1
|
Shiu YJ, Mansel BW, Liao KF, Hsu TW, Chang JW, Shih O, Yeh YQ, Allwang J, Jeng US. Revealing the Solution Conformation and Hydration Structure of Type I Tropocollagen Using X-ray Scattering and Molecular Dynamics Simulation. Biomacromolecules 2025; 26:449-458. [PMID: 39746152 PMCID: PMC11734691 DOI: 10.1021/acs.biomac.4c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Hydration plays a crucial role in regulating the dispersion behavior of biomolecules in water, particularly in how pH-sensitive hydration water network forms around proteins. This study explores the conformation and hydration structure of Type-I tropocollagen using small- and wide-angle X-ray scattering (SWAXS) and molecular dynamics (MD) simulations. The results reveal that tropocollagen exhibits a significant softening conformation in solution, transitioning from its rod-like structure in tissues to a worm-like conformation, characterized by a reduced radius of gyration of 50 nm and a persistent length of 34 nm. The SWAXS-supported MD calculations further establish a hydration water network characterized by a 2.8 Å free-water exclusion zone where water molecules are largely hydrogen-bonded to the densely distributed polar groups on the tropocollagen surfaces. These first-layer water molecules are bridged by outer water molecules extending up to 4 Å from the protein surfaces, forming a major hydration shell that encapsulates the protein.
Collapse
Affiliation(s)
- Ying-Jen Shiu
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Bradley W. Mansel
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Fonterra
Research and Development Centre, Dairy Farm Road, Fitzherbert, Palmerston North 4442, New Zealand
| | - Kuei-Fen Liao
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Ting-Wei Hsu
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Je-Wei Chang
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Orion Shih
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Yi-Qi Yeh
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Johannes Allwang
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - U-Ser Jeng
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
2
|
Tan YH, Habing KM, Riesterer JL, Stempinski ES, Lewis SH, Pfeifer CS, Malhotra SV, Nakayama KH. Engineered nanofibrillar collagen with tunable biophysical properties for myogenic, endothelial, and osteogenic cell guidance. Acta Biomater 2024; 186:95-107. [PMID: 39117115 PMCID: PMC11407781 DOI: 10.1016/j.actbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
A goal of regenerative engineering is the rational design of materials to restore the structure-function relationships that drive reparative programs in damaged tissues. Despite the widespread use of extracellular matrices for engineering tissues, their application has been limited by a narrow range of tunable features. The primary objective of this study is to develop a versatile platform for evaluating tissue-specific cellular interactions using Type I collagen scaffolds with highly tunable biophysical properties. The kinetics of collagen fibrillogenesis were modulated through a combination of varied shear rate and pH during neutralization, to achieve a broad range of fibril anisotropy, porosity, diameter, and storage modulus. The role that each of these properties play in guiding muscle, bone, and vascular cell types was comprehensively identified, and informed the in vitro generation of three distinct musculoskeletal engineered constructs. Myogenesis was highly regulated by smaller fibrils and larger storage moduli, endothelial inflammatory phenotype was predominantly guided by fibril anisotropy, and osteogenesis was enhanced by highly porous collagen with larger fibrils. This study introduces a novel approach for dynamically modulating Type I collagen materials and provides a robust platform for investigating cell-material interactions, offering insights for the future rational design of tissue-specific regenerative biomaterials. STATEMENT OF SIGNIFICANCE: The biophysical properties of regenerative materials facilitate key cell-substrate interactions that can guide the morphology, phenotype, and biological response of cells. In this study, we describe the fabrication of an engineered collagen hydrogel that can be modified to exhibit control over a wide range of biophysical features, including fibril organization and size, nanoscale porosity, and mechanics. We identified the unique combination of collagen features that optimally promote regenerative muscle, bone, and vascular cell types while also delineating the properties that hinder these same cellular responses. This study presents a highly accessible method to control the biophysical properties of collagen hydrogels that can be adapted for a broad range of tissue engineering and regenerative applications.
Collapse
Affiliation(s)
- Yong How Tan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Krista M Habing
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Jessica L Riesterer
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Erin S Stempinski
- Multiscale Microscopy Core, Oregon Health & Science University, Portland, OR, USA
| | - Steven H Lewis
- Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Carmem S Pfeifer
- Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Sanjay V Malhotra
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Karina H Nakayama
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA; Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Roth J, Hoop C, Williams JK, Nanda V, Baum J. Real-time single-molecule observation of incipient collagen fibrillogenesis and remodeling. Proc Natl Acad Sci U S A 2024; 121:e2401133121. [PMID: 39102538 PMCID: PMC11331128 DOI: 10.1073/pnas.2401133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024] Open
Abstract
The hierarchic assembly of fibrillar collagen into an extensive and ordered supramolecular protein fibril is critical for extracellular matrix function and tissue mechanics. Despite decades of study, we still know very little about the complex process of fibrillogenesis, particularly at the earliest stages where observation of rapidly forming, nanoscale intermediates challenges the spatial and temporal resolution of most existing microscopy methods. Using video rate scanning atomic force microscopy (VRS-AFM), we can observe details of the first few minutes of collagen fibril formation and growth on a mica surface in solution. A defining feature of fibrillar collagens is a 67-nm periodic banding along the fibril driven by the organized assembly of individual monomers over multiple length scales. VRS-AFM videos show the concurrent growth and maturation of small fibrils from an initial uniform height to structures that display the canonical banding within seconds. Fibrils grow in a primarily unidirectional manner, with frayed ends of the growing tip latching onto adjacent fibrils. We find that, even at extremely early time points, remodeling of growing fibrils proceeds through bird-caging intermediates and propose that these dynamics may provide a pathway to mature hierarchic assembly. VRS-AFM provides a unique glimpse into the early emergence of banding and pathways for remodeling of the supramolecular assembly of collagen during the inception of fibrillogenesis.
Collapse
Affiliation(s)
- Jonathan Roth
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Cody Hoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Jonathan K. Williams
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| |
Collapse
|
4
|
Giubertoni G, Feng L, Klein K, Giannetti G, Rutten L, Choi Y, van der Net A, Castro-Linares G, Caporaletti F, Micha D, Hunger J, Deblais A, Bonn D, Sommerdijk N, Šarić A, Ilie IM, Koenderink GH, Woutersen S. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proc Natl Acad Sci U S A 2024; 121:e2313162121. [PMID: 38451946 PMCID: PMC10945838 DOI: 10.1073/pnas.2313162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/30/2023] [Indexed: 03/09/2024] Open
Abstract
Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water-collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H[Formula: see text]O/D[Formula: see text]O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H[Formula: see text]O and D[Formula: see text]O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D[Formula: see text]O than in H[Formula: see text]O, and collagen in D[Formula: see text]O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H[Formula: see text]O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D[Formula: see text]O is less hydrated than in H[Formula: see text]O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen-water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Liru Feng
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Kevin Klein
- Institute of Science and Technology Austria, Division of Mathematical and Physical Sciences, Klosterneuburg3400, Austria
- University College London, Division of Physics and Astronomy, LondonWC1E 6BT, United Kingdom
| | - Guido Giannetti
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Luco Rutten
- Electron Microscopy Center, Radboud Technology Center Microscopy, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Yeji Choi
- Max Planck Institute for Polymer Research, Molecular Spectroscopy Department, Mainz55128, Germany
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Federico Caporaletti
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Dimitra Micha
- Amsterdam University Medical Centers, Human Genetics Department, Vrije Universiteit, Amsterdam1007 MB, The Netherlands
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Molecular Spectroscopy Department, Mainz55128, Germany
| | - Antoine Deblais
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam1090 GL, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Andela Šarić
- Institute of Science and Technology Austria, Division of Mathematical and Physical Sciences, Klosterneuburg3400, Austria
| | - Ioana M. Ilie
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
- Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft2628 HZ, The Netherlands
| | - Sander Woutersen
- Van ’t Hoff Institute for Molecular Sciences, Department of Molecular Photonics, University of Amsterdam, Amsterdam1090 GD, The Netherlands
| |
Collapse
|
5
|
Licciardello M, Sgarminato V, Ciardelli G, Tonda-Turo C. Development of biomimetic co-culture and tri-culture models to mimic the complex structure of the alveolar-capillary barrier. BIOMATERIALS ADVANCES 2023; 154:213620. [PMID: 37690344 DOI: 10.1016/j.bioadv.2023.213620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/29/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Alveoli are the functional area of respiratory system where the gaseous exchanges take place at level of the alveolar-capillary barrier. The development of safe and effective therapeutic approaches for treating lung disease is currently limited due to the lack of realistic preclinical models for their testing and validation. In this work, tissue engineering approaches were exploited to develop a biomimetic platform that provide an appropriate mimicking of the extracellular environment and the multicellular architecture of human alveoli. Here, we propose the implementation of two biomimetic in vitro models to reproduce the features of the main anatomic portions of the physiological alveolar-capillary barrier. First, a co-culture barrier model was obtained by integrating an electrospun polycaprolactone-gelatin (PCL-Gel) membrane in a modified transwell insert (PCL-Gel TW) to mimic the alveolar basement membrane (coded as thin model). Alveolar epithelial (A549) and lung microvascular endothelial (HULEC-5a) cells were cultured on the apical and basolateral side of the PCL-Gel membrane, respectively, under physiologic air-liquid interface (ALI) conditions for 7 days. The ALI condition promoted the expression of type I and type II alveolar epithelial cell markers and the secretion of mucus in A549 cells. Increased cell viability and barrier properties in co-cultures of A549 and HULEC-5a compared to mono-cultures revealed the effectiveness of the model to reproduce in vitro physiological-relevant features of the alveolar-capillary barrier. The second portion of the alveolar-capillary barrier was developed implementing a tri-culture model (coded as thick model) including a type I collagen (COLL) hydrogel formulated to host lung fibroblasts (MRC-5). The thick barrier model was implemented by seeding HULEC-5a on the basolateral side of PCL-Gel TW and then pouring sequentially MRC-5-laden COLL hydrogel and A549 cells on the apical side of the electrospun membrane. The thick model was maintained up to 7 days at ALI and immunofluorescence staining of tight and adherent junctions demonstrated the formation of a tight barrier. Lastly, the ability of models to emulate pathological inflammatory conditions was validated by exposing the apical compartment of the PCL-Gel TW to lipopolysaccharide (LPS). The damage of A549 tight junctions, the increase of barrier permeability and IL-6 pro-inflammatory cytokine release was observed after 48 h exposure to LPS.
Collapse
Affiliation(s)
- Michela Licciardello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy; Interuniversity Center for the promotion of the 3Rs principles in teaching and research, Italy
| | - Viola Sgarminato
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy; Interuniversity Center for the promotion of the 3Rs principles in teaching and research, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy; Interuniversity Center for the promotion of the 3Rs principles in teaching and research, Italy; CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Pisa, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy; Interuniversity Center for the promotion of the 3Rs principles in teaching and research, Italy.
| |
Collapse
|
6
|
Yaghoobi H, Clarke A, Kerr G, Frampton J, Kreplak L. Multifilament Collagen Fiber Bundles with Tendon-like Structure and Mechanical Performance. Macromol Rapid Commun 2023; 44:e2300204. [PMID: 37291949 DOI: 10.1002/marc.202300204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Indexed: 06/10/2023]
Abstract
Collagen multifilament bundles comprised of thousands of monofilaments are prepared by multipin contact drawing of an entangled polymer solution consisting of collagen and poly(ethylene oxide) (PEO). The multifilament bundles are hydrated in graded concentrations of PEO and phosphate buffered saline (PBS) to promote assembly of collagen fibrils within each monofilament while preserving the structure of the multifilament bundle. Multiscale structural characterization reveals that the hydrated multifilament bundle contains properly folded collagen molecules packed in collagen fibrils containing microfibrils, staggered by exactly one-sixth of the microfibril D-band spacing to produce a periodicity of 11 nm. Sequence analysis predicts that in this structure, phenylalanine residues are close enough within and between microfibrils to become ultraviolet C (UVC) crosslinked. In agreement with this analysis, the ultimate tensile strength (UTS) and Young's modulus of the hydrated collagen multifilament bundles crosslinked by UVC radiation increase nonlinearly with total UVC energy to reach values in the range of native tendons without damage to the collagen molecules. This fabrication method recapitulates the structure of a tendon across multiple length scales and offers tunability in tensile properties using only collagen molecules and no other chemical additives in addition to PEO, which is almost entirely removed during the hydration process.
Collapse
Affiliation(s)
- Hessameddin Yaghoobi
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Alison Clarke
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Gavin Kerr
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - John Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Laurent Kreplak
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
7
|
Revell CK, Jensen OE, Shearer T, Lu Y, Holmes DF, Kadler KE. Collagen fibril assembly: New approaches to unanswered questions. Matrix Biol Plus 2021; 12:100079. [PMID: 34381990 PMCID: PMC8334717 DOI: 10.1016/j.mbplus.2021.100079] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Collagen fibrils are essential for metazoan life. They are the largest, most abundant, and most versatile protein polymers in animals, where they occur in the extracellular matrix to form the structural basis of tissues and organs. Collagen fibrils were first observed at the turn of the 20th century. During the last 40 years, the genes that encode the family of collagens have been identified, the structure of the collagen triple helix has been solved, the many enzymes involved in the post-translational modifications of collagens have been identified, mutations in the genes encoding collagen and collagen-associated proteins have been linked to heritable disorders, and changes in collagen levels have been associated with a wide range of diseases, including cancer. Yet despite extensive research, a full understanding of how cells assemble collagen fibrils remains elusive. Here, we review current models of collagen fibril self-assembly, and how cells might exert control over the self-assembly process to define the number, length and organisation of fibrils in tissues.
Collapse
Affiliation(s)
- Christopher K. Revell
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Oliver E. Jensen
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Tom Shearer
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Yinhui Lu
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - David F. Holmes
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Karl E. Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
8
|
Lama M, Raveendranathan B, Brun J, Fernandes FM, Boissière C, Nassif N, Marcellan A. Biomimetic Tough Gels with Weak Bonds Unravel the Role of Collagen from Fibril to Suprafibrillar Self-Assembly. Macromol Biosci 2021; 21:e2000435. [PMID: 33881218 DOI: 10.1002/mabi.202000435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Indexed: 11/10/2022]
Abstract
Biological tissues rich in type I collagen exhibit specific hierarchical fibrillar structures together with remarkable mechanical toughness. However, the role of collagen alone in their mechanical response at different structural levels is not fully understood. Here, it is proposed to rationalize such challenging interplay from a materials science perspective through the subtle control of this protein self-assembly in vitro. It is relied on a spray-processing approach to readily use the collagen phase diagram and set a palette of biomimetic self-assembled collagen gels in terms of suprafibrillar organization. Their mechanical responses unveil the involvement of mechanisms occurring either at fibrillar or suprafibrillar scales. Noticeably, both modulus at early stage of deformations and tensile toughness probe the suprafibrillar organization, while durability under cyclic loading and stress relaxation reflect mechanisms at the fibril level. By changing the physicochemical environment, the interfibrillar interactions are modified toward more biomimetic mechanical responses. The possibility of making tissue-like materials with versatile compositions and toughness opens perspectives in tissue engineering.
Collapse
Affiliation(s)
- Milena Lama
- Laboratoire Chimie de la Matière Condensée de Paris, Collège de France, Sorbonne Université, CNRS, 4 Place Jussieu, Paris, F-75005, France.,Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 10 rue Vauquelin, Paris, F-75005, France
| | - Biravena Raveendranathan
- Laboratoire Chimie de la Matière Condensée de Paris, Collège de France, Sorbonne Université, CNRS, 4 Place Jussieu, Paris, F-75005, France
| | - Julie Brun
- Laboratoire Chimie de la Matière Condensée de Paris, Collège de France, Sorbonne Université, CNRS, 4 Place Jussieu, Paris, F-75005, France.,Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 10 rue Vauquelin, Paris, F-75005, France
| | - Francisco M Fernandes
- Laboratoire Chimie de la Matière Condensée de Paris, Collège de France, Sorbonne Université, CNRS, 4 Place Jussieu, Paris, F-75005, France
| | - Cédric Boissière
- Laboratoire Chimie de la Matière Condensée de Paris, Collège de France, Sorbonne Université, CNRS, 4 Place Jussieu, Paris, F-75005, France
| | - Nadine Nassif
- Laboratoire Chimie de la Matière Condensée de Paris, Collège de France, Sorbonne Université, CNRS, 4 Place Jussieu, Paris, F-75005, France
| | - Alba Marcellan
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, CNRS, Sorbonne Université, 10 rue Vauquelin, Paris, F-75005, France.,Institut Universitaire de France (IUF), 1, rue Descartes, Paris, F-75005, France
| |
Collapse
|