1
|
Ghosh S, Distaffen HE, Jones CW, Nilsson BL. Multicomponent supramolecular hydrogels composed of cationic phenylalanine derivatives and anionic amino acids. Faraday Discuss 2025. [PMID: 40396378 DOI: 10.1039/d4fd00198b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Supramolecular hydrogels composed of self-assembled fluorenylmethoxycarbonyl phenylalanine (Fmoc-Phe) derivatives have been the focus of intense study as novel materials for biological applications that include drug delivery, tissue engineering, and regenerative medicine. Cationic Fmoc-Phe derivatives functionalized with diaminopropane (Fmoc-Phe-DAP) have been shown to undergo self-assembly and hydrogelation upon an increase in solution ionic strength by the addition of inorganic salts that provide cation-shielding counterions. Further, the identity of the inorganic salts modifies the assembly morphology and emergent viscoelastic properties of the resulting materials. Herein, we report multicomponent hydrogels composed of Fmoc-Phe-DAP derivatives in which hydrogelation is promoted by the addition of anionic amino acids, monosodium aspartate or monosodium glutamate. Aspartate and glutamate salts both support supramolecular gelation of Fmoc-Phe-DAP derivatives, although only the glutamate gels remain stable over periods longer than one hour. The assemblies formed by Fmoc-Phe-DAP derivatives in the presence of aspartate and glutamate are morphologically distinct relative to those formed in the presence of sodium chloride. The viscoelastic properties of stable glutamate/Fmoc-Phe-DAP derivative hydrogels are sensitive to the ratios of glutamate to Fmoc-Phe-DAP derivative, with increased concentrations of glutamate corresponding to higher viscoelastic strength. These multicomponent systems demonstrate that comixing unfunctionalized amino acids with self-assembling Fmoc-Phe-DAP derivatives is yet another effective method to modify the emergent properties of the resulting materials.
Collapse
Affiliation(s)
- Shruti Ghosh
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA.
| | - Hannah E Distaffen
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA.
| | - Christopher W Jones
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA.
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY, 14627-0216, USA.
- Materials Science Program, University of Rochester, Rochester, NY 14627-0166, USA
| |
Collapse
|
2
|
Veloso SRS, Vijayakanth T, Shankar S, Fridman N, Rencus-Lazar S, Hilliou L, Rodrigues PV, Moura C, Ferreira PMT, Correa-Duarte MA, Castanheira EMS, Gazit E. Self-Assembly Pathway Influence on Dehydropeptide-Based Gel Properties and Drug Release. Macromol Biosci 2025:e70003. [PMID: 40366348 DOI: 10.1002/mabi.202400449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/03/2025] [Indexed: 05/15/2025]
Abstract
Low-molecular-weight peptide-based hydrogels formed through self-assembly have emerged as promising candidates for biomedical applications. While the self-assembly process is known to affect the network morphology, its impact on mechanical properties and drug delivery remains poorly understood. In this work, it is explored how different gelation conditions influence the morphology, properties, and drug release profiles of dehydropeptide-based gels. Additionally, it is presented and analyzed, for the first time, the crystal structure of a naphthalene N-capped dehydropeptide (2-Naph-L-Phe-Z-ΔPhe-OH), which reveals a maximum pore diameter of ≈4.08 Å. By changing the preparation conditions, it is found that the stiffness of the hydrogels can vary by nearly three orders of magnitude. Employing spectroscopic and imaging techniques, the relationship between the gelation methods and the resulting mechanical properties is investigated. These findings suggest that the assembly structure, morphology, and non-covalent interactions significantly influence the release profile of model drugs such as doxorubicin, methotrexate, and curcumin. These results provide valuable insights into how preparation conditions can impact the properties of peptide-based hydrogels and their drug release profiles.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- CINBIO, Universidad de Vigo, Vigo, 36310, Spain
| | - Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Sudha Shankar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Loic Hilliou
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), University of Minho, Guimarães, 4804-533, Portugal
| | - Pedro V Rodrigues
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), University of Minho, Guimarães, 4804-533, Portugal
| | - Cacilda Moura
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Paula M T Ferreira
- Chemistry Centre of the University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
3
|
Wychowaniec JK, Bektas EI, Muerner M, Sapudom J, Šrejber M, Airoldi M, Schmidt R, Vernengo AJ, Edwards-Gayle CJC, Tipay PS, Otyepka M, Teo J, Eglin D, D’Este M. Effect of Tyrosine-Containing Self-Assembling β-Sheet Peptides on Macrophage Polarization and Inflammatory Response. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27740-27758. [PMID: 40235215 PMCID: PMC12086772 DOI: 10.1021/acsami.4c19900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/14/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
Self-assembling peptides (SAPs) are fully defined nanobiomaterials offering unprecedented opportunities to control nanostructure and chemical attributes to investigate and manipulate cellular signals. To investigate the influence of chemical and morphological characteristics on inflammatory signaling in native immunity, we designed five β-sheet SAPs: EFEFKFEFK (EF8), YEFEFKFEFK (YEF8), EFEFKFEFKY (EF8Y), YEFEFKFEFKY (YEF8Y), and EYEFKFEFK (EYF8) (F: phenylalanine; E: glutamic acid; K: lysine, Y: tyrosine). The position of tyrosine in the peptide sequence dictated the self-assembly into nanostructures, with all SAPs self-assembling into thin constituent nanofibers with d ≈ 3.8 ± 0.4 nm, and sequences YEF8 and EF8 showing a propensity for associative bundling. These distinct SAPs induced contrasting inflammatory responses of monocytic model THP-1 cells-derived macrophages (MΦs). Presence of soluble EF8 nanofibers (at 2 mM) induced an anti-inflammatory response and polarization toward an M2 state, whereas YEF8 (at 2 mM) displayed a tendency for inducing a pro-inflammatory response and polarization toward an M1 state. EF8Y, YEF8Y, and EYF8 SAPs did not induce an inflammatory response in our models. These results were validated using peripheral blood mononuclear cells (PBMCs)-derived MΦs from human donors, confirming the critical role of EF8 and YEF8 SAPs as possible orchestrators of the repair of tissues or inducers of pro-inflammatory state, respectively. The same MΦs polarization responses from THP-1-derived MΦs cultured on 20 mM hydrogels were obtained. These findings will facilitate the utilization of this family of SAPs as immunomodulatory nanobiomaterials potentially changing the course of inflammation during the progression of various diseases.
Collapse
Affiliation(s)
| | - Ezgi Irem Bektas
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Marcia Muerner
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
- ETH
Zürich, Rämistrasse
101, Zürich 8092, Switzerland
| | - Jiranuwat Sapudom
- Laboratory
for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Martin Šrejber
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 779
00 Olomouc, Czech
Republic
| | - Marielle Airoldi
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Roland Schmidt
- Hitachi
High-Tech Europe GmbH, Europark Fichtenhain A12, 47807 Krefeld, Germany
| | - Andrea J. Vernengo
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | | | - Paul Sean Tipay
- Laboratory
for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 779
00 Olomouc, Czech
Republic
- IT4Innovations, VSB-Technical
University of Ostrava, 708
00 Ostrava-Poruba, Czech Republic
| | - Jeremy Teo
- Laboratory
for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - David Eglin
- Mines
Saint-Étienne, Univ Jean Monnet, INSERM, UMR 1059 Sainbiose, 1059, Saint-Étienne, France
| | - Matteo D’Este
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| |
Collapse
|
4
|
Jeong HC, Kuang Y, Yao ZF, Ardona HAM. Supramolecular peptidic dopants for inducing photoconductivity and mechanical tunability in digital light processable hydrogels. Faraday Discuss 2025. [PMID: 40365717 DOI: 10.1039/d5fd00031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
This work presents a strategy for generating composite hydrogels bearing photoconductive conduits held by supramolecular interactions that are compatible with digital light processing (DLP) printing. Conductive polymers are typically processed with organic solvents as the film, yet if used as biomaterials, excitable cells often require matching with the mechanical and structural properties of their native, aqueous three-dimensional (3-D) microenvironment. Here, we utilize peptide-functionalized porphyrin units capable of self-assembling into photoconductive nanostructures with defined nanomorphologies under aqueous conditions. In addition to the DXXD peptide arms (X = V, F), the sequence variants studied here include a peptidic moiety bearing allyloxycarbonyl (alloc) groups that can serve as crosslinking sites of the acrylate-based monomers that ultimately form the base 3-D covalent network for the hydrogels. We investigate the impact of pre-templating polymeric gelators with supramolecular assemblies vs. printing a dispersed peptide-porphyrin in a polymer composite, specifically, the potential impact of the morphologies of the supramolecular additives or "dopants" on the resulting mechanical property, conductivity, and printability of the hydrogels, comprised of a hybrid between acrylated polymers and supramolecular peptide-porphyrin assemblies. Lastly, we demonstrate the role of photophysical properties that emerge from peptide-tuned porphyrin assemblies as a photoabsorber additive that influences the printing outcomes of the composite hydrogel. Overall, we present a covalent-supramolecular composite hydrogelator system where the self-assembled networks offer a pathway for energy transport and mechanical reinforcement/dissipation at the same time, leading to the formation of a hydrogel with optoelectronic, mechanical, and printable behavior that can be influenced by self-assembled dopants.
