muscle, etc.) with a wide range of molecular weights. Due to the nature of its chemical structure, HA could be easily subjected to chemical modifications and cross-linking that would enable better printability and stability. These interesting properties have made HA an ideal choice of bioinks for developing tissue constructs for regenerative medicine applications. In this Review, the physicochemical properties, reaction chemistry involved in various cross-linking strategies, and biomedical applications of HA have been elaborately discussed. Further, the features of HA bioinks, emerging strategies in HA bioink preparations, and their applications in 3D bioprinting have been highlighted. Finally, the current challenges and future perspectives in the clinical translation of HA-based bioinks are outlined.
Collapse
Affiliation(s)
- Muthu Parkkavi Sekar
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Shruthy Suresh
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu - 613 401, India
| |
Collapse
|
14
|
Deng H, Wang J, An R. Hyaluronic acid-based hydrogels: As an exosome delivery system in bone regeneration. Front Pharmacol 2023; 14:1131001. [PMID: 37007032 PMCID: PMC10063825 DOI: 10.3389/fphar.2023.1131001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) containing various ingredients such as DNA, RNA, lipids and proteins, which play a significant role in intercellular communication. Numerous studies have demonstrated the important role of exosomes in bone regeneration through promoting the expression of osteogenic-related genes and proteins in mesenchymal stem cells. However, the low targeting ability and short circulating half-life of exosomes limited their clinical application. In order to solve those problems, different delivery systems and biological scaffolds have been developed. Hydrogel is a kind of absorbable biological scaffold composed of three-dimensional hydrophilic polymers. It not only has excellent biocompatibility and superior mechanical strength but can also provide a suitable nutrient environment for the growth of the endogenous cells. Thus, the combination between exosomes and hydrogels can improve the stability and maintain the biological activity of exosomes while achieving the sustained release of exosomes in the bone defect sites. As an important component of the extracellular matrix (ECM), hyaluronic acid (HA) plays a critical role in various physiological and pathological processes such as cell differentiation, proliferation, migration, inflammation, angiogenesis, tissue regeneration, wound healing and cancer. In recent years, hyaluronic acid-based hydrogels have been used as an exosome delivery system for bone regeneration and have displayed positive effects. This review mainly summarized the potential mechanism of HA and exosomes in promoting bone regeneration and the application prospects and challenges of hyaluronic acid-based hydrogels as exosome delivery devices in bone regeneration.
Collapse
Affiliation(s)
| | | | - Ran An
- *Correspondence: Jiecong Wang, ; Ran An,
| |
Collapse
|
15
|
Pérez LA, Hernández R, Alonso JM, Pérez-González R, Sáez-Martínez V. Granular Disulfide-Crosslinked Hyaluronic Hydrogels: A Systematic Study of Reaction Conditions on Thiol Substitution and Injectability Parameters. Polymers (Basel) 2023; 15:polym15040966. [PMID: 36850248 PMCID: PMC9967816 DOI: 10.3390/polym15040966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Granular polymer hydrogels based on dynamic covalent bonds are attracting a great deal of interest for the design of injectable biomaterials. Such materials generally exhibit shear-thinning behavior and properties of self-healing/recovery after the extrusion that can be modulated through the interactions between gel microparticles. Herein, bulk macro-hydrogels based on thiolated-hyaluronic acid were produced by disulphide bond formation using oxygen as oxidant at physiological conditions and gelation kinetics were monitored. Three different thiol substitution degrees (SD%: 65%, 30% and 10%) were selected for hydrogel formation and fully characterized as to their stability in physiological medium and morphology. Then, extrusion fragmentation technique was applied to obtain hyaluronic acid microgels with dynamic disulphide bonds that were subsequently sterilized by autoclaving. The resulting granular hyaluronic hydrogels were able to form stable filaments when extruded through a syringe. Rheological characterization and cytotoxicity tests allowed to assess the potential of these materials as injectable biomaterials. The application of extrusion fragmentation for the formation of granular hyaluronic hydrogels and the understanding of the relation between the autoclaving processes and the resulting particle size and rheological properties should expand the development of injectable materials for biomedical applications.
Collapse
Affiliation(s)
- Luis Andrés Pérez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain
- Correspondence: (R.H.); (V.S.-M.); Tel.: +34-915-622900 (R.H.); +34-945-561134 (V.S.-M.)
| | - José María Alonso
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
| | - Raúl Pérez-González
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
| | - Virginia Sáez-Martínez
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain
- Correspondence: (R.H.); (V.S.-M.); Tel.: +34-915-622900 (R.H.); +34-945-561134 (V.S.-M.)
| |
Collapse
|
16
|
Wang S, Tavakoli S, Parvathaneni RP, Nawale GN, Oommen OP, Hilborn J, Varghese OP. Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications. Biomater Sci 2022; 10:6399-6412. [PMID: 36214100 DOI: 10.1039/d2bm01154a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hyaluronic acid (HA), one of the main components of the extracellular matrix (ECM), is extensively used in the design of hydrogels and nanoparticles for different biomedical applications due to its critical role in vivo, degradability by endogenous enzymes, and absence of immunogenicity. HA-based hydrogels and nanoparticles have been developed by utilizing different crosslinking chemistries. The development of such crosslinking chemistries indicates that even subtle differences in the structure of reactive groups or the procedure of crosslinking may have a profound impact on the intended mechanical, physical and biological outcomes. There are widespread examples of modified HA polymers that can form either covalently or physically crosslinked biomaterials. More recently, studies have been focused on dynamic covalent crosslinked HA-based biomaterials since these types of crosslinking allow the preparation of dynamic structures with the ability to form in situ, be injectable, and have self-healing properties. In this review, HA-based hydrogels and nanomaterials that are crosslinked by dynamic-covalent coupling (DCC) chemistry have been critically assessed.
Collapse
Affiliation(s)
- Shujiang Wang
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Shima Tavakoli
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Rohith Pavan Parvathaneni
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Ganesh N Nawale
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Jöns Hilborn
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Oommen P Varghese
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| |
Collapse
|
17
|
Annala A, Ilochonwu BC, Wilbie D, Sadeghi A, Hennink WE, Vermonden T. Self-Healing Thermosensitive Hydrogel for Sustained Release of Dexamethasone for Ocular Therapy. ACS POLYMERS AU 2022; 3:118-131. [PMID: 36785837 PMCID: PMC9912331 DOI: 10.1021/acspolymersau.2c00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The aim of this study was to develop an injectable hydrogel delivery system for sustained ocular delivery of dexamethasone. To this end, a self-healing hydrogel consisting of a thermosensitive ABA triblock copolymer was designed. The drug was covalently linked to the polymer by copolymerization of methacrylated dexamethasone with N-isopropylacrylamide (NIPAM) and N-acryloxysuccinimide (NAS) through reversible addition-fragmentation chain transfer (RAFT) polymerization, using poly(ethylene glycol) (PEG) functionalized at both ends with a chain transfer agent (CTA). Hydrogel formation was achieved by mixing aqueous solutions of the formed thermosensitive polymer (with a cloud point of 23 °C) with cystamine at 37 °C, to result in covalent cross-linking due to the reaction of the N-hydroxysuccimide (NHS) functionality of the polymer and the primary amines of cystamine. Rheological analysis showed both thermogelation and covalent cross-linking at 37 °C, as well as the self-healing properties of the formed network, which was attributed to the presence of disulfide bonds in the cystamine cross-links, making the system injectable. The release of dexamethasone from the hydrogel occurred through ester hydrolysis following first-order kinetics in an aqueous medium at pH 7.4 over 430 days at 37 °C. Based on simulations, administration of 100 mg of hydrogel would be sufficient for maintaining therapeutic levels of dexamethasone in the vitreous for at least 500 days. Importantly, dexamethasone was released from the hydrogel in its native form as determined by LC-MS analysis. Cytocompatibility studies showed that at clinically relevant concentrations, both the polymer and the cross-linker were well tolerated by adult retinal pigment epithelium (ARPE-19) cells. Moreover, the hydrogel did not show any toxicity to ARPE-19 cells. The injectability of the hydrogel, together with the long-lasting release of dexamethasone and good cytocompatibility with a retinal cell line, makes this delivery system an attractive candidate for treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Ada Annala
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty
of Science, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Blessing C. Ilochonwu
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty
of Science, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Danny Wilbie
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty
of Science, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Amir Sadeghi
- School
of Pharmacy, University of Eastern Finland, Kuopio 70210, Finland
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty
of Science, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty
of Science, Utrecht University, Utrecht 3584 CG, The Netherlands,
| |
Collapse
|
18
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
19
|
Chen J, Zhai Z, Edgar KJ. Recent advances in polysaccharide-based in situ forming hydrogels. Curr Opin Chem Biol 2022; 70:102200. [PMID: 35998387 DOI: 10.1016/j.cbpa.2022.102200] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Polysaccharides comprise an important class of natural polymers; they are abundant, diverse, polyfunctional, typically benign, and are biodegradable. Using polysaccharides to design in situ forming hydrogels is an attractive and important field of study since many polysaccharide-based hydrogels exhibit desirable characteristics including self-healing, responsiveness to environmental stimuli, and injectability. These characteristics are particularly useful for biomedical applications. This review will discuss recent discoveries in polysaccharide-based in situ forming hydrogels, including network architecture designs, curing mechanisms, physical and chemical properties, and potential applications.
Collapse
Affiliation(s)
- Junyi Chen
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin J Edgar
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
20
|
Recent advances of three-dimensional micro-environmental constructions on cell-based biosensors and perspectives in food safety. Biosens Bioelectron 2022; 216:114601. [DOI: 10.1016/j.bios.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
|
21
|
Yang W, Teng L, Sun X, Liu J, Huang Y, Zhao Q, Song W, Ren L. Dynamically Phototunable and Redox‐Responsive Hybrid Supramolecular Hydrogels for Three‐Dimensional Culture of Chondrocytes. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weiya Yang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Lijing Teng
- School of Biology and Engineering Guizhou Medical University Guizhou 550025 China
| | - Xiaomin Sun
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Jia Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Yongrui Huang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Qi Zhao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Wenjing Song
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
| | - Li Ren
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
- Sino‐Singapore International Joint Research Institute Guangzhou 510555 China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) Guangzhou 510005 China
| |
Collapse
|
22
|
Ding YW, Wang ZY, Ren ZW, Zhang XW, Wei DX. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater Sci 2022; 10:3393-3409. [PMID: 35575243 DOI: 10.1039/d2bm00397j] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Hyaluronic acid (HA) is a natural linear anionic polysaccharide with many unique characteristics such as excellent biocompatibility and biodegradability, native biofunctionality, hydrophilicity, and non-immunoreactivity. HA plays crucial roles in numerous biological processes, including the inflammatory response, cell adhesion, migration, proliferation, differentiation, angiogenesis, and tissue regeneration. All these properties and biological functions of HA make it an appealing material for the synthesis of biomedical hydrogels for skin wound healing. Since HA is not able to be gelate alone, it must be processed and functionalized through chemical modifications and crosslinking to generate versatile HA-based hydrogels. In recent years, different physical and chemical crosslinking strategies for HA-based hydrogels have been developed and designed, such as radical polymerization, Schiff-base crosslinking, enzymatic crosslinking, and dynamic covalent crosslinking, and they have broad and promising applications in skin wound healing and tissue engineering. In this review, we focus on chemical modification and crosslinking strategies for HA-based hydrogels, aiming to provide an overview of the latest advances in the development of HA-based hydrogels for skin wound healing. We summarize and propose feasible measures for the application of HA-based hydrogels for skin treatment, and discuss future application trends, which may ultimately promote HA-based hydrogels as a promising biomaterial for clinical applications.
Collapse
Affiliation(s)
- Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Xu-Wei Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| |
Collapse
|
23
|
Design of asymmetric-adhesion lignin-reinforced hydrogels based on disulfide bond crosslinking for strain sensing application. Int J Biol Macromol 2022; 212:275-282. [PMID: 35594941 DOI: 10.1016/j.ijbiomac.2022.05.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022]
Abstract
Soft and elastic polymer hydrogel materials are booming in the fields of wearable biomimetic skin, sensors, robotics, and bioelectrodes. Currently, many researchers are exploring new chemistries for the preparation of hydrogels to improve their performance. In the present study, we design and develop a strategy to prepare lignin reinforced hydrogels based on disulfide bond crosslinking mechanisms, and resultant hydrogels exhibit excellent stretchability, with tensile strain of up to 1085.4%, and high adhesion (with the highest T-peel strength of up to 432.2 N/m to pigskin). The underlying mechanism is based on the disulfide bonds that act as crosslinkers in the as-prepared hydrogel, and they can be easily cleaved and re-formed under mild conditions. Thanks to the presence of lignin, the as-obtained hydrogels also have excellent UV shielding effect. When assembled into a strain sensor, they can output stable and sensitive sensing signals, with gauge factor (GF) of 2.72 (strain: 0-72.8%). Furthermore, a simple and effective strategy to construct asymmetric adhesive hydrogels was adopted, which is based on directional soaking of the top portion of the hydrogel in a high-concentrated calcium chloride solution. The asymmetric hydrogel strain sensor transmits accurate and stable signals without the interference of various contaminants.
Collapse
|
24
|
Yang Y, Xu L, Wang J, Meng Q, Zhong S, Gao Y, Cui X. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr Polym 2022; 283:119161. [DOI: 10.1016/j.carbpol.2022.119161] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
25
|
Recent studies on modulating hyaluronic acid-based hydrogels for controlled drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00568-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Jin M, Gläser A, Paez JI. Redox-triggerable firefly luciferin-bioinspired hydrogels as injectable and cell-encapsulating matrices. Polym Chem 2022. [DOI: 10.1039/d2py00481j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel redox-triggered bioinspired hydrogel platform that offers high control over gelation onset and kinetics is presented. This platform is suitable for the development of injectable matrices.
Collapse
Affiliation(s)
- Minye Jin
- INM – Leibniz Institute for New Materials, Campus D2-2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
- Developmental Bioengineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Alisa Gläser
- INM – Leibniz Institute for New Materials, Campus D2-2, 66123, Saarbrücken, Germany
| | - Julieta I. Paez
- INM – Leibniz Institute for New Materials, Campus D2-2, 66123, Saarbrücken, Germany
- Developmental Bioengineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| |
Collapse
|
27
|
Zhang R, Nie T, Fang Y, Huang H, Wu J. Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules 2021; 23:1-19. [PMID: 34874705 DOI: 10.1021/acs.biomac.1c01210] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioresponsive polymers have been widely used in drug delivery because of their degradability. For example, poly(disulfide)s with repeating disulfide bonds in the main chain have attracted considerable research attention. The characteristics of the disulfide bonds, including their dynamic and reversible properties and their responsiveness to stimuli such as reductants, light, heat, and mechanical force, make them ideal platforms for on-demand drug delivery. This review introduces the synthesis methods and applications of poly(disulfide)s. Furthermore, the synthesis methods of poly(disulfide)s are classified on the basis of the monomers used: oxidative step-growth polymerization with dithiols, ring-opening polymerization with cyclic disulfides, and polymerization with linear disulfides. In addition, recent advances in poly(disulfide)s for the delivery of small-molecule or biomacromolecular drugs are discussed. Quantum-dot-loaded poly(disulfide) delivery systems for imaging are also included. This review provides an overview of the various design strategies employed in the construction of poly(disulfide) platforms to inspire new applications in the field of drug delivery.
