1
|
Zhang X, Zhu C, Wang Y, Zhao Y, Tang H, Li X, Wu P. Impact of NH 4+ on the catalytic activity of G-quadruplex/hemin DNAzyme for chemiluminescent sensing. Anal Bioanal Chem 2025:10.1007/s00216-025-05842-y. [PMID: 40167597 DOI: 10.1007/s00216-025-05842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
G-quadruplex/hemin DNAzyme, a versatile tool for biosensing, is challenged by its low peroxidase-mimic activities. The addition of NH4+ may offer an efficient approach to improve its activity. However, the detailed impact of NH4+ on its catalytic activity remains unclear, confusing the selection of appropriate DNAzymes for biosensing applications. Here, we conducted a comprehensive examination of the influence of NH4+ on G-quadruplex/hemin DNAzyme. The results revealed that all DNAzymes with different G-quadruplex topologies exhibited increased catalytic activities in the presence of NH4+ relative to K+, followed by the subsequent activity order: parallel > hybrid > antiparallel. Further investigations indicated that the increased catalytic activity can be ascribed to the increased stability of the G-quadruplex/hemin complex, elevated reaction velocity, and improved substrate affinity. Leveraging the significant disparity in enzymatic activity between parallel and antiparallel G-quadruplexes, an allosteric sensor based on the Pb2+-induced topological conformation was developed for sensitive detection of Pb2+ in the NH4+-boosted G-quadruplex/hemin DNAzyme system (LOD, 1.56 nM), indicating potential for practical applications. Our discovery improves the understanding of NH4+-boosted G-quadruplex/hemin DNAzyme and may facilitate the development of biosensors.
Collapse
Affiliation(s)
- Xinyu Zhang
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Chenxi Zhu
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanying Wang
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China.
| | - Yi Zhao
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Honghu Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianming Li
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China.
| | - Peng Wu
- Analytical & Testing Center, Frontiers Science Center for Disease-Related Molecular Network of West China Hospital, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
You Y, Yang WG, Zhang S, Su ML, Peng QL, Zhao WJ, Yuan R, Xu SC, Liang WB. Intramolecular distance-regulated G4 DNA enzymatic activity-based chromophotometric system for visual monitoring of diquat. Anal Chim Acta 2025; 1336:343532. [PMID: 39788684 DOI: 10.1016/j.aca.2024.343532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND As global food production continues to surge, the widespread use of herbicides has also increased concurrently, posing challenges like health risks and environmental pollution. Traditional detection methods for pesticide residues, such as diquat (DQ), were hampered by limitations like high expenses, lengthy detection times and complex operations, restricting their practical application in rapid clinical diagnosis. RESULTS In light of the pressing necessity for the identification of minute pesticide residues and the intrinsic constraints of small molecule analysis, a novel chromophotometric biosensor targeting small molecules was developed based on bi-epitopes on single antibody to immobilize two DQ-PAL, inhibiting the hybridization of DQ-PAL. Accordingly, the free DQ-PAL could hybridize with each other to form a G-quadruplex for a highly selective analysis of DQ with a detection limit of 26.3 pg/mL and 10 pg/mL by chromophotometric and image colorimetric method respectively. Furthermore, this designed biosensor has been successfully applied to evaluate the levels of DQ residues in real samples, providing an efficient solution for the biological analysis of small molecule targets and enhancing food safety concerning pesticide residues. SIGNIFICANCE In comparison to conventional techniques, this biosensor has the advantages of user-friendly operations, portability, high sensitivity, low detection limit and minimal background interference, making it well-suited for clinical diagnostics. At the same time, this technology provides a new idea for the rapid in vitro detection of biological small molecules, and shows great potential applications in agricultural residue-related food safety.
Collapse
Affiliation(s)
- Ya You
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wei-Guo Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shun Zhang
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, PR China
| | - Ming-Li Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Qi-Lin Peng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wan-Jiang Zhao
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shang-Cheng Xu
- Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing, 400060, PR China.