Collapse
Affiliation(s)
- Harrison C Jeong
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA.
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA.
| | - Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA.
| | - Herdeline Ann M Ardona
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA.
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Shakouripour F, Olad A, Bayramoglu G. Preparation of interpenetrating networks from chitosan and poly(hydroxypropyl methacrylate) or p(hydroxyethyl methacrylate) for controlled release of doxorubicin and curcumin: Investigation of potential use in wound dressing. Int J Biol Macromol 2025; 301:140929. [PMID: 39947546 DOI: 10.1016/j.ijbiomac.2025.140929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
The IPNs hydrogel films based on chitosan (CS), 2-hydroxyethyl methacrylate (HEMA), and 2-hydroxypropyl methacrylate (HPMA) were prepared, and their potential for drug delivery and wound dressing was evaluated. The characterizations of the IPNs were examined through swelling tests, FTIR, DSC, SEM, mechanical properties, and BET analyses. The percent swelling of the CS/p(HEMA)1 and CS/p(HPMA)1 were obtained as 240 % and 110 %, respectively. The release behavior of prepared hydrogel formulations was investigated in two different pH values for DOX and CUR at pH 5.5 and 7.4, respectively, at varying drug concentrations. In vitro, drug release profiles revealed a time-dependent release pattern, with a maximum release observed at 48 h for all formulations. Among the IPNs, CS/p(HEMA)1 formulation containing CS/HEMA in a 1:1 ratio showed the highest drug release rates of 76.0 % for doxorubicin and 75.5 % for curcumin. MTT assays revealed that the IPNs formulations exhibit enhanced interaction with drugs, leading to an improved drug release rate. A marked decrease in cell viability was observed as the concentration of both drugs increased for testing the ATCC-CRL 2451 leukemia cell line in the prepared formulations. These findings highlight the potential of these composite hydrogels as efficient drug delivery systems for wound dressing applications.
Collapse
Affiliation(s)
- Fatemeh Shakouripour
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Chemistry, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara, Turkey.
| |
Collapse
|
6
|
Soliman MAN, Khedr A, Sahota T, Armitage R, Allan R, Laird K, Allcock N, Ghuloum FI, Amer MH, Alazragi R, Edwards‐Gayle CJC, Wychowaniec JK, Vargiu AV, Elsawy MA. Unraveling the Atomistic Mechanism of Electrostatic Lateral Association of Peptide β-Sheet Structures and Its Role in Nanofiber Growth and Hydrogelation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408213. [PMID: 39780584 PMCID: PMC11817957 DOI: 10.1002/smll.202408213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Guiding molecular assembly of peptides into rationally engineered nanostructures remains a major hurdle against the development of functional peptide-based nanomaterials. Various non-covalent interactions come into play to drive the formation and stabilization of these assemblies, of which electrostatic interactions are key. Here, the atomistic mechanisms by which electrostatic interactions contribute toward controlling self-assembly and lateral association of ultrashort β-sheet forming peptides are deciphered. Our results show that this is governed by charge distribution and ionic complementarity, both affecting the interaction patterns between charged residues: terminal, core, and/or terminal-to-core attraction/repulsion. Controlling electrostatic interactions enabled fine-tuning nanofiber morphology for the 16 examined peptides, resulting into versatile nanostructures ranging from extended thin fibrils and thick bundles to twisted helical "braids" and short pseudocrystalline nanosheets. This in turn affected the physical appearance and viscoelasticity of the formed materials, varying from turbid colloidal dispersions and viscous solutions to soft and stiff self-supportive hydrogels, as revealed from oscillatory rheology. Atomistic mechanisms of electrostatic interaction patterns were confirmed by molecular dynamic simulations, validating molecular and nanoscopic characterization of the developed materials. In essence, detailed mechanisms of electrostatic interactions emphasizing the impact of charge distribution and ionic complementarity on self-assembly, nanostructure formation, and hydrogelation are reported.
Collapse
Affiliation(s)
- Mohamed A. N. Soliman
- Leicester Institute for Pharmaceutical InnovationLeicester School of PharmacyDe Montfort UniversityThe GatewayLeicesterLE1 9BHUK
- Department of Pharmaceutics and Industrial PharmacyFaculty of PharmacyCairo UniversityCairo11562Egypt
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical InnovationLeicester School of PharmacyDe Montfort UniversityThe GatewayLeicesterLE1 9BHUK
- Department of Pharmaceutics and Industrial PharmacyFaculty of PharmacyZagazig UniversityZagazigEgypt
| | - Tarsem Sahota
- Leicester Institute for Pharmaceutical InnovationLeicester School of PharmacyDe Montfort UniversityThe GatewayLeicesterLE1 9BHUK
| | - Rachel Armitage
- Leicester Institute for Pharmaceutical InnovationLeicester School of PharmacyDe Montfort UniversityThe GatewayLeicesterLE1 9BHUK
- School of Archaeology and Ancient HistoryUniversity of LeicesterLeicesterLE1 7RHUK
| | - Raymond Allan
- Leicester Institute for Pharmaceutical InnovationLeicester School of PharmacyDe Montfort UniversityThe GatewayLeicesterLE1 9BHUK
| | - Katie Laird
- Leicester Institute for Pharmaceutical InnovationLeicester School of PharmacyDe Montfort UniversityThe GatewayLeicesterLE1 9BHUK
| | - Natalie Allcock
- Electron Microscopy Facility Core Biotechnology ServicesCollege of Life SciencesUniversity of LeicesterLeicesterLE1 7RHUK
| | - Fatmah I. Ghuloum
- Division of Cell Matrix and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Mahetab H. Amer
- Division of Cell Matrix and Regenerative MedicineSchool of Biological SciencesUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Reem Alazragi
- Leicester Institute for Pharmaceutical InnovationLeicester School of PharmacyDe Montfort UniversityThe GatewayLeicesterLE1 9BHUK
- Department of Biological ScienceCollege of ScienceUniversity of JeddahJeddah21493Saudi Arabia
| | | | | | - Attilio V. Vargiu
- Physics DepartmentUniversity of Cagliaris.p. 8km. 0.700Monserrato09042Italy
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical InnovationLeicester School of PharmacyDe Montfort UniversityThe GatewayLeicesterLE1 9BHUK
- Division of Pharmacy and OptometrySchool of Health SciencesUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
7
|
Wang X, Zhang S, Wang X, Zhou L, Tang Y, Xiao Y, Zhang Y, Li W. β-cyclodextrin-modified carboxymethyl chitosan/hyaluronic acid-based crosslinked composite nanogels as a dual responsive carrier for targeting anti-tumor therapy. Int J Pharm 2024; 667:124917. [PMID: 39521160 DOI: 10.1016/j.ijpharm.2024.124917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Advanced nanosized drug delivery systems can significantly improve efficacy and safety of first-line chemotherapeutics by enhancing tumor targeting. Herein, one-pot covalent crosslinking approach was developed to generate biodegradable tumor-targeted composite Nanogels from carboxymethyl chitosan, hyaluronic acid, cystamine and 6-ethylene-diamine-6-deoxy-β-cyclodextrin loaded with doxorubicin (DOX) for controlled intracellular DOX release. The optimized synthetic procedures generated Nanogels of about 190 nm in size and 28.3 % drug loading capability. DOX-loaded Nanogels was effectively internalized into tumor cells mainly by CD44 receptor-mediated endocytosis and rapidly released DOX in response to the high level of GSH in cytoplasm and acidic intracellular environments. DOX-loaded Nanogels significantly inhibited the tumor growth especially without appreciable side toxicities in 4 T1 tumor-bearing mice model owing to CD44 receptor-mediated active targeting and the passive targeting of Nanogels by enhanced permeation and retention effect. Overall, our newly developed composite Nanogels might be employed as a potentially effective therapeutic strategy for tumor therapy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shurong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyue Wang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Liping Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yang Tang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yan Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Xin Y, Ligorio C, O'brien M, Collins R, Dong S, Miller AF, Saiani A, Gough JE. Effect of supramolecular peptide hydrogel scaffold charge on HepG2 viability and spheroid formation. J Mater Chem B 2024; 12:12553-12566. [PMID: 39502032 DOI: 10.1039/d4tb01701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Supramolecular bioinspired self-assembling peptide hydrogel (SAPH) scaffolds represent a class of fully defined synthetic materials whose chemical and mechanical properties can be finely engineered. In this study, the relationship between SAPHs physicochemical properties and HepG2 cells viability, spheroid formation and function are discussed. We first report that negatively charged SAPHs promote hepatocyte proliferation and spheroids formation in vitro 3D culture while positively charged SAPHs lead to hepatocyte death irrespective of the hydrogel mechanical properties. More specifically HepG2 cultured in 3D in E(FKFE)2 negatively charged SAPH maintained a differentiated phenotype and assembled into well-defined spheroids with strong cell-cell interactions. Furthermore, HepG2 spheroids responded to acetaminophen exposure with upregulation of key CYP450 enzymes expression clearly showing their potential for drug toxicity testing. These findings demonstrate how fine-tuned functional SAPH scaffolds can be used to identify key scaffolds parameters affecting cells. In this case we demonstrated the potential of negatively charged SAPHs for the 3D culture of HepG2 with potential applications in drug screening.
Collapse
Affiliation(s)
- Yu Xin
- Department of Materials & Henry Royce Institute, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, UK.
| | - Cosimo Ligorio
- Department of Materials & Manchester Institute of Biotechnology, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, UK
| | - Marie O'brien
- Department of Materials & Henry Royce Institute, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, UK.
| | - Richard Collins
- Electron Microscopy Core Facility, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Siyuan Dong
- Department of Chemical Engineering & Manchester Institute of Biotechnology, School of Engineering, Faculty of Science and Engineering, The University of Manchester, UK
| | - Aline F Miller
- Department of Chemical Engineering & Manchester Institute of Biotechnology, School of Engineering, Faculty of Science and Engineering, The University of Manchester, UK
| | - Alberto Saiani
- Division of Pharmacy and Optometry & Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Julie E Gough
- Department of Materials & Henry Royce Institute, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, UK.
| |
Collapse
|
9
|
Wychowaniec JK, Šrejber M, Zeng N, Smith AM, Miller AF, Otyepka M, Saiani A. Effects of proline substitution/inclusion on the nanostructure of a self-assembling β-sheet-forming peptide. RSC Adv 2024; 14:37419-37430. [PMID: 39606779 PMCID: PMC11601148 DOI: 10.1039/d4ra07065h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Self-assembling peptides remain persistently interesting objects for building nanostructures and further assemble into macroscopic structures, e.g. hydrogels, at sufficiently high concentrations. The modulation of self-assembling β-sheet-forming peptide sequences, with a selection from the full library of amino acids, offers unique possibility for rational tuning of the resulting nanostructured morphology and topology of the formed hydrogel networks. In the present work, we explored how a known β-sheet-disassembling amino acid, proline (P), affects the self-assembly and gelation properties of amphipathic peptides. For this purpose, we modified the backbone of a known β-sheet-forming peptide, FEFKFEFK (F8, F = phenylalanine, E = glutamic acid, and K = lysine), with P to form three sequences: FEFKPEFK (FP), FEFKPEFKF (KPE) and FEFEPKFKF (EPK). The replacement of F by P in the hydrophobic face resulted in the loss of the extended β-sheet conformation of the FP peptide and no gelation at concentration as high as 100 mg mL-1, compared to typical 5 mg mL-1 concentration corresponding to F8. However, by retaining four hydrophobic phenylalanine amino acids in the sequences, hydrogels containing a partial β-sheet structure were still formed at 30 mg mL-1 for KPE (pH 4-10) and EPK (pH 2-5). TEM, AFM, small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) revealed that KPE and EPK peptides self-assemble into nanoribbons and twisted nanofibers, respectively. Molecular dynamics confirmed that the single amino acid replacement of F by P prevented the assembly of the FP peptide with respect to the stable β-sheet-forming F8 variant. Moreover, additional prolongation by F in the KPE variant and shuffling of the polar amino acid sequence in the EPK peptide supported aggregation capabilities of both variants in forming distinct shapes of individual aggregates. Although the overall number of amino acids is the same in both KPE and EPK, their shifted charge density (i.e., the chemical environment in which ionic groups reside) drives self-assembly into distinct nanostructures. The investigated structural changes can contribute to new material designs for biomedical applications and provide better understanding in the area of protein folding.
Collapse
Affiliation(s)
- Jacek K Wychowaniec
- Department of Materials, Manchester Institute of Biotechnology, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester UK
- AO Research Institute Davos Clavadelerstrasse 8 Davos 7270 Switzerland
| | - Martin Šrejber
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc 779 00 Olomouc Czech Republic
| | - Niting Zeng
- Department of Materials, Manchester Institute of Biotechnology, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester UK
| | - Andrew M Smith
- Department of Materials, Manchester Institute of Biotechnology, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester UK
| | - Aline F Miller
- Department of Chemical Engineering, Manchester Institute of Biotechnology, School of Engineering, Faculty of Science and Engineering, The University of Manchester UK
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc 779 00 Olomouc Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava 708 00 Ostrava-Poruba Czech Republic
| | - Alberto Saiani
- Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester UK
| |
Collapse
|
10
|
Amirian J, Wychowaniec JK, D′este M, Vernengo AJ, Metlova A, Sizovs A, Brangule A, Bandere D. Preparation and Characterization of Photo-Cross-Linkable Methacrylated Silk Fibroin and Methacrylated Hyaluronic Acid Composite Hydrogels. Biomacromolecules 2024; 25:7078-7097. [PMID: 39401165 PMCID: PMC11558566 DOI: 10.1021/acs.biomac.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/12/2024]
Abstract
Composite biomaterials with excellent biocompatibility and biodegradability are crucial in tissue engineering. In this work, a composite protein and polysaccharide photo-cross-linkable hydrogel was prepared using silk fibroin methacrylate (SFMA) and hyaluronic acid methacrylate (HAMA). SFMA was obtained by the methacrylation of degummed SF with glycidyl methacrylate (GMA), while HA was methacrylated by 2-aminoethyl methacrylate hydrochloride (AEMA). We investigated the effect of the addition of 1 wt % HAMA to 5, 10, and 20 wt % SFMA, which resulted in an increase in both static and cycling mechanical strengths. All composite hydrogels gelled under UV light in <30 s, allowing for rapid stabilization and stiffness increases. The biocompatibility of the hydrogels was confirmed by direct and indirect contact methods and by evaluation against the NIH3T3 and MC3T3 cell lines with a live-dead assay by confocal imaging. The range of obtained mechanical properties from developed composite and UV-cross-linkable hydrogels sets the basis as possible future biomaterials for various biomedical applications.
Collapse
Affiliation(s)
- Jhaleh Amirian
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| | | | - Matteo D′este
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Andrea J. Vernengo
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Anastasija Metlova
- Laboratory
of Pharmaceutical Pharmacology, Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Antons Sizovs
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
- Laboratory
of Pharmaceutical Pharmacology, Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Agnese Brangule
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| | - Dace Bandere
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| |
Collapse
|
11
|
Guo Y, Chen Y, Wu Y, Zhu Y, Luo S, Shen J, Luo Y. Injectable pH-responsive polypeptide hydrogels for local delivery of doxorubicin. NANOSCALE ADVANCES 2024:d4na00719k. [PMID: 39502105 PMCID: PMC11533052 DOI: 10.1039/d4na00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024]
Abstract
Cancer, as a global health threat, is often treated with chemotherapy, but its effect is limited, especially the drugs such as doxorubicin (DOX) are limited by their non-specificity and side effects. This study focuses on developing a new drug delivery system to overcome these challenges. Based on the self-assembling peptide hemopressin (HP), we designed and screened FOK peptide, which serves as a pH-responsive carrier with excellent pH sensitivity and mechanical stability. At a concentration of 20 mg mL-1, FOK can spontaneously form a stable hydrogel, efficiently encapsulating DOX with an encapsulation rate exceeding 95%. This system can gradually release the drug in the tumor-specific mildly acidic environment, achieving precise delivery and sustained release of the drug. Rheological analysis revealed the superior mechanical and self-healing properties of FOK hydrogel, suitable for injection delivery with long-lasting stability. Mouse experiments showed that DOX/FOK hydrogel significantly inhibited tumor growth while greatly reducing toxicity. In conclusion, FOK hydrogel, as a delivery vehicle for DOX, not only optimizes the precise delivery and sustained release mechanism of DOX, but also reduces treatment side effects, opening up new avenues for the application of peptide hydrogels in cancer therapy and providing a scientific basis for designing efficient drug delivery systems.
Collapse
Affiliation(s)
- Yijun Guo
- Department of Pharmacy, Nantong First People's Hospital Nantong Jiangsu 226006 China
| | - Yong Chen
- Department of Pharmacy, Nantong First People's Hospital Nantong Jiangsu 226006 China
| | - Yiqun Wu
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Shiyao Luo
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Juan Shen
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| | - Yongjun Luo
- Department of Pharmaceutics, School of Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nanjing Jiangsu 211198 China
| |
Collapse
|
12
|
Mondal B, Hansda B, Mondal T, Pal P, Basu K, Banerjee A. Long Stability of Atomically Precise Red Emissive Copper Nanoclusters within the Gel and Their Use As a Potential Catalyst and Fluorescent Ink. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21876-21883. [PMID: 39365915 DOI: 10.1021/acs.langmuir.4c03210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Herein, an amphiphile-based hydrogel (with 5% DMF) containing natural amino acid residue has been used to prepare and stabilize red-emitting CuNCs for several months. Though different methods have been attempted, amphiphile and 4-mercaptobenzoic acid (4-MBA)-containing hydrogels are pinpointed to be the base medium to stabilize this new Cu-cluster. From a MALDI-TOF MS analysis it was found that it is a Cu8-atom cluster stabilized by three 4-MBA ligands. Copper acetate monohydrate (Cu(CH3COO)2·H2O) has been used as a copper precursor, and l-ascorbic acid has been used as a reducing agent. FEG-TEM analysis shows that the Cu cluster has an average size of 2.83 nm. Interestingly, these clusters can be used as a fluorescent ink with a visibility of the solid state under a UV-lamp with an excitation of 365 nm. This envisaged applying these CuNCs for anticounterfeiting. These Cu-clusters show an excitation of 420 nm with an emission of 620 nm, as is evident from the fluorescence spectroscopic analysis. Based on our knowledge, this is the first example of making and consequently stabilizing Cu-clusters using hydrogel as a template for a few months. Moreover, these CuNCs can also be used as a catalyst for the reduction of nitro derivatives to their amine derivatives in aqueous medium.
Collapse
Affiliation(s)
- Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Biswanath Hansda
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Tanushree Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Poulami Pal
- Department of Chemistry, Visva-Bharati, Shantiniketan-731235, West Bengal, India
| | - Kingshuk Basu
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
13
|
Xie C, Chen Y, Wang L, Liao K, Xue B, Han Y, Li L, Jiang Q. Recent research of peptide-based hydrogel in nervous regeneration. Bioact Mater 2024; 40:503-523. [PMID: 39040568 PMCID: PMC11261279 DOI: 10.1016/j.bioactmat.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Neurological disorders exert significantly affect the quality of life for patients, necessitating effective strategies for nerve regeneration. Both traditional autologous nerve transplantation and emerging therapeutic approaches encounter scientific challenges due to the complex nature of the nervous system and the unsuitability of the surrounding environment for cell transplantation. Tissue engineering techniques offer a promising path for neurotherapy. Successful neural tissue engineering relies on modulating cell differentiation behavior and tissue repair by developing biomaterials that mimic the natural extracellular matrix (ECM) and establish a three-dimensional microenvironment. Peptide-based hydrogels have emerged as a potent option among these biomaterials due to their ability to replicate the structure and complexity of the ECM. This review aims to explore the diverse range of peptide-based hydrogels used in nerve regeneration with a specific focus on dipeptide hydrogels, tripeptide hydrogels, oligopeptide hydrogels, multidomain peptides (MDPs), and amphiphilic peptide hydrogels (PAs). Peptide-based hydrogels offer numerous advantages, including biocompatibility, structural diversity, adjustable mechanical properties, and degradation without adverse effects. Notably, hydrogels formed from self-assembled polypeptide nanofibers, derived from amino acids, show promising potential in engineering neural tissues, outperforming conventional materials like alginate, poly(ε-caprolactone), and polyaniline. Additionally, the simple design and cost-effectiveness of dipeptide-based hydrogels have enabled the creation of various functional supramolecular structures, with significant implications for nervous system regeneration. These hydrogels are expected to play a crucial role in future neural tissue engineering research. This review aims to highlight the benefits and potential applications of peptide-based hydrogels, contributing to the advancement of neural tissue engineering.
Collapse
Affiliation(s)
- Chunmei Xie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueyang Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lang Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kin Liao
- Advanced Digital and Additive Manufacturing Center, Khalifa University of Science and Technology, Po Box 127788, Abu Dhabi, United Arab Emirates
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, China
| | - Yulong Han
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Gaubert A, Castagnet T, Marsh J, Barthélémy P. Fluorinated GlycoNucleoLipid-based hydrogels as new spatiotemporal stimulable DDS. Drug Deliv Transl Res 2024; 14:2079-2084. [PMID: 38388815 DOI: 10.1007/s13346-024-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Achieving a controlled release of several active pharmaceutical ingredients (APIs) remains a challenge for improving their therapeutic effects and reduced their side effects. In the current work, stimulable Drug Delivery Systems (DDS) based on supramolecular hydrogels were designed by combining two APIs featuring anticancer activities, namely the doxorubicin and phenazine 14. In vitro studies revealed promising physicochemical properties for all the investigated API loaded gels. Fluorinated GlycoNucleoLipid (GNF) based supramolecular gels remain stable in the presence of either doxorubicin (Doxo) or phenazine 14 (Phe) as anticancer drugs. Noteworthy, the stiffness of the GNF-based supramolecular gels was enhanced in the presence of both APIs while maintaining their thixotropic properties. We demonstrated that the storage modulus (G') of the GNF gels was increased from 1.3 kPa to 9.3 kPa upon loading of both APIs within the same gels. With a low mechanical stimulation (within the LVR), a passive diffusion out of gels was observed for Dox whereas Phe remained trapped in the GNF gels over several hours. Also, in this work we showed that mechanical stress triggered the release of both Phe and Doxo at different rates.
Collapse
Affiliation(s)
- Alexandra Gaubert
- University of Bordeaux, ARNA laboratory, INSERM U1212, UMR CNRS 5320, F-33076, Bordeaux, France.
| | - Thibault Castagnet
- University of Bordeaux, ARNA laboratory, INSERM U1212, UMR CNRS 5320, F-33076, Bordeaux, France
| | - Jevon Marsh
- University of Bordeaux, ARNA laboratory, INSERM U1212, UMR CNRS 5320, F-33076, Bordeaux, France
| | - Philippe Barthélémy
- University of Bordeaux, ARNA laboratory, INSERM U1212, UMR CNRS 5320, F-33076, Bordeaux, France.
| |
Collapse
|
15
|
Dong S, Chapman SL, Pluen A, Richardson SM, Miller AF, Saiani A. Effect of Peptide-Polymer Host-Guest Electrostatic Interactions on Self-Assembling Peptide Hydrogels Structural and Mechanical Properties and Polymer Diffusivity. Biomacromolecules 2024; 25:3628-3641. [PMID: 38771115 PMCID: PMC11170954 DOI: 10.1021/acs.biomac.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Peptide-based supramolecular hydrogels are an attractive class of soft materials for biomedical applications when biocompatibility is a key requirement as they exploit the physical self-assembly of short self-assembling peptides avoiding the need for chemical cross-linking. Based on the knowledge developed through our previous work, we designed two novel peptides, E(FKFE)2 and K(FEFK)2, that form transparent hydrogels at pH 7. We characterized the phase behavior of these peptides and showed the clear link that exists between the charge carried by the peptides and the physical state of the samples. We subsequently demonstrate the cytocompatibility of the hydrogel and its suitability for 3D cell culture using 3T3 fibroblasts and human mesenchymal stem cells. We then loaded the hydrogels with two polymers, poly-l-lysine and dextran. When polymer and peptide fibers carry opposite charges, the size of the elemental fibril formed decreases, while the overall level of fiber aggregation and fiber bundle formation increases. This overall network topology change, and increase in cross-link stability and density, leads to an overall increase in the hydrogel mechanical properties and stability, i.e., resistance to swelling when placed in excess media. Finally, we investigate the diffusion of the polymers out of the hydrogels and show how electrostatic interactions can be used to control the release of large molecules. The work clearly shows how polymers can be used to tailor the properties of peptide hydrogels through guided intermolecular interactions and demonstrates the potential of these new soft hydrogels for use in the biomedical field in particular for delivery or large molecular payloads and cells as well as scaffolds for 3D cell culture.
Collapse
Affiliation(s)
- Siyuan Dong
- Department
of Chemical Engineering, School of Engineering, Faculty of Science
and Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology (MIB), Faculty of Science and Engineering, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| | - Sam L. Chapman
- Division
of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology,
Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Alain Pluen
- Division
of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology,
Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Stephen M. Richardson
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, The University of
Manchester, Manchester M13 9PT, U.K.
| | - Aline F. Miller
- Department
of Chemical Engineering, School of Engineering, Faculty of Science
and Engineering, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology (MIB), Faculty of Science and Engineering, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
| | - Alberto Saiani
- Manchester
Institute of Biotechnology (MIB), Faculty of Science and Engineering, The University of Manchester, Oxford Road, M13
9PL Manchester, U.K.
- Division
of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology,
Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| |
Collapse
|
16
|
Andima M, Boese A, Paul P, Koch M, Loretz B, Lehr CM. Targeting Intracellular Bacteria with Dual Drug-loaded Lactoferrin Nanoparticles. ACS Infect Dis 2024; 10:1696-1710. [PMID: 38577780 PMCID: PMC11091908 DOI: 10.1021/acsinfecdis.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Treatment of microbial infections is becoming daunting because of widespread antimicrobial resistance. The treatment challenge is further exacerbated by the fact that certain infectious bacteria invade and localize within host cells, protecting the bacteria from antimicrobial treatments and the host's immune response. To survive in the intracellular niche, such bacteria deploy surface receptors similar to host cell receptors to sequester iron, an essential nutrient for their virulence, from host iron-binding proteins, in particular lactoferrin and transferrin. In this context, we aimed to target lactoferrin receptors expressed by macrophages and bacteria; as such, we prepared and characterized lactoferrin nanoparticles (Lf-NPs) loaded with a dual drug combination of antimicrobial natural alkaloids, berberine or sanguinarine, with vancomycin or imipenem. We observed increased uptake of drug-loaded Lf-NPs by differentiated THP-1 cells with up to 90% proportion of fluorescent cells, which decreased to about 60% in the presence of free lactoferrin, demonstrating the targeting ability of Lf-NPs. The encapsulated antibiotic drug cocktail efficiently cleared intracellular Staphylococcus aureus (Newman strain) compared to the free drug combinations. However, the encapsulated drugs and the free drugs alike exhibited a bacteriostatic effect against the hard-to-treat Mycobacterium abscessus (smooth variant). In conclusion, the results of this study demonstrate the potential of lactoferrin nanoparticles for the targeted delivery of antibiotic drug cocktails for the treatment of intracellular bacteria.
Collapse
Affiliation(s)
- Moses Andima
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
- Department
of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo 21435, Uganda
| | - Annette Boese
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Pascal Paul
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Marcus Koch
- INM-Leibniz
Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| | - Brigitta Loretz
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Claus-Micheal Lehr
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
17
|
Bellotto O, Scarel E, Pierri G, Rozhin P, Kralj S, Polentarutti M, Bandiera A, Rossi B, Vargiu AV, Tedesco C, Marchesan S. Supramolecular Hydrogels and Water Channels of Differing Diameters from Dipeptide Isomers. Biomacromolecules 2024; 25:2476-2485. [PMID: 38551400 DOI: 10.1021/acs.biomac.3c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Dipeptides stereoisomers and regioisomers composed of norleucine (Nle) and phenylalanine (Phe) self-assemble into hydrogels under physiological conditions that are suitable for cell culture. The supramolecular behavior, however, differs as the packing modes comprise amphipathic layers or water channels, whose diameter is defined by either four or six dipeptide molecules. A variety of spectroscopy, microscopy, and synchrotron-radiation-based techniques unveil fine details of intermolecular interactions that pinpoint the relationship between the chemical structure and ability to form supramolecular architectures that define soft biomaterials.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Erica Scarel
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Giovanni Pierri
- Department Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Slavko Kralj
- Department Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | - Antonella Bandiera
- Department Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127 Trieste, Italy
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - Attilio V Vargiu
- Department Physics, University of Cagliari, Cittadella Universitaria S.P. 8 km. 0.7, 09042 Monserrato, CA Italy
| | - Consiglia Tedesco
- Department Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
18
|
Balasco N, Altamura D, Scognamiglio PL, Sibillano T, Giannini C, Morelli G, Vitagliano L, Accardo A, Diaferia C. Self-Assembled Materials Based on Fully Aromatic Peptides: The Impact of Tryptophan, Tyrosine, and Dopa Residues. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1470-1486. [PMID: 38174846 PMCID: PMC10795196 DOI: 10.1021/acs.langmuir.3c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Peptides are able to self-organize in structural elements including cross-β structures. Taking advantage of this tendency, in the last decades, peptides have been scrutinized as molecular elements for the development of multivalent supramolecular architectures. In this context, different classes of peptides, also with completely aromatic sequences, were proposed. Our previous studies highlighted that the (FY)3 peptide, which alternates hydrophobic phenylalanine and more hydrophilic tyrosine residues, is able to self-assemble, thanks to the formation of both polar and apolar interfaces. It was observed that the replacement of Phe and Tyr residues with other noncoded aromatic amino acids like 2-naphthylalanine (Nal) and Dopa affects the interactions among peptides with consequences on the supramolecular organization. Herein, we have investigated the self-assembling behavior of two novel (FY)3 analogues with Trp and Dopa residues in place of the Phe and Tyr ones, respectively. Additionally, PEGylation of the N-terminus was analyzed too. The supramolecular organization, morphology, and capability to gel were evaluated using complementary techniques, including fluorescence, Fourier transform infrared spectroscopy, and scanning electron microscopy. Structural periodicities along and perpendicular to the fiber axis were detected by grazing incidence wide-angle X-ray scattering. Finally, molecular dynamics studies provided interesting insights into the atomic structure of the cross-β that constitutes the basic motif of the assemblies formed by these novel peptide systems.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute
of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Davide Altamura
- Institute
of Crystallography (IC), CNR, Via Amendola 122, Bari 70126, Italy
| | | | - Teresa Sibillano
- Institute
of Crystallography (IC), CNR, Via Amendola 122, Bari 70126, Italy
| | - Cinzia Giannini
- Institute
of Crystallography (IC), CNR, Via Amendola 122, Bari 70126, Italy
| | - Giancarlo Morelli
- Department
of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo
Pedone”, University of Naples “Federico
II”, Via Montesano 49, Naples 80131, Italy
| | - Luigi Vitagliano
- Institute
of Biostructures and Bioimaging (IBB), CNR, Via Castellino 111, Naples 80131, Italy
| | - Antonella Accardo
- Department
of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo
Pedone”, University of Naples “Federico
II”, Via Montesano 49, Naples 80131, Italy
| | - Carlo Diaferia
- Department
of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides “Carlo
Pedone”, University of Naples “Federico
II”, Via Montesano 49, Naples 80131, Italy
| |
Collapse
|
19
|
Bodman SE, Breen C, Hambleton AR, Butler SJ, Willcock H. A dual encapsulation strategy to generate anion-responsive luminescent lanthanide hydrogels. Chem Commun (Camb) 2024; 60:284-287. [PMID: 38011114 DOI: 10.1039/d3cc04877b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We report a new method to generate ion-responsive luminescent hydrogels, involving encapsulation of a luminescent lanthanide probe within crosslinked amphiphilic polymer particles and subsequent entrapment within a hydrogel. The resulting hydrogels are capable of reversible bicarbonate sensing, exhibit no leaching, and can be tuned for a range of sensing applications.
Collapse
Affiliation(s)
- Samantha E Bodman
- Department of Materials, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | - Colum Breen
- Department of Materials, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | | | - Stephen J Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| | - Helen Willcock
- Department of Materials, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK.
| |
Collapse
|
20
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
21
|
Nishimura SN, Sato D, Koga T. Mechanically Tunable Hydrogels with Self-Healing and Shape Memory Capabilities from Thermo-Responsive Amino Acid-Derived Vinyl Polymers. Gels 2023; 9:829. [PMID: 37888402 PMCID: PMC10606565 DOI: 10.3390/gels9100829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
In this study, we report the fabrication and characterization of self-healing and shape-memorable hydrogels, the mechanical properties of which can be tuned via post-polymerization crosslinking. These hydrogels were constructed from a thermo-responsive poly(N-acryloyl glycinamide) (NAGAm) copolymer containing N-acryloyl serine methyl ester (NASMe) units (5 mol%) that were readily synthesized via conventional radical copolymerization. This transparent and free-standing hydrogel is produced via multiple hydrogen bonds between PNAGAm chains by simply dissolving the polymer in water at a high temperature (~90 °C) and then cooling it. This hydrogel exhibited moldability and self-healing properties. The post-polymerization crosslinking of the amino acid-derived vinyl copolymer network with glutaraldehyde, which acts as a crosslinker between the hydroxy groups of the NASMe units, tuned mechanical properties such as viscoelasticity and tensile strength. The optimal crosslinker concentration efficiently improved the viscoelasticity. Moreover, these hydrogels exhibited shape fixation (~60%)/memory (~100%) behavior owing to the reversible thermo-responsiveness (upper critical solution temperature-type) of the PNAGAm units. Our multifunctional hydrogel, with moldable, self-healing, mechanical tunability via post-polymerization crosslinking, and shape-memorable properties, has considerable potential for applications in engineering and biomedical materials.
Collapse
Affiliation(s)
- Shin-nosuke Nishimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| | | | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| |
Collapse
|
22
|
Zhang J, Zhao D, Lu K. Mechanisms and influencing factors of peptide hydrogel formation and biomedicine applications of hydrogels. SOFT MATTER 2023; 19:7479-7493. [PMID: 37756117 DOI: 10.1039/d3sm01057k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Self-assembled peptide-based hydrogels have shown great potential in bio-related applications due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization. Herein, the structure and characteristics of hydrogels and the mechanism of action of several regular secondary structures during gelation are investigated. The factors influencing the formation of peptide hydrogels, especially the pH responsiveness and salt ion induction are analyzed and summarized. Finally, the biomedical applications of peptide hydrogels, such as bone tissue engineering, cell culture, antigen presentation, antibacterial materials, and drug delivery are reviewed.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
| | - Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Yingcai Road 18, Zhengzhou, 450044, Henan Province, China.
| |
Collapse
|
23
|
Sun Z, Zhu D, Zhao H, Liu J, He P, Luan X, Hu H, Zhang X, Wei G, Xi Y. Recent advance in bioactive hydrogels for repairing spinal cord injury: material design, biofunctional regulation, and applications. J Nanobiotechnology 2023; 21:238. [PMID: 37488557 PMCID: PMC10364437 DOI: 10.1186/s12951-023-01996-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Functional hydrogels show potential application in repairing spinal cord injury (SCI) due to their unique chemical, physical, and biological properties and functions. In this comprehensive review, we present recent advance in the material design, functional regulation, and SCI repair applications of bioactive hydrogels. Different from previously released reviews on hydrogels and three-dimensional scaffolds for the SCI repair, this work focuses on the strategies for material design and biologically functional regulation of hydrogels, specifically aiming to show how these significant efforts can promoting the repairing performance of SCI. We demonstrate various methods and techniques for the fabrication of bioactive hydrogels with the biological components such as DNA, proteins, peptides, biomass polysaccharides, and biopolymers to obtain unique biological properties of hydrogels, including the cell biocompatibility, self-healing, anti-bacterial activity, injectability, bio-adhesion, bio-degradation, and other multi-functions for repairing SCI. The functional regulation of bioactive hydrogels with drugs/growth factors, polymers, nanoparticles, one-dimensional materials, and two-dimensional materials for highly effective treating SCI are introduced and discussed in detail. This work shows new viewpoints and ideas on the design and synthesis of bioactive hydrogels with the state-of-the-art knowledges of materials science and nanotechnology, and will bridge the connection of materials science and biomedicine, and further inspire clinical potential of bioactive hydrogels in biomedical fields.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Zhao
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Jia Liu
- Department of Spinal Surgery, Huangdao Central Hospital, Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Huiqiang Hu
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, People's Republic of China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
24
|
Cringoli MC, Marchesan S. Cysteine Redox Chemistry in Peptide Self-Assembly to Modulate Hydrogelation. Molecules 2023; 28:4970. [PMID: 37446630 DOI: 10.3390/molecules28134970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cysteine redox chemistry is widely used in nature to direct protein assembly, and in recent years it has inspired chemists to design self-assembling peptides too. In this concise review, we describe the progress in the field focusing on the recent advancements that make use of Cys thiol-disulfide redox chemistry to modulate hydrogelation of various peptide classes.
Collapse
Affiliation(s)
- Maria Cristina Cringoli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
25
|
Dobashi Y, Ku JC, Ramjist J, Pasarikovski C, Walus K, Madden JDW, Yang VXD. Photomodulated Extrusion as a Localized Endovascular Hydrogel Deposition Method. Adv Healthc Mater 2023; 12:e2202632. [PMID: 36681868 PMCID: PMC11468792 DOI: 10.1002/adhm.202202632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/10/2023] [Indexed: 01/23/2023]
Abstract
Minimally invasive endovascular embolization is used to treat a wide range of diseases in neurology, oncology, and trauma where the vascular morphologies and corresponding hemodynamics vary greatly. Current techniques based on metallic coils, flow diverters, liquid embolics, and suspended microspheres are limited in their ability to address a wide variety of vasculature and can be plagued by complications including distal migration, compaction, and inappropriate vascular remodeling. Further, these endovascular devices currently offer limited therapeutic functions beyond flow control such as drug delivery. Herein, a novel in situ microcatheter-based photomodulated extrusion approach capable of dynamically tuning the physical and morphological properties of injectable hydrogels, optimizing for local hemodynamic environment and vascular morphology, is proposed and demonstrated. A shear thinning and photoactivated poly(ethylene glycol diacrylate)-nanosilicate (PEGDA-nSi) hydrogel is used to demonstrate multiple extrusion modes which are controlled by photokinetics and device configurations. Real-time photomodulation of injected hydrogel viscosity and modulus is successfully used for embolization in various vasculatures, including high-flow large vessels and arterial-to-arterial capillary shunts. Furthermore, a generalizable therapeutic delivery platform is proposed by demonstrating a core-shell structured extrusion encapsulating doxorubicin to achieve a more sustained release compared to unencapsulated payload.
Collapse
Affiliation(s)
- Yuta Dobashi
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Jerry C. Ku
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryDepartment of SurgeryUniversity of TorontoTorontoOntarioM5S 1A1Canada
| | - Joel Ramjist
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Christopher Pasarikovski
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryDepartment of SurgeryUniversity of TorontoTorontoOntarioM5S 1A1Canada
| | - Konrad Walus
- Department of Electrical and Computer EngineeringSchool of Biomedical EngineeringUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - John D. W. Madden
- Department of Electrical and Computer EngineeringSchool of Biomedical EngineeringUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
| | - Victor X. D. Yang
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Division of NeurosurgeryDepartment of SurgeryUniversity of TorontoTorontoOntarioM5S 1A1Canada
| |
Collapse
|
26
|
Chen S, Li Z, Zhang C, Wu X, Wang W, Huang Q, Chen W, Shi J, Yuan D. Cation-π Interaction Trigger Supramolecular Hydrogelation of Peptide Amphiphiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301063. [PMID: 36932893 DOI: 10.1002/smll.202301063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 06/18/2023]
Abstract
As an important noncovalent interaction, cation-π interaction plays an essential role in a broad area of biology and chemistry. Despite extensive studies in protein stability and molecular recognition, the utilization of cation-π interaction as a major driving force to construct supramolecular hydrogel remains uncharted. Here, a series of peptide amphiphiles are designed with cation-π interaction pairs that can self-assemble into supramolecular hydrogel under physiological condition. The influence of cation-π interaction is thoroughly investigated on peptide folding propensity, morphology, and rigidity of the resultant hydrogel. Computational and experimental results confirm that cation-π interaction could serve as a major driving force to trigger peptide folding, resultant β-hairpin peptide self-assembled into fibril-rich hydrogel. Furthermore, the designed peptides exhibit high efficacy on cytosolic protein delivery. As the first case of using cation-π interactions to trigger peptide self-assembly and hydrogelation, this work provides a novel strategy to generate supramolecular biomaterials.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Zenghui Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Chunhui Zhang
- College of Biology, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Xia Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
- Shenzhen International Institute for Biomedical Research, Longhua District Shenzhen, Guangdong, 518116, P. R. China
| | - Wenjie Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Qingjun Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Weiyu Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Junfeng Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Dan Yuan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
27
|
Chang KC, Chang PJ, Chen JC, Huang SM, Liu SM, Shih CJ, Chen WC. In Vitro Characterizations of Post-Crosslinked Gelatin-Based Microspheres Modified by Phosphatidylcholine or Diammonium Phosphate as Antibiotic Delivery Vehicles. Polymers (Basel) 2023; 15:1504. [PMID: 36987284 PMCID: PMC10054754 DOI: 10.3390/polym15061504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Hydrogel-based microspheres prepared by emulsification have been widely used as drug carriers, but biocompatibility remains a challenging issue. In this study, gelatin was used as the water phase, paraffin oil was used as the oil phase, and Span 80 was used as the surfactant. Microspheres were prepared using a water-in-oil (W/O) emulsification. Diammonium phosphate (DAP) or phosphatidylcholine (PC) were further used to improve the biocompatibility of post-crosslinked gelatin microspheres. The biocompatibility of DAP-modified microspheres (0.5-10 wt.%) was better than that of PC (5 wt.%). The microspheres soaked in phosphate-buffered saline (PBS) lasted up to 26 days before fully degrading. Based on microscopic observation, the microspheres were all spherical and hollow inside. The particle size distribution ranged from 19 μm to 22 μm in diameter. The drug release analysis showed that the antibiotic gentamicin loaded on the microspheres was released in a large amount within 2 h of soaking in PBS. It was stabilized until the amount of microspheres integrated was significantly reduced after soaking for 16 days and then released again to form a two-stage drug release curve. In vitro experiments showed that DAP-modified microspheres at concentrations less than 5 wt.% had no cytotoxicity. Antibiotic-impregnated and DAP-modified microspheres had good antibacterial effects against Staphylococcus aureus and Escherichia coli, but these drug-impregnated groups hinder the biocompatibility of hydrogel microspheres. The developed drug carrier can be combined with other biomaterial matrices to form a composite for delivering drugs directly to the affected area in the future to achieve local therapeutic effects and improve the bioavailability of drugs.
Collapse
Affiliation(s)
- Kai-Chi Chang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Pei-Jheng Chang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Jian-Chih Chen
- Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 807, Taiwan
| | - Ssu-Meng Huang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Chi-Jen Shih
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
28
|
Noteborn WM, Vittala SK, Torredemer MB, Maity C, Versluis F, Eelkema R, Kieltyka RE. Switching the Mode of Drug Release from a Reaction-Coupled Low-Molecular-Weight Gelator System by Altering Its Reaction Pathway. Biomacromolecules 2023; 24:377-386. [PMID: 36562759 PMCID: PMC9832487 DOI: 10.1021/acs.biomac.2c01197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low-molecular-weight hydrogels are attractive scaffolds for drug delivery applications because of their modular and facile preparation starting from inexpensive molecular components. The molecular design of the hydrogelator results in a commitment to a particular release strategy, where either noncovalent or covalent bonding of the drug molecule dictates its rate and mechanism. Herein, we demonstrate an alternative approach using a reaction-coupled gelator to tune drug release in a facile and user-defined manner by altering the reaction pathway of the low-molecular-weight gelator (LMWG) and drug components through an acylhydrazone-bond-forming reaction. We show that an off-the-shelf drug with a reactive handle, doxorubicin, can be covalently bound to the gelator through its ketone moiety when the addition of the aldehyde component is delayed from 0 to 24 h, or noncovalently bound with its addition at 0 h. We also examine the use of an l-histidine methyl ester catalyst to prepare the drug-loaded hydrogels under physiological conditions. Fitting of the drug release profiles with the Korsmeyer-Peppas model corroborates a switch in the mode of release consistent with the reaction pathway taken: increased covalent ligation drives a transition from a Fickian to a semi-Fickian mode in the second stage of release with a decreased rate. Sustained release of doxorubicin from the reaction-coupled hydrogel is further confirmed in an MTT toxicity assay with MCF-7 breast cancer cells. We demonstrate the modularity and ease of the reaction-coupled approach to prepare drug-loaded self-assembled hydrogels in situ with tunable mechanics and drug release profiles that may find eventual applications in macroscale drug delivery.
Collapse
Affiliation(s)
- Willem
E. M. Noteborn
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Sandeepa K. Vittala
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Maria Broto Torredemer
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Chandan Maity
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZDelft, The Netherlands
| | - Frank Versluis
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZDelft, The Netherlands
| | - Rienk Eelkema
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZDelft, The Netherlands
| | - Roxanne E. Kieltyka
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,
| |
Collapse
|
29
|
Su M, Zhang J, Li Z, Wei Y, Zhang J, Pang Z, Gao Y, Qian S, Heng W. Recent advances on small molecular gels: formation mechanism and their application in pharmaceutical fields. Expert Opin Drug Deliv 2022; 19:1597-1617. [PMID: 36259939 DOI: 10.1080/17425247.2022.2138329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION As an essential complement to chemically cross-linked macromolecular gels, drug delivery systems based on small molecular gels formed under the driving forces of non-covalent interactions are attracting considerable research interest due to their potential advantages of high structural functionality, lower biological toxicity, reversible stimulus-response, and so on. AREA COVERED The present review summarizes recent advances in small molecular gels and provides their updates as a comprehensive overview in terms of gelation mechanism, gel properties, and physicochemical characterizations. In particular, this manuscript reviews the effects of drug-based small molecular gels on the drug development and their potential applications in the pharmaceutical fields. EXPERT OPINION Small molecular-based gel systems, constructed by inactive compounds or active pharmaceutical ingredients, have been extensively studied as carriers for drug delivery in pharmaceutical field, such as oral formulations, injectable formulations, and transdermal formulations. However, the construction of such gel systems yet faces several challenges such as rational and efficient design of functional gelators and the great occasionality of drug-based gel formation. Thus, a deeper understanding of the gelation mechanism and its relationship with gel properties will be conducive to the construction of small molecular gels systems and their future application.
Collapse
Affiliation(s)
- Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingwen Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zudi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Veloso SRS, Gomes V, Mendes SLF, Hilliou L, Pereira RB, Pereira DM, Coutinho PJG, Ferreira PMT, Correa-Duarte MA, Castanheira EMS. Plasmonic lipogels: driving co-assembly of composites with peptide-based gels for controlled drug release. SOFT MATTER 2022; 18:8384-8397. [PMID: 36193825 DOI: 10.1039/d2sm00926a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Supramolecular short peptide-based gels are promising materials for the controlled release of drugs (e.g. chemotherapeutic drugs) owing to the biocompatibility and similarity to cell matrix. However, the drug encapsulation and control over its release, mainly the hydrophilic drugs, can be a cumbersome task. This can be overcome through encapsulation/compartmentalization of drugs in liposomes, which can also enable spatiotemporal control and enhanced drug release through a trigger, such as photothermia. Having this in mind, we explored the assembly of silica-coated gold nanoparticles and liposomes (storage units) with dehydropeptide-based hydrogels as a proof-of-concept to afford peptide-based NIR light-responsive lipogels. Several liposomes compositions were assessed that displayed influence on the final assembly properties by combining with silica-coated gold nanorods (∼106 nm). Gold nanospheres (∼11 nm) were used to study the preparation method, which revealed the importance of initially combine liposomes with nanoparticles and then the gelator solution to achieve a closer proximity of the nanoparticles to the liposomes. The control over a hydrophilic model drug, 5(6)-carboxyfluorescein, was only achieved by its encapsulation in liposomes, in which the presence of silica-coated nanorods further enabled the use of photothermia to induce the liposomes phase transition and stimulate the drug release. Further, both composites, the liposomes and silica-coated gold nanorods, induced a lower elastic modulus, but also provided an enhanced gelation kinetics. Hereby, this work advances fabrication strategies for the development of short peptide-based hydrogels towards on-demand, sustained and controlled release of hydrophilic drugs through photothermia under NIR light irradiation.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Valéria Gomes
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sérgio L F Mendes
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Renato B Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
31
|
Rosetti B, Scarel E, Colomina-Alfaro L, Adorinni S, Pierri G, Bellotto O, Mamprin K, Polentarutti M, Bandiera A, Tedesco C, Marchesan S. Self-Assembly of Homo- and Hetero-Chiral Cyclodipeptides into Supramolecular Polymers towards Antimicrobial Gels. Polymers (Basel) 2022; 14:4554. [PMID: 36365547 PMCID: PMC9654196 DOI: 10.3390/polym14214554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
There is an increasing interest towards the development of new antimicrobial coatings, especially in light of the emergence of antimicrobial resistance (AMR) towards common antibiotics. Cyclodipeptides (CDPs) or diketopiperazines (DKPs) are attractive candidates for their ability to self-assemble into supramolecular polymers and yield gel coatings that do not persist in the environment. In this work, we compare the antimicrobial cyclo(Leu-Phe) with its heterochiral analogs cyclo(D-Leu-L-Phe) and cyclo(L-Leu-D-Phe), as well as cyclo(L-Phe-D-Phe), for their ability to gel. The compounds were synthesized, purified by HPLC, and characterized by 1H-NMR, 13C-NMR, and ESI-MS. Single-crystal X-ray diffraction (XRD) revealed details of the intermolecular interactions within the supramolecular polymers. The DKPs were then tested for their cytocompatibility on fibroblast cells and for their antimicrobial activity on S. aureus. Overall, DKPs displayed good cytocompatibility and very mild antimicrobial activity, which requires improvement towards applications.
Collapse
Affiliation(s)
- Beatrice Rosetti
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Erica Scarel
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | | | - Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Giovanni Pierri
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
| | - Ottavia Bellotto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Kevin Mamprin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | | | | | - Consiglia Tedesco
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
32
|
Heremans J, Chevillard L, Mannes M, Mangialetto J, Leroy K, White JF, Lamouroux A, Vinken M, Gardiner J, Van Mele B, Van den Brande N, Hoogenboom R, Madder A, Caveliers V, Mégarbane B, Hernot S, Ballet S, Martin C. Impact of doubling peptide length on in vivo hydrogel stability and sustained drug release. J Control Release 2022; 350:514-524. [PMID: 35998769 DOI: 10.1016/j.jconrel.2022.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 10/14/2022]
Abstract
Peptide-based hydrogels represent promising systems for the sustained release of different types of drugs, ranging from small molecules to biologicals. Aiming at subcutaneous injection, which is a desirable parenteral administration route, especially for biologicals, we herein focus on physically crosslinked systems possessing thixotropic behaviour. The purpose of this study was to evaluate the in vitro and in vivo properties of hydrogels based on the amphipathic hexapeptide H-FQFQFK-NH2, which served as the lead sequence. Upon doubling the length of this peptide, the dodecapeptide H-FQFQFKFQFQFK-NH2 gave a significant improvement in terms of in vivo stability of the hydrogel post-injection, as monitored by nuclear SPECT/CT imaging. This increased hydrogel stability also led to a more prolonged in vivo release of encapsulated peptide cargoes. Even though no direct link with the mechanical properties of the hydrogels before injection could be made, an important effect of the subcutaneous medium was noticed on the rheological properties of the hydrogels in post in vivo injection measurements. The results were validated in vivo for a therapeutically relevant analgesic peptide using the hot-plate test as an acute pain model. It was confirmed that elongation of the hydrogelator sequence induced more extended antinociceptive effects. Altogether, this simple structural modification of the hydrogelating peptide could provide a basis for reaching longer durations of action upon use of these soft biomaterials.
Collapse
Affiliation(s)
- Julie Heremans
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jessica Mangialetto
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan B-103, 1090 Brussels, Belgium
| | - Jacinta F White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia
| | - Arthur Lamouroux
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan B-103, 1090 Brussels, Belgium
| | - James Gardiner
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia
| | - Bruno Van Mele
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Niko Van den Brande
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Vicky Caveliers
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Bruno Mégarbane
- INSERM, UMR-S 1144, Université de Paris, F-75006 Paris, France
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|