1
|
Wintgens S, Müller J, Drees F, Spona D, Bonda L, Hartmann L, Hegemann JH, Schmidt S. Sulfated Glycosaminoglycans as Inhibitors for Chlamydia Infections: Molecular Weight and Sulfation Dependence. Macromol Biosci 2025; 25:e2400443. [PMID: 39838590 PMCID: PMC11995835 DOI: 10.1002/mabi.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Glycosaminoglycans (GAGs) play a pivotal role in pathogen attachment and entry into host cells, where the interaction with GAGs is critical for a diverse range of bacteria and viruses. This study focuses on elucidating the specific interactions between sulfated GAGs and the adhesin OmcB (Outer membrane complex protein B) of Chlamydia species, examining how structural characteristics of GAGs, such as sulfation degree and molecular weight, influence their binding affinity and thereby affect bacterial infectivity. A surface-based binding assay is established to determine the binding constants of OmcB with various GAGs. It is shown that increased sulfation and higher molecular weight enhance GAG binding to OmcB. These findings are further validated using cell assays, which shows that the addition of sulfated GAGs reduces OmcB-cell binding and inhibits the attachment of C. pneumoniae elementary bodies (EBs), underscoring the pivotal role of specific GAGs in chlamydial infections. Notably, heparin exhibites a stronger inhibitory effect on OmcB compare to GAGs with similar sulfation degrees and molecular weights, suggesting that particular molecular architectures may optimize binding interactions.
Collapse
Affiliation(s)
- Sebastian Wintgens
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
| | - Janita Müller
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
| | - Felicitas Drees
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
- Institute for Macromolecular ChemistryFaculty of Chemistry and PharmacyAlbert‐Ludwigs‐Universität Freiburg79104FreiburgGermany
| | - Dominik Spona
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
| | - Lorand Bonda
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
| | - Laura Hartmann
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
- Institute for Macromolecular ChemistryFaculty of Chemistry and PharmacyAlbert‐Ludwigs‐Universität Freiburg79104FreiburgGermany
| | - Johannes H. Hegemann
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
| | - Stephan Schmidt
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
- Institute for Macromolecular ChemistryFaculty of Chemistry and PharmacyAlbert‐Ludwigs‐Universität Freiburg79104FreiburgGermany
| |
Collapse
|
2
|
De Breuck J, Jérôme V, Freitag R, Leiske MN. Zwitterionic Amino-Acid-Derived Polyacrylamides with a Betaine Twist - Synthesis and Characterization. Macromol Rapid Commun 2025; 46:e2400623. [PMID: 39312123 PMCID: PMC11713866 DOI: 10.1002/marc.202400623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Indexed: 01/11/2025]
Abstract
Amino-acid-derived polyzwitterions and polybetaines (PBs) are two promising alternatives to non-ionic polymers, for example, to increase tumor permeability. In this study, amino-acid-derived polyzwitterions are synthesized and a strategy to quarternize the amine in the side chain functional group is developed to combine the advantages of both types. The functional monomer is polymerized via reversible addition-fragmentation chain-transfer polymerization for which a kinetic study is performed. Further, the impact of the permanent positive charge on amino-acid-derived polyzwitterions is studied based on two zwitterionic polymers obtained via post-polymerization modification (PPM) of Poly(N-acryloxysuccinimide) to allow good comparison between methylated and non-methylated polymers. Circular dichroism shows that the stereocenter remains intact during PPM. pH titration and ζ-potential measurements show that the methylated polymer has a negative ζ-potential over the measured pH range and, therefore, the polymer remains zwitterionic over a broader pH range than its non-methylated equivalent. Both polymers are well tolerated by mammalian cells up to concentrations of 1 mg mL-1. The study introduces a path to a new polymer class that combines the advantages of both PBs and amino-acid-derived polyzwitterions and highlights the impact a permanent charge has on the physiochemical properties.
Collapse
Affiliation(s)
- Jonas De Breuck
- Macromolecular ChemistryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Valérie Jérôme
- Process BiotechnologyUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Ruth Freitag
- Process BiotechnologyUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
- Bayreuth Center for Molecular Biosciences (BZMB)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Meike N. Leiske
- Macromolecular ChemistryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
- Bavarian Polymer InstituteUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
3
|
Weingarten P, Adams F. Silver-Mediated ARGET-ATRP of Reactive Acrylates Using TPMA NMe2 Ligand: A Universal Strategy for Controlled Copolymerization. ACS Macro Lett 2024; 13:1318-1324. [PMID: 39292121 DOI: 10.1021/acsmacrolett.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
A controlled polymerization using activated acrylate monomers via ARGET-ATRP is developed with a tris[(4-dimethylamino pyridyl)methyl]amine ligand to address issues with weaker ligands and monomers that can undergo postpolymerization functionalization. This catalyst system enables the polymerization of N-acryloxy succinimide, fluorinated monomers, and isocyanato ethyl acrylate under controlled homogeneous conditions, ensuring linear molecular-weight growth and low polydispersity. Two block copolymerization strategies produce amphiphilic copolymers with narrow molecular-weight distributions and customizable compositions, allowing for various postpolymerization functionalizations.
Collapse
Affiliation(s)
- Philipp Weingarten
- Wacker-Lehrstuhl für Makromolekulare Chemie, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
- Chair of Macromolecular Materials and Fiber Chemistry, Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Friederike Adams
- Chair of Macromolecular Materials and Fiber Chemistry, Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
- Center for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Vargila F, Bai SMM, Mary JVJ, Citarasu T. Isolation, characterization and antimicrobial properties of hepatopancreas lectin of the freshwater crab Oziotelphusanaga. Protein Expr Purif 2024; 222:106536. [PMID: 38908458 DOI: 10.1016/j.pep.2024.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Lectins are versatile proteins that specifically recognize and interact with sugar moieties expressed on the cell surface. The potential of lectin in drug targeting and delivery has instigated interest to identify natural lectins. Crabs have been identified as a rich source of lectin because the innate immune system is activated on encounter of pathogens and helps in the production of lectin. Although the presence of lectins in crab's hemolymph is well documented, little information about lectin in hepatopancreas, a vital organ for immunity and digestion in crustaceans, is currently available. A calcium dependent lectin (75 kDa) was purified from the hepatopancreas of the freshwater crab Oziotelphusa naga by bioadsorption and fetuin linked Sepharose 4B affinity chromatography technique. The isolated hepatopancreas lectin is calcium dependent and maximum agglutination was observed with rabbit erythrocytes. The hemagglutinating activity of the hepatopancreas lectin was effectively inhibited by sugars, such as α-lactose, GlcNAc, trehalose and NeuAc. Compared to sialylated N-glycosylated proteins including transferrin and apo transferrin, sialylated O-glycosylated proteins like fetuin exhibited stronger inhibitory effect. The ability of erythrocytes to bind hepatopancreas lectin has been diminished by desialylation of the potent inhibitor, indicating the significance of sialic acid in lectin-ligand interactions. The purified hepatopancreas lectin showed a broad spectrum of antimicrobial activity against bacteria Staphylococcus aureus, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, E. coli and fungi Candida albicans and Aspergillus niger. The findings of this study demonstrate the significance of hepatopancreas lectin as a multifunctional defense protein that inhibits the growth of bacteria and fungi.
Collapse
Affiliation(s)
- F Vargila
- Department of Zoology, Holy Cross College (Autonomous), Nagercoil, India; Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627 012, Tamil Nadu, India.
| | - S Mary Mettilda Bai
- Department of Zoology, Holy Cross College (Autonomous), Nagercoil, India; Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627 012, Tamil Nadu, India.
| | - J Vinoliya Josephine Mary
- Department of Zoology, Holy Cross College (Autonomous), Nagercoil, India; Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627 012, Tamil Nadu, India
| | - T Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Tirunelveli, India
| |
Collapse
|
5
|
Üclü S, Marschelke C, Drees F, Giesler M, Wilms D, Köhler T, Schmidt S, Synytska A, Hartmann L. Sweet Janus Particles: Multifunctional Inhibitors of Carbohydrate-Based Bacterial Adhesion. Biomacromolecules 2024; 25:2399-2407. [PMID: 38454747 DOI: 10.1021/acs.biomac.3c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Escherichia coli and other bacteria use adhesion receptors, such as FimH, to attach to carbohydrates on the cell surface as the first step of colonization and infection. Efficient inhibitors that block these interactions for infection treatment are multivalent carbohydrate-functionalized scaffolds. However, these multivalent systems often lead to the formation of large clusters of bacteria, which may pose problems for clearing bacteria from the infected site. Here, we present Man-containing Janus particles (JPs) decorated on one side with glycomacromolecules to target Man-specific adhesion receptors of E. coli. On the other side, poly(N-isopropylacrylamide) is attached to the particle hemisphere, providing temperature-dependent sterical shielding against binding and cluster formation. While homogeneously functionalized particles cluster with multiple bacteria to form large aggregates, glycofunctionalized JPs are able to form aggregates only with individual bacteria. The formation of large aggregates from the JP-decorated single bacteria can still be induced in a second step by increasing the temperature and making use of the collapse of the PNIPAM hemisphere. This is the first time that carbohydrate-functionalized JPs have been derived and used as inhibitors of bacterial adhesion. Furthermore, the developed JPs offer well-controlled single bacterial inhibition in combination with cluster formation upon an external stimulus, which is not achievable with conventional carbohydrate-functionalized particles.
Collapse
Affiliation(s)
- Serap Üclü
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Claudia Marschelke
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, Dresden 01069, Germany
| | - Felictas Drees
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, Freiburg Im Breisgau 79104, Germany
| | - Markus Giesler
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Dimitri Wilms
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Thorben Köhler
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Stephan Schmidt
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, Freiburg Im Breisgau 79104, Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, Dresden 01069, Germany
- Bavarian Polymer Institute, Research Group Functional Polymer Interfaces, University of Bayreuth, Ludwig-Thoma Str. 36a, Bayreuth 95447, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, Freiburg Im Breisgau 79104, Germany
| |
Collapse
|
6
|
Hassler JF, Lawson M, Arroyo EC, Bates FS, Hackel BJ, Lodge TP. Discovery of Kinetic Trapping of Poloxamers inside Liposomes via Thermal Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14263-14274. [PMID: 37755825 PMCID: PMC10853007 DOI: 10.1021/acs.langmuir.3c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Poloxamers, a class of biocompatible, commercially available amphiphilic block polymers (ABPs) comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks, interact with phospholipid bilayers, resulting in altered mechanical and surface properties. These block copolymers are useful in a variety of applications including therapeutics for Duchenne muscular dystrophy, as cell membrane stabilizers, and for drug delivery, as liposome surface modifying agents. Hydrogen bonding between water and oxygen atoms in PEO and PPO units results in thermoresponsive behavior because the bound water shell around both blocks dehydrates as the temperature increases. This motivated an investigation of poloxamer-lipid bilayer interactions as a function of temperature and thermal history. In this study, we applied pulsed-field-gradient NMR spectroscopy to measure the fraction of chains bound to 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) liposomes between 10 and 50 °C. We measured an (11 ± 3)-fold increase in binding affinity at 37 °C relative to 27 °C. Moreover, following incubation at 37 °C, it takes weeks for the system to re-equilibrate at 25 °C. Such slow desorption kinetics suggests that at elevated temperatures polymer chains can pass through the bilayer and access the interior of the liposomes, a mechanism that is inaccessible at lower temperatures. We propose a molecular mechanism to explain this effect, which could have important ramifications on the cellular distribution of ABPs and could be exploited to modulate the mechanical and surface properties of liposomes and cell membranes.
Collapse
|
7
|
Abrantes-Coutinho VE, Santos AO, Holanda BEB, Costa HRA, Oliveira TMBF. Integrating machine learning and electrochemistry to develop a glucose biosensor assembled with Ganoderma applanatum lectin. Bioelectrochemistry 2023; 151:108392. [PMID: 36753946 DOI: 10.1016/j.bioelechem.2023.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Fungal lectins have enormous biotechnological potential, but limited knowledge about their biochemical and biophysical features prevents their proper use. Herein, we report an innovative alternative to use Ganoderma applanatum lectin (GAL) as a glucose biorecognition element, after identifying the ideal electroanalytical conditions by machine learning studies performed with a homologous agglutinin from the same macrofungus. The research revealed that GAL has moderate resistance to pH (4-8) and temperature (20-60 °C) variations, but its hemagglutinating activity (376.5 HU mg-1 GAL at 20 °C) was better conserved under physiological conditions. Integrating electrochemical data and semi-empirical molecular modeling, biocompatible and electrostatically favorable conditions were found to immobilize the lectin on Prussian blue-modified glassy carbon electrode, after thermal activation of the metal-complex film. The glucose dose-response relationship obtained with the developed biosensor, defined as GAL/ta-PB/GCE, showed a typical Hill equation correlation, suggesting electrodic interactions represented by a sigmoidal mathematical function. GAL/ta-PB/GCE achieved remarkable electroanalytical performance, with emphasis on the detection limit (10.2 pM) and sensitivity (0.012 µA µM-1cm-2). The biosensor was successfully used to quantify glucose in pharmaceutical formulations, reiterating that the association of theoretical and experimental information drives important advances in bioelectrochemical studies.
Collapse
Affiliation(s)
| | - André O Santos
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil
| | - Brenna E B Holanda
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil
| | - Heryka R A Costa
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil
| | - Thiago M B F Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
8
|
Illmann MD, Schäfl L, Drees F, Hartmann L, Schmidt S. Glycan-Presenting Coacervates Derived from Charged Poly(active esters): Preparation, Phase Behavior, and Lectin Capture. Biomacromolecules 2023. [PMID: 37133885 DOI: 10.1021/acs.biomac.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study presents the preparation and phase behavior of glycan-functionalized polyelectrolytes for capturing carbohydrate-binding proteins and bacteria in liquid condensate droplets. The droplets are formed by complex coacervation of poly(active ester)-derived polyanions and polycations. This approach allows for a straightforward modular introduction of charged motifs and specifically interacting units; mannose and galactose oligomers are used here as first examples. The introduction of carbohydrates has a notable effect on the phase separation and the critical salt concentration, potentially by reducing the charge density. Two mannose binding species, concanavalin A (ConA) and Escherichia coli, are shown to not only specifically bind to mannose-functionalized coacervates but also to some degree to unfunctionalized, carbohydrate-free coacervates. This suggests non-carbohydrate-specific charge-charge interactions between the protein/bacteria and the droplets. However, when mannose interactions are inhibited or when non-binding galactose-functionalized polymers are used, interactions are significantly weakened. This confirms specific mannose-mediated binding functionalization and suggests that introducing carbohydrates reduces non-specific charge-charge interactions by a so far unidentified mechanism. Overall, the presented route toward glycan-presenting polyelectrolytes enables new functional liquid condensate droplets with specific biomolecular interactions.
Collapse
Affiliation(s)
- Michele Denise Illmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lea Schäfl
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Felicitas Drees
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Gerling-Driessen UIM, Hoffmann M, Schmidt S, Snyder NL, Hartmann L. Glycopolymers against pathogen infection. Chem Soc Rev 2023; 52:2617-2642. [PMID: 36820794 DOI: 10.1039/d2cs00912a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.
Collapse
Affiliation(s)
- Ulla I M Gerling-Driessen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Miriam Hoffmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. .,Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, USA
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
10
|
Santos AO, Abrantes-Coutinho VE, Morais S, Oliveira TMBF. Agaricus bisporus Wild Mushroom Extract as Lectin Source for Engineering a Lactose Photoelectrochemical Biosensor. BIOSENSORS 2023; 13:224. [PMID: 36831990 PMCID: PMC9953549 DOI: 10.3390/bios13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Agaricus bisporus mushroom biomass contains a lectin, ABL, with remarkable specificity for lactose biorecognition; in this work, this feature was explored to develop a photoelectrochemical biosensor. The high lectin activity found in saline extracts of this macrofungus (640 HU mL-1), even at critical pH values (4-10) and temperatures (20-100 °C), allowed its direct use as an ABL source. Theoretical and experimental evidence revealed favorable electrostatic and biocompatible conditions to immobilize ABL on a poly(methylene blue)/fluorine-doped tin oxide-coated glass platform, giving rise to the ABL/PMB/FTO biosensor. The conducting polymer added further photoactivity to the device, allowing the identification of lectin-carbohydrate interactions with even greater sensitivity. The dose-response curves studied by electrochemical impedance spectroscopy showed a sigmoidal profile that was well-fitted by Hill's equation, expanding the working dynamic range (15-540 nmol L-1 lactose; 20.2 pmol L-1 detection limit) and avoiding undesirable sample dilution or preconcentration procedures. Under the optimized photoelectrochemical conditions, the ABL/PMB/FTO biosensor showed remarkable signal stability, accuracy, specificity, and selectivity to analyze lactose in commercial food products. This research raises interest in ABL-based biosensors and the added value of the crude Agaricus bisporus extract toward the development of greener and more sustainable biotechnological approaches.
Collapse
Affiliation(s)
- André O. Santos
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Juazeiro do Norte 63048-080, CE, Brazil
| | | | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Thiago M. B. F. Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Juazeiro do Norte 63048-080, CE, Brazil
| |
Collapse
|
11
|
Kwon M, Yang J, Kim H, Joo H, Joo SW, Lee YS, Lee HJ, Jeong SY, Han JH, Paik HJ. Controlling Graphene Wrinkles through the Phase Transition of a Polymer with a Low Critical Solution Temperature. Macromol Rapid Commun 2021; 42:e2100489. [PMID: 34599783 DOI: 10.1002/marc.202100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Indexed: 11/06/2022]
Abstract
A novel method for controlling reduced graphene oxide (rGO) wrinkles through a phase transition in a solution using a low critical solution temperature (LCST) polymer dispersant has been developed. The polymer dispersant is designed by control of architecture and composition using reversible addition-fragmentation chain transfer polymerization. Synthesized poly(2-(dimethylaminoethyl) methacrylate-block-styrene) (PDbS) can be successfully functionalized on the rGO surface via noncovalent functionalization. PDbS-functionalized rGO (PDbS-rGO) exhibits good dispersibility in an aqueous phase at room temperature and forms wrinkles on the PDbS-rGO surface because of phase transition at the LCST of the polymer dispersant. The formation of PDbS-rGO wrinkles is controlled by varying the aggregation number of the polymer dispersant on the PDbS-rGO surface that strongly depends on temperature. This is confirmed by transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy (ID' /IG ratios are 0.560, 0.579, and 0.684, which correspond to 45, 70, and 95 °C, respectively). In addition, the mechanism of wrinkle control is proved by gold nanoparticles that are grown in polymer dispersant on the PDbS-rGO surface.
Collapse
Affiliation(s)
- Minho Kwon
- Department of Polymer Science and Engineering Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735, Korea
| | - Jiyeon Yang
- Department of Polymer Science and Engineering Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735, Korea
| | - Hanyoung Kim
- Department of Polymer Science and Engineering Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735, Korea
| | - Hyeyoung Joo
- Department of Polymer Science and Engineering Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735, Korea
| | - Sang-Woo Joo
- Department of Chemistry Soongsil University 369, Sangdo-ro, Dongjak-gu, Seoul, 06978, Korea
| | - Young Sil Lee
- Industry-Academic Cooperation, Kumoh National Institute of Technology, Gumi, 39177, Korea
| | - Hye Jung Lee
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon, 641-120, Korea
| | - Seung Yol Jeong
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon, 641-120, Korea.,Department of Electro-Functionality Materials Engineering, University of Science and Technology(UST), Daejon, 305-333, Korea
| | - Jong Hun Han
- School of Applied Chemical Engineering Chonnam National University 77, Yongbong-ro, Buk-gu, Gwangju, 500-757, Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering Pusan National University 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 609-735, Korea
| |
Collapse
|
12
|
Arcos-Hernandez M, Naidjonoka P, Butler SJ, Nylander T, Stålbrand H, Jannasch P. Thermoresponsive Glycopolymers Based on Enzymatically Synthesized Oligo-β-Mannosyl Ethyl Methacrylates and N-Isopropylacrylamide. Biomacromolecules 2021; 22:2338-2351. [PMID: 33961400 PMCID: PMC8382249 DOI: 10.1021/acs.biomac.0c01615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/16/2021] [Indexed: 11/28/2022]
Abstract
We present here a series of thermoresponsive glycopolymers in the form of poly(N-isopropylacrylamide)-co-(2-[β-manno[oligo]syloxy] ethyl methacrylate)s. These copolymers were prepared from oligo-β-mannosyl ethyl methacrylates that were synthesized through enzymatic catalysis, and were subsequently investigated with respect to their aggregation and phase behavior in aqueous solution using a combination of 1H NMR spectroscopy, dynamic light scattering, cryogenic transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The thermoresponsive glycopolymers were prepared by conventional free radical copolymerization of different mixtures of 2-(β-manno[oligo]syloxy)ethyl methacrylates (with either one or two saccharide units) and N-isopropylacrylamide (NIPAm). The results showed that below the lower critical solution temperature (LCST) of poly(NIPAm), the glycopolymers readily aggregate into nanoscale structures, partly due to the presence of the saccharide moieties. Above the LCST of poly(NIPAm), the glycopolymers rearrange into a heterogeneous mixture of fractal and disc/globular aggregates. Cryo-TEM and SAXS data demonstrated that the presence of the pendant β-mannosyl moieties in the glycopolymers induces a gradual conformational change over a wide temperature range. Even though the onset of this transition is not different from the LCST of poly(NIPAm), the gradual conformational change offers a variation of the temperature-dependent properties in comparison to poly(NIPAm), which displays a sharp coil-to-globule transition. Importantly, the compacted form of the glycopolymers shows a larger colloidal stability compared to the unmodified poly(NIPAm). In addition, the thermoresponsiveness can be conveniently tuned by varying the sugar unit-length and the oligo-β-mannosyl ethyl methacrylate content.