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
3
|
Sarkar AR, Mukherjee N, Sarkar AK, Jana NR. Designing Nano-Hemin for Ferroptosis-Mediated Cell Death via Enzymatic Hemin Digestion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64628-64637. [PMID: 39552348 DOI: 10.1021/acsami.4c17763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hemin is a protoporphyrin complex of ferric ion which catalyzes H2O2 degradation and produces reactive oxygen species (ROS). This ROS generation property induces oxidative stress to hemin-exposed cells that can lead to various situations such as intracellular Fenton reaction, ferroptosis, or autophagy. Therapeutic performance of hemin is hindered due to low bioavailability of the active monomeric form with an intact ROS generation property. Here, we demonstrate a colloidal nanoparticle form of hemin (nano-hemin) with a high ROS generation property and high cell uptake property. We have shown that nano-hemin produces ROS inside a cell that upregulate heme oxygenase-1 in order to metabolize hemin. This leads to the ferroptosis-mediated cell death. Furthermore, we show that the ROS generation property of nano-hemin can be modulated to control hemin cytotoxicity for either ferroptosis or autophagy. Our findings suggest that nano-hemin can be designed with modular cytotoxicity for different therapeutic applications.
Collapse
Affiliation(s)
- Abu Raihan Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nayana Mukherjee
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
4
|
Wang S, Cheng M, Wang S, Jiang W, Yang F, Shen X, Zhang L, Yan X, Jiang B, Fan K. A Self-Catalytic NO/O 2 Gas-Releasing Nanozyme for Radiotherapy Sensitization through Vascular Normalization and Hypoxia Relief. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403921. [PMID: 39101290 DOI: 10.1002/adma.202403921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/29/2024] [Indexed: 08/06/2024]
Abstract
Radiotherapy (RT), essential for treating various cancers, faces challenges from tumor hypoxia, which induces radioresistance. A tumor-targeted "prosthetic-Arginine" coassembled nanozyme system, engineered to catalytically generate nitric oxide (NO) and oxygen (O2) in the tumor microenvironment (TME), overcoming hypoxia and enhancing radiosensitivity is presented. This system integrates the prosthetic heme of nitric oxide synthase (NOS) and catalase (CAT) with NO-donating Fmoc-protected Arginine and Ru3+ ions, creating HRRu nanozymes that merge NOS and CAT functionalities. Surface modification with human heavy chain ferritin (HFn) improves the targeting ability of nanozymes (HRRu-HFn) to tumor tissues. In the TME, strategic arginine incorporation within the nanozyme allows autonomous O2 and NO release, triggered by endogenous hydrogen peroxide, elevating NO and O2 levels to normalize vasculature and improve blood perfusion, thus mitigating hypoxia. Employing the intrinsic O2-transporting ability of heme, HRRu-HFn nanozymes also deliver O2 directly to the tumor site. Utilizing esophageal squamous cell carcinoma as a tumor model, the studies reveal that the synergistic functions of NO and O2 production, alongside targeted delivery, enable the HRRu-HFn nanozymes to combat tumor hypoxia and potentiate radiotherapy. This HRRu-HFn nanozyme based approach holds the potential to reduce the radiation dose required and minimize side effects associated with conventional radiotherapy.
Collapse
Affiliation(s)
- Shuyu Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Miaomiao Cheng
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shenghui Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wei Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Feifei Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaomei Shen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention &Treatment, Henan, 450001, China
| | - Xiyun Yan
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Kelong Fan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
5
|
Pan Y, Wang M, Wang P, Wei H, Wei X, Wang D, Hao Y, Wang Y, Chen H. Effects of a semi-interpenetrating network hydrogel loaded with oridonin and DNase-I on the healing of chemoradiotherapy-induced oral mucositis. Biomater Sci 2024; 12:4452-4470. [PMID: 39052032 DOI: 10.1039/d4bm00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The aim of this study was to develop a semi-interpenetrating network (IPN) hydrogel system suitable for the oral environment, capable of controlled release of DNase-I and oridonin (ORI), to exert antimicrobial, anti-inflammatory, and reparative effects on chemoradiotherapy-induced oral mucositis (OM). This IPN was based on the combination of ε-polylysine (PLL) and hetastarch (HES), loaded with DNase-I and ORI (ORI/DNase-I/IPN) for OM treatment. In vitro studies were conducted to evaluate degradation, adhesion, release analysis, and bioactivity including cell proliferation and wound healing assays using epidermal keratinocyte and fibroblast cell lines. Furthermore, the therapeutic effects of ORI/DNase-I/IPN were investigated in vivo using Sprague-Dawley (SD) rats with chemoradiotherapy-induced OM. The results demonstrated that the IPN exhibited excellent adhesion to wet mucous membranes, and the two drugs co-encapsulated in the hydrogel were released in a controlled manner, exerting inhibitory effects on bacteria and degrading NