1
|
Narayana S, Gowda BHJ, Hani U, Ahmed MG, Asiri ZA, Paul K. Smart Poly(N-isopropylacrylamide)-Based Hydrogels: A Tour D'horizon of Biomedical Applications. Gels 2025; 11:207. [PMID: 40136912 PMCID: PMC11942434 DOI: 10.3390/gels11030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels are innovative materials characterized by a water-swollen, crosslinked polymeric network capable of retaining substantial amounts of water while maintaining structural integrity. Their unique ability to swell or contract in response to environmental stimuli makes them integral to biomedical applications, including drug delivery, tissue engineering, and wound healing. Among these, "smart" hydrogels, sensitive to stimuli such as pH, temperature, and light, showcase reversible transitions between liquid and semi-solid states. Thermoresponsive hydrogels, exemplified by poly(N-isopropylacrylamide) (PNIPAM), are particularly notable for their sensitivity to temperature changes, transitioning near their lower critical solution temperature (LCST) of approximately 32 °C in water. Structurally, PNIPAM-based hydrogels (PNIPAM-HYDs) are chemically versatile, allowing for modifications that enhance biocompatibility and functional adaptability. These properties enable their application in diverse therapeutic areas such as cancer therapy, phototherapy, wound healing, and tissue engineering. In this review, the unique properties and behavior of smart PNIPAM are explored, with an emphasis on diverse synthesis methods and a brief note on biocompatibility. Furthermore, the structural and functional modifications of PNIPAM-HYDs are detailed, along with their biomedical applications in cancer therapy, phototherapy, wound healing, tissue engineering, skin conditions, ocular diseases, etc. Various delivery routes and patents highlighting therapeutic advancements are also examined. Finally, the future prospects of PNIPAM-HYDs remain promising, with ongoing research focused on enhancing their stability, responsiveness, and clinical applicability. Their continued development is expected to revolutionize biomedical technologies, paving the way for more efficient and targeted therapeutic solutions.
Collapse
Affiliation(s)
- Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - B. H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (Z.A.A.)
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Zahrah Ali Asiri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (Z.A.A.)
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India;
| |
Collapse
|
2
|
Gao Q, Huang Y, Hu J, Gan J, Yu W. Green synthesis of multifunctional bamboo-based nonwoven fabrics for medical treatment. Int J Biol Macromol 2024; 279:135473. [PMID: 39250985 DOI: 10.1016/j.ijbiomac.2024.135473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Medical nonwovens fabrics are pivotal materials in modern healthcare systems, and find extensively application in surgical gowns, masks, nursing pads, and surgical instrument packaging. As healthcare requirements evolve and medical technology advances, the demand for functional nonwoven medical devices is continuously increasing. In addition, numerous environmental challenges and the need to transition to a sustainable society have increased the popularity of studies on environmentally friendly multifunctional nonwoven materials prepared from biomass fibers. Therefore, in this study, ecofriendly bamboo fibers were used to fabricate multifunctional medical nonwoven materials with superhydrophobic, antibacterial, flame-retardant, and biocompatible properties. Specifically, ZIF-67 was grown in situ on natural bamboo cellulose fibers (BCFs) extracted from natural bamboo and coated with polydimethylsiloxane to construct an environmentally friendly and versatile nonwoven fabric. The treated nonwoven fabric exhibited superhydrophobicity with contact angle of 163° and possess excellent self-cleaning properties. The antibacterial activity of the samples was investigated by the plate-counting method; the results showed that the untreated BCFs did not exhibit antibacterial activity, whereas the treated bamboo nonwoven fabrics demonstrated significant antibacterial activity (p < 0.001), with an antibacterial rate of >99 % against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, and Candida albicans. In addition, when the samples were exposed to different temperatures (-4 and 50 °C) and humidities (0 % and 95 %), they demonstrated an antibacterial activity of >99 % against E. coli (F5,10 = 0.602; p = 0.670) and S. aureus (F4,10 = 0.289; p = 0.879). The heat release rate and smoke production rate of the nonwoven fabric decreased by 54.64 % and 93.18 %, respectively, compared to those of the BCFs, indicating excellent flame retardancy. The nonwoven fabric also exhibited satisfactory biocompatibility and breathability, ensuring user comfortability. This research not only has significant implications for producing low-cost, environmentally friendly, sustainable, and multifunctional medical products and openi up new pathways for the diversified utilization of bamboo, thereby expanding its applicability.
Collapse
Affiliation(s)
- Qi Gao
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuxiang Huang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Juan Hu
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Jian Gan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wenji Yu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
3
|
Zhao B, Ren Y, Zhang K, Dong Y, Wang K, Zhang N, Li J, Yuan M, Wang J, Tu Q. Hydroxypropyl methylcellulose reinforced bilayer hydrogel dressings containing L-arginine-modified polyoxometalate nanoclusters to promote healing of chronic diabetic wounds. Carbohydr Polym 2024; 342:122396. [PMID: 39048233 DOI: 10.1016/j.carbpol.2024.122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
Diabetes-related slow healing of wounds is primarily driven by bacterial infections and angiogenesis disorder and presents a substantial hurdle in clinical treatment. To solve the above problems, an advanced multifunctional hydrogel system based on natural polymer was created here to facilitate wound healing in patients with chronic diabetes. The prepared dressing was composed of an outer hydrogel containing polyvinyl alcohol and hydroxypropyl methyl cellulose in dimethyl sulfoxide and water as binary solvents, and an inner hydrogel containing chitosan quaternary ammonium salt, flaxseed gum, and polyvinyl alcohol. Thus, a polysaccharide based bilayer hydrogel (BH) with superior mechanical strength and biocompatibility was created. This bilayer hydrogel could easily bind to dynamic tissue surfaces, thereby generating a protective barrier. Meanwhile, L-arginine-modified polyoxometalate (POM@L-Arg) nanoclusters were loaded in the inner hydrogel. They released NO when stimulated by the peroxide microenvironment of diabetic wounds. NO as a signal molecule regulated vascular tension and promoted cell proliferation and migration. Additionally, because of the synergistic effect of NO and the chitosan quaternary ammonium salt, the hydrogel system exhibited excellent antibacterial performance. The NO released reduced the levels of proinflammatory factors IL-6 and TNF-α in the diabetic wounds, which thus accelerated wound healing. In short, BH + POM@L-Arg is expected to serve as an ideal wound dressing as it exerts a good promotion effect on diabetes-related wound healing.
Collapse
Affiliation(s)
- Bin Zhao
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Ren
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kexin Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuchuan Dong
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Keke Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Nannan Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jing Li
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Maosen Yuan
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jinyi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qin Tu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
4
|
Zhong Y, Wei ET, Wu L, Wang Y, Lin Q, Wu N, Chen H, Tang N. Novel Biomaterials for Wound Healing and Tissue Regeneration. ACS OMEGA 2024; 9:32268-32286. [PMID: 39100297 PMCID: PMC11292631 DOI: 10.1021/acsomega.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024]
Abstract
Skin is the first defense barrier of the human body, which can resist the invasion of external dust, microorganisms and other pollutants, and ensure that the human body maintains the homeostasis of the internal environment. Once the skin is damaged, the health threat to the human body will increase. Wound repair and the human internal environment are a dynamic process. How to effectively accelerate the healing of wounds without affecting the internal environment of the human body and guarantee that the repaired tissue retains its original function as much as possible has become a research hotspot. With the advancement of technology, researchers have combined new technologies to develop and prepare various types of materials for wound healing. This article will introduce the wound repair materials developed and prepared in recent years from three types: nanofibers, composite hydrogels, and other new materials. The paper aims to provide reference for researchers in related fields to develop and prepare multifunctional materials. This may be helpful to design more ideal materials for clinical application, and then achieve better wound healing and regeneration effects.
Collapse
Affiliation(s)
- Yi Zhong
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Er-ting Wei
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Leran Wu
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Yong Wang
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Qin Lin
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Nihuan Wu
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Hongpeng Chen
- School
of Biomedical Engineering, Guangdong Medical
University, Dongguan, Guangdong 523808, P. R. China
| | - Nan Tang
- School
of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| |
Collapse
|
5
|
Ye B, Lu G, Zhou J, Li Y, Ma Y, Zhang Y, Chen J. Sulfated glyco-based hydrogels as self-healing, adhesive, and anti-inflammatory dressings for wound healing. Colloids Surf B Biointerfaces 2024; 238:113915. [PMID: 38631281 DOI: 10.1016/j.colsurfb.2024.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Hydrogels have emerged as a new type of wound dressing materials that involved in different stages of the healing processes. However, most of the existing wound dressings mainly offer a protective and moisturizing layer to prevent cross-infection, while the anti-inflammatory and anti-oxidative properties are frequently induced by extra addition of other bioactive molecules. Here, a novel type of sulfated glyco-functionalized hydrogels for wound dressing was prepared through the hybrid supramolecular co-assembly of carbohydrate segments (FG, FGS and FG3S), fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), and diphenylalanine-dopamine (FFD). Implanting sulfated carbohydrates can mimic the structure of glycosaminoglycans (GAGs), promoting cell proliferation and migration, along with anti-inflammatory effects. In situ polymerization of FFD introduced a secondary covalent network to the hydrogel, meanwhile, providing anti-oxidation and adhesion properties to wound surfaces. Furthermore, the dynamic supramolecular interactions within the hydrogels also confer self-healing capabilities to the wound dressing materials. In vivo experiments further demonstrated significantly accelerated healing rates with the multifunctional hydrogel FG3S-FFD, indicating high application potential.
Collapse
Affiliation(s)
- Baotong Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; School of Chemical & Material Engineering, Jiangnan Universtiy, Wuxi 214122, PR China
| | - Guodong Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jingjing Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yi Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Moaness M, Kamel AM, Salama A, Kamel R, Beherei HH, Mabrouk M. Fast skin healing chitosan/PEO hydrogels: In vitro and in vivo studies. Int J Biol Macromol 2024; 265:130950. [PMID: 38513911 DOI: 10.1016/j.ijbiomac.2024.130950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Due to its outstanding qualities, particularly when it takes the shape of hydrogels, chitosan is a well-known biological macromolecule with many applications. When chitosan hydrogels are modified with other polymers, the desirable function as skin regeneration hydrogels is compromised; nevertheless, the mechanical properties can be improved, which is crucial for commercialization. In this study, for the first time, bimetallic zinc silver metal-organic frameworks (ZAg MOF) loaded with ascorbic acid were added to chitosan/polyethylene oxide (PEO) based interpenetrating polymer network (IPN) hydrogels that were crosslinked with biotin to improve their antimicrobial activity, mechanical characteristics, and sustainable treatment of wounds. Significant changes in the microstructure, hydrophilicity level, and mechanical properties were noticed. Ascorbic acid release patterns were upregulated in an acidic environment pH (5.5) that mimics the initial wound pH. Impressive cell viability (98 %), antimicrobial properties, and almost full skin healing in a short time were achieved for the non-replaceable chitosan/PEO developed hydrogels. Enhancing the wound healing of the treated animals using the prepared CS/PEO hydrogel dressing was found to be a result of the inhibition of dermal inflammation via decreasing IL-1β, suppressing ECM degradation (MMP9), stimulating proliferation through upregulation of TGF-β and increasing ECM synthesis as it elevates collagen 1 and α-SMA contents. The findings support the implementation of developed hydrogels as antimicrobial hydrogels dressing for fast skin regeneration.
Collapse
Affiliation(s)
- Mona Moaness
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt.
| | - Amira M Kamel
- Polymers and Pigments Department, National Research Centre, 33El Bohouth St., Dokki, PO Box12622, Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
7
|
Zhang W, Wei Y, Wei Q, Zhao Y, Jin Z, Wang Y, Ma G, He X, Hu Z, Jiang Y. Cascade enzymatic preparation of carboxymethyl chitosan-based multifunctional hydrogels for promoting cutaneous wound healing. Int J Biol Macromol 2023; 248:125793. [PMID: 37442505 DOI: 10.1016/j.ijbiomac.2023.125793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Designing wound dressings with inherent multifunctional therapeutic effects is desirable for clinical applications. Herein, a series of multifunctional carboxymethyl chitosan (CMCS)-based hydrogels were fabricated by the facile urate oxidase (UOX)-horseradish peroxidase (HRP) cascade enzymatic crosslinking system. For the first time, the cascade enzymatic crosslinking system was not only used for preparing hydrogel wound dressings but also for accelerating wound healing due to the activity retention of the self-compartmental enzymes. A CMCS derivative (HCMCS-mF) synthesized by successively grafting 4-hydroxybenzaldehyde (H) and 5-methylfurfural (mF) on CMCS and a quaternary ammonium crosslinker (QMal) with terminal grafting maleimide (Mal) groups were combined with enzymatic system for the facile preparation of hydrogels. The mild Diels-Alder (DA) crosslinking reaction between mF and Mal groups constructed the first network of hydrogels. The cascade UOX-HRP system mediated the oxidative crosslinking of phenols thus forming the second gel network. Self-entrapped UOX maintained its enzymatic activity and could continuously catalyze the oxidation of uric acid, generating therapeutic allantoin. These porous, degradable, mechanically stable hydrogels with excellent antioxidant performance and enhanced antibacterial capacity could effectively accelerate skin wound repair by simultaneously reducing oxidative stress, relieving inflammation, promoting collagen deposition and upregulating the expression level of CD31.
Collapse
Affiliation(s)
- Weiwei Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yixing Wei
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qingcong Wei
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Yanfei Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ziming Jin
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yaxing Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guanglei Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Hu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
8
|
Liu J, Zhang Z, Liu Z, Yu Y. Preparation of a nanocomposite hydrogel with high adhesion, toughness, and inherent antibacterial properties by a one-pot method. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Shen X, Zhang Y, Mao Q, Huang Z, Yan T, Lin T, Chen W, Wang Y, Cai X, Liang Y. Peptide–Polymer Conjugates: A Promising Therapeutic Solution for Drug-Resistant Bacteria. INT J POLYM SCI 2022; 2022:1-18. [DOI: 10.1155/2022/7610951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
By 2050, it is estimated that 10 million people will die of drug-resistant bacterial infection caused by antibiotic abuse. Antimicrobial peptide (AMP) is widely used to prevent such circumstances, for the positively charged AMPs can kill drug-resistant bacteria by destroying negatively charged bacterial cell membrane, and has excellent antibacterial efficiency and low drug resistance. However, due to the defects in low in vivo stability, easy degradation, and certain cytotoxicity, its practical clinical application is limited. The emergence of peptide–polymer conjugates (PPC) helps AMPs overcome these shortcomings. By combining with functional polymers, the positive charge of AMPs is partially shielded, and its stability and water solubility are improved, so as to prolong the in vivo circulation time of AMPs and reduce its cytotoxicity. At the same time, the self-assembly ability of PPC enables it to assemble into different nanostructures to undertake specific antibacterial tasks. At present, PPC is mainly used in wound dressing, bone tissue repair, antibacterial coating of medical devices, nerve repair, tumor treatment, and oral health maintenance. In this study, we summarize the structure, synthesis methods, and the clinical applications of PPC, so as to present the current challenges and discuss the future prospects of antibacterial therapeutic materials.
Collapse
Affiliation(s)
- Xuqiu Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wenchao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
10
|
Chafran L, Carfagno A, Altalhi A, Bishop B. Green Hydrogel Synthesis: Emphasis on Proteomics and Polymer Particle-Protein Interaction. Polymers (Basel) 2022; 14:4755. [PMID: 36365747 PMCID: PMC9656617 DOI: 10.3390/polym14214755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
The field of drug discovery has seen significant progress in recent years. These advances drive the development of new technologies for testing compound's effectiveness, as well as their adverse effects on organs and tissues. As an auxiliary tool for drug discovery, smart biomaterials and biopolymers produced from biodegradable monomers allow the manufacture of multifunctional polymeric devices capable of acting as biosensors, of incorporating bioactives and biomolecules, or even mimicking organs and tissues through self-association and organization between cells and biopolymers. This review discusses in detail the use of natural monomers for the synthesis of hydrogels via green routes. The physical, chemical and morphological characteristics of these polymers are described, in addition to emphasizing polymer-particle-protein interactions and their application in proteomics studies. To highlight the diversity of green synthesis methodologies and the properties of the final hydrogels, applications in the areas of drug delivery, antibody interactions, cancer therapy, imaging and biomarker analysis are also discussed, as well as the use of hydrogels for the discovery of antimicrobial and antiviral peptides with therapeutic potential.
Collapse
Affiliation(s)
- Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| | | | | | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| |
Collapse
|
11
|
Liu Z, Li J, Zhang Z, Liu J, Wu C, Yu Y. Incorporating Self-Healing Capability in Temperature-Sensitive Hydrogels by Non-Covalent Chitosan Crosslinkers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Luneva O, Olekhnovich R, Uspenskaya M. Bilayer Hydrogels for Wound Dressing and Tissue Engineering. Polymers (Basel) 2022; 14:polym14153135. [PMID: 35956650 PMCID: PMC9371176 DOI: 10.3390/polym14153135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
A large number of different skin diseases such as hits, acute, and chronic wounds dictate the search for alternative and effective treatment options. The wound healing process requires a complex approach, the key step of which is the choice of a dressing with controlled properties. Hydrogel-based scaffolds can serve as a unique class of wound dressings. Presented on the commercial market, hydrogel wound dressings are not found among proposals for specific cases and have a number of disadvantages—toxicity, allergenicity, and mechanical instability. Bilayer dressings are attracting great attention, which can be combined with multifunctional properties, high criteria for an ideal wound dressing (antimicrobial properties, adhesion and hemostasis, anti-inflammatory and antioxidant effects), drug delivery, self-healing, stimulus manifestation, and conductivity, depending on the preparation and purpose. In addition, advances in stem cell biology and biomaterials have enabled the design of hydrogel materials for skin tissue engineering. To improve the heterogeneity of the cell environment, it is possible to use two-layer functional gradient hydrogels. This review summarizes the methods and application advantages of bilayer dressings in wound treatment and skin tissue regeneration. Bilayered hydrogels based on natural as well as synthetic polymers are presented. The results of the in vitro and in vivo experiments and drug release are also discussed.
Collapse
|
13
|
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly( N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022; 8:454. [PMID: 35877539 PMCID: PMC9323937 DOI: 10.3390/gels8070454] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022] Open
Abstract
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul R. Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA;
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara 144001, Punjab, India;
| | - Kingshuk Panda
- Department of Applied Microbiology, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, Tamilnadu, India;
| | - Kishore Dhotre
- I.C.M.R.—National Institute of Virology, Pune 411021, Maharashtra, India;
| | - Ravi Manne
- Chemtex Environmental Lab, Quality Control and Assurance Department, 3082 25th Street, Port Arthur, TX 77642, USA;
| | - A. Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600124, Tamil Nadu, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; or
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
14
|
Programmable shape deformation actuated bilayer hydrogel based on mixed metal ions. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|