Collapse
Affiliation(s)
- Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Nie
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
28
|
Xia D, Wang F, Pan S, Yuan S, Liu Y, Xu Y. Redox/pH-Responsive Biodegradable Thiol-Hyaluronic Acid/Chitosan Charge-Reversal Nanocarriers for Triggered Drug Release. Polymers (Basel) 2021; 13:3785. [PMID: 34771342 PMCID: PMC8587763 DOI: 10.3390/polym13213785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Biodegradable nanoparticles and micelles are promising nanosystems for the targeted delivery of potent anticancer drugs. By using specialized polymers as nanocarriers, targeted drug delivery and release can be developed. We developed thiol-hyaluronic acid (HA-SH)/chitosan (CS) nanoparticles with redox/pH dual-responsiveness via electrostatic self-assembly followed by spontaneous chemical cross-linking. The nanoparticle surface charges were reversible through different HA-SH and CS mass ratios. Doxorubicin (DOX) was used as a model drug. Dual cross-linked nanoparticles with diameters of approximately 300 nm exhibited superior stability under physiological conditions compared with nanoparticles without disulfide cross-linking. DOX was loaded more efficiently into negative nanoparticles (45.7 wt%) than positive nanoparticles (14.2 wt%). Drug release from negative nanoparticles (ζ potential of approximately -20) was higher (87.8 wt%) at pH 4.5 and in the presence of 10 mM glutathione. Positive nanoparticles (ζ potential of approximately +20) showed the same trend, but the release rate was slower than that of negative nanoparticles. DOX-loaded HA-SH/CS particles were taken up by human breast cancer cells (SKBR3), and the loaded drug was released, exhibiting potential antitumor efficacy. The HA-SH/CS nanoparticles in this study were stable under physiological conditions and are promising candidates for the targeted delivery and release of anticancer drugs.
Collapse
Affiliation(s)
- Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China; (D.X.); (S.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing 100081, China;
| | - Feilong Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing 100081, China;
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Shuo Pan
- Center for Medical Device Evaluation, National Medical Products Administration, Haidian District, Beijing 100081, China;
| | - Shenpo Yuan
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China; (D.X.); (S.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing 100081, China;
| | - Yunsong Liu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing 100081, China;
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China; (D.X.); (S.Y.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing 100081, China;
| |
Collapse
|
29
|
Kaur A, Gautrot JE, Cavalli G, Watson D, Bickley A, Akutagawa K, Busfield JJC. Novel Crosslinking System for Poly-Chloroprene Rubber to Enable Recyclability and Introduce Self-Healing. Polymers (Basel) 2021; 13:3347. [PMID: 34641163 PMCID: PMC8512348 DOI: 10.3390/polym13193347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
The introduction of dynamic bonds capable of mediating self-healing in a fully cross-linked polychloroprene network can only occur if the reversible moieties are carried by the cross-linker itself or within the main polymer backbone. Conventional cross-linking is not suitable for such a purpose. In the present work, a method to develop a self-healable and recyclable polychloroprene rubber is presented. Dynamic disulfide bonds are introduced as part of the structure of a crosslinker (liquid polysulfide polymer, Thiokol LP3) coupled to the polymer backbone via thermally initiated thiol-ene reaction. The curing and kinetic parameters were determined by isothermal differential scanning calorimetry and by moving die rheometer analysis; tensile testing was carried to compare the tensile strength of cured compound, healed compounds and recycled compounds, while chemical analysis was conducted by surface X-ray Photoelectron Spectroscopy. Three formulations with increasing concentrations of Thiokol LP-3 were studied (2, 4, 6 phr), reaching a maximum ultimate tensile strength of 22.4 MPa and ultimate tensile strain of 16.2 with 2 phr of Thiokol LP-3, 11.7 MPa and 10.7 strain with 4 phr and 5.6 MPa and 7.3 strain with 6 phr. The best healing efficiencies were obtained after 24 h of healing at 80 °C, increasing with the concentration of Thiokol LP-3, reaching maximum values of 4.5% 4.4% 13.4% with 2 phr, 4 phr and 6 phr, respectively, while the highest recycling efficiency was obtained with 4 phr of Thiokol LP-3, reaching 11.2%.
Collapse
Affiliation(s)
- Anureet Kaur
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (A.K.); (J.E.G.); (G.C.); (K.A.)
| | - Julien E. Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (A.K.); (J.E.G.); (G.C.); (K.A.)
| | - Gabriele Cavalli
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (A.K.); (J.E.G.); (G.C.); (K.A.)
| | - Douglas Watson
- Weir Advanced Research Centre, Glasgow G1 1RD, UK; (D.W.); (A.B.)
| | - Alan Bickley
- Weir Advanced Research Centre, Glasgow G1 1RD, UK; (D.W.); (A.B.)
| | - Keizo Akutagawa
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (A.K.); (J.E.G.); (G.C.); (K.A.)
| | - James J. C. Busfield
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (A.K.); (J.E.G.); (G.C.); (K.A.)
| |
Collapse
|
30
|
Pérez LA, Hernández R, Alonso JM, Pérez-González R, Sáez-Martínez V. Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines 2021; 9:1113. [PMID: 34572298 PMCID: PMC8466770 DOI: 10.3390/biomedicines9091113] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Hyaluronic acid (HA) hydrogels display a wide variety of biomedical applications ranging from tissue engineering to drug vehiculization and controlled release. To date, most of the commercially available hyaluronic acid hydrogel formulations are produced under conditions that are not compatible with physiological ones. This review compiles the currently used approaches for the development of hyaluronic acid hydrogels under physiological/mild conditions. These methods include dynamic covalent processes such as boronic ester and Schiff-base formation and click chemistry mediated reactions such as thiol chemistry processes, azide-alkyne, or Diels Alder cycloaddition. Thermoreversible gelation of HA hydrogels at physiological temperature is also discussed. Finally, the most outstanding biomedical applications are indicated for each of the HA hydrogel generation approaches.
Collapse
Affiliation(s)
- Luis Andrés Pérez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain;
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain;
| | - José María Alonso
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| | - Raúl Pérez-González
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| | - Virginia Sáez-Martínez
- i+Med S. Coop. Parque Tecnológico de Álava, Albert Einstein 15, Nave 15, 01510 Vitoria-Gasteiz, Spain; (J.M.A.); (R.P.-G.)
| |
Collapse
|
31
|
Comparative adhesion of chemically and physically crosslinked poly(acrylic acid)-based hydrogels to soft tissues. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Yoo KM, Murphy SV, Skardal A. A Rapid Crosslinkable Maleimide-Modified Hyaluronic Acid and Gelatin Hydrogel Delivery System for Regenerative Applications. Gels 2021; 7:13. [PMID: 33535669 PMCID: PMC7931058 DOI: 10.3390/gels7010013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels have played a significant role in many applications of regenerative medicine and tissue engineering due to their versatile properties in realizing design and functional requirements. However, as bioengineered solutions are translated towards clinical application, new hurdles and subsequent material requirements can arise. For example, in applications such as cell encapsulation, drug delivery, and biofabrication, in a clinical setting, hydrogels benefit from being comprised of natural extracellular matrix-based materials, but with defined, controllable, and modular properties. Advantages for these clinical applications include ultraviolet light-free and rapid polymerization crosslinking kinetics, and a cell-friendly crosslinking environment that supports cell encapsulation or in situ crosslinking in the presence of cells and tissue. Here we describe the synthesis and characterization of maleimide-modified hyaluronic acid (HA) and gelatin, which are crosslinked using a bifunctional thiolated polyethylene glycol (PEG) crosslinker. Synthesized products were evaluated by proton nuclear magnetic resonance (NMR), ultraviolet visibility spectrometry, size exclusion chromatography, and pH sensitivity, which confirmed successful HA and gelatin modification, molecular weights, and readiness for crosslinking. Gelation testing both by visual and NMR confirmed successful and rapid crosslinking, after which the hydrogels were characterized by rheology, swelling assays, protein release, and barrier function against dextran diffusion. Lastly, biocompatibility was assessed in the presence of human dermal fibroblasts and keratinocytes, showing continued proliferation with or without the hydrogel. These initial studies present a defined, and well-characterized extracellular matrix (ECM)-based hydrogel platform with versatile properties suitable for a variety of applications in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Kyung Min Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA;
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27101, USA;
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Fontana Labs., 140 W. 19th Ave, Columbus, OH 43210, USA
- Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|