Collapse
Affiliation(s)
- Monica Arcos-Hernandez
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Polina Naidjonoka
- Physical
Chemistry, Department of Chemistry, Lund
University, S-221 00 Lund, Sweden
| | - Samuel J. Butler
- Department
of Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Tommy Nylander
- Physical
Chemistry, Department of Chemistry, Lund
University, S-221 00 Lund, Sweden
| | - Henrik Stålbrand
- Department
of Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Patric Jannasch
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| |
Collapse
|
13
|
Paul TJ, Strzelczyk AK, Schmidt S. Temperature-Controlled Adhesion to Carbohydrate Functionalized Microgel Films: An E. coli and Lectin Binding Study. Macromol Biosci 2021; 21:e2000386. [PMID: 33605076 DOI: 10.1002/mabi.202000386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/16/2020] [Indexed: 12/20/2022]
Abstract
The preparation of thermoresponsive mannose functionalized monolayers of poly(N-isopropylacrylamide) microgels and the analysis of the specific binding of concanavalin A (ConA) and E. coli above and below the lower critical solution temperature (LCST) are shown. Via inhibition and direct binding assays it is found that ConA binding is time-dependent, where at short incubation times binding is stronger above the LCST. Given larger incubation times, the interaction of ConA to the microgel network is increased below the LCST when compared to temperatures above the LCST, possibly due to increased ConA diffusion and multivalent binding in the more open microgel network below the LCST. For E. coli, which presents only monovalent lectins and is too large to diffuse into the network, binding is always enhanced above the LCST. This is due to the larger mannose density of the microgel layer above the LCST increasing the interaction to E. coli. Once bound to the microgel layer above the LCST, E. coli cannot be released by cooling down below the LCST. Overall, this suggests that the carbohydrate presenting microgel layers enable specific binding where the temperature-induced transition between swollen and collapsed microgels may increase or decrease binding depending on the receptor size.
Collapse
Affiliation(s)
- Tanja J Paul
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Alexander K Strzelczyk
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| |
Collapse
|
14
|
Schröer F, Paul TJ, Wilms D, Saatkamp TH, Jäck N, Müller J, Strzelczyk AK, Schmidt S. Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density. Molecules 2021; 26:molecules26020263. [PMID: 33430287 PMCID: PMC7825725 DOI: 10.3390/molecules26020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
The synthesis of carbohydrate-functionalized biocompatible poly(oligo(ethylene glycol) methacrylate microgels and the analysis of the specific binding to concanavalin A (ConA) and Escherichia coli (E. coli) is shown. By using different crosslinkers, the microgels' size, density and elastic modulus were varied. Given similar mannose (Man) functionalization degrees, the softer microgels show increased ConA uptake, possibly due to increased ConA diffusion in the less dense microgel network. Furthermore, although the microgels did not form clusters with E. coli in solution, surfaces coated with mannose-functionalized microgels are shown to bind the bacteria whereas galactose (Gal) and unfunctionalized microgels show no binding. While ConA binding depends on the overall microgels' density and Man functionalization degree, E. coli binding to microgels' surfaces appears to be largely unresponsive to changes of these parameters, indicating a rather promiscuous surface recognition and sufficiently strong anchoring to few surface-exposed Man units. Overall, these results indicate that carbohydrate-functionalized biocompatible oligo(ethylene glycol)-based microgels are able to immobilize carbohydrate binding pathogens specifically and that the binding of free lectins can be controlled by the network density.
Collapse
|
15
|
Banger A, Sindram J, Otten M, Kania J, Wilms D, Strzelczyk A, Miletic S, Marlovits TC, Karg M, Hartmann L. Synthesis and self-assembly of amphiphilic precision glycomacromolecules. Polym Chem 2021. [DOI: 10.1039/d1py00422k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Amphiphilic precision glycomacromolecules (APG) are synthesized using solid-phase synthesis and studied for their self-assembly behavior and as inhibitors of bacterial adhesion.
Collapse
Affiliation(s)
- Alexander Banger
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Julian Sindram
- Insitute of Physical Chemistry I: Colloids and Nanooptics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Marius Otten
- Insitute of Physical Chemistry I: Colloids and Nanooptics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jessica Kania
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Dimitri Wilms
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alexander Strzelczyk
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sean Miletic
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany
| | - Thomas C. Marlovits
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Deutsches Elektronen-Synchrotron Zentrum (DESY), Hamburg, Germany
| | - Matthias Karg
- Insitute of Physical Chemistry I: Colloids and Nanooptics, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Antunez EE, Mahon CS, Tong Z, Voelcker NH, Müllner M. A Regenerable Biosensing Platform for Bacterial Toxins. Biomacromolecules 2020; 22:441-453. [PMID: 33320642 DOI: 10.1021/acs.biomac.0c01318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Waterborne diarrheal diseases such as travelers' diarrhea and cholera remain a threat to public health in many countries. Rapid diagnosis of an infectious disease is critical in preventing the escalation of a disease outbreak into an epidemic. Many of the diagnostic tools for infectious diseases employed today are time-consuming and require specialized laboratory settings and trained personnel. There is hence a pressing need for fit-for-purpose point-of-care diagnostic tools with emphasis in sensitivity, specificity, portability, and low cost. We report work toward thermally reversible biosensors for detection of the carbohydrate-binding domain of the Escherichia coli heat-labile enterotoxin (LTB), a toxin produced by enterotoxigenic E. coli strains, which causes travelers' diarrhea. The biosensing platform is a hybrid of two materials, combining the optical properties of porous silicon (pSi) interferometric transducers and a thermoresponsive multivalent glycopolymer, to enable recognition of LTB. Analytical performance of our biosensors allows us to detect, using a label-free format, sub-micromolar concentrations of LTB in solution as low as 0.135 μM. Furthermore, our platform shows a temperature-mediated "catch-and-release" behavior, an exciting feature with potential for selective protein capture, multiple readouts, and regeneration of the sensor over consecutive cycles of use.
Collapse
Affiliation(s)
- E Eduardo Antunez
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Clare S Mahon
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia.,The University of Sydney Nano Institute (Sydney Nano), Sydney 2006, New South Wales, Australia
| |
Collapse
|
17
|
Wilms D, Schröer F, Paul TJ, Schmidt S. Switchable Adhesion of E. coli to Thermosensitive Carbohydrate-Presenting Microgel Layers: A Single-Cell Force Spectroscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12555-12562. [PMID: 32975417 DOI: 10.1021/acs.langmuir.0c02040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adhesion processes at the cellular scale are dominated by carbohydrate interactions, including the attachment and invasion of pathogens. Carbohydrate-presenting responsive polymers can bind pathogens and inhibit pathogen invasion by remote stimuli for the development of new antibiotic strategies. In this work, the adhesion forces of E. coli to monolayers composed of mannose-functionalized microgels with thermosensitive poly(N-isopropylacrylamide) (PNIPAM) and poly(oligo(ethylene glycol)) (PEG) networks are quantified using single-cell force spectroscopy (SCFS). When exceeding the microgels' lower critical solution temperature (LCST), the adhesion increases up to 2.5-fold depending on the polymer backbone and the mannose density. For similar mannose densities, the softer PNIPAM microgels show a significantly stronger adhesion increase when crossing the LCST as compared to the stiffer PEG microgels. This is explained by a stronger shift in swelling, mannose density, and surface roughness of the softer gels when crossing the LCST. When using nonbinding galactose instead of mannose, or when inhibiting bacterial receptors, a certain level of adhesion remains, indicating that also polymer-fimbria entanglements contribute to adhesion. The presented quantitative analysis provides insights into carbohydrate-mediated bacterial adhesion and the relation to material properties and shows the prospects and limitations of interactive polymer materials to control the attachment of bacteria.
Collapse
Affiliation(s)
- Dimitri Wilms
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Fabian Schröer
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tanja J Paul
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Strzelczyk AK, Paul TJ, Schmidt S. Quantifying Thermoswitchable Carbohydrate‐Mediated Interactions via Soft Colloidal Probe Adhesion Studies. Macromol Biosci 2020; 20:e2000186. [DOI: 10.1002/mabi.202000186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/07/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Alexander Klaus Strzelczyk
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| | - Tanja Janine Paul
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry Heinrich‐Heine‐University Düsseldorf Universitatsstraße 1 Dusseldorf 40225 Germany
| |
Collapse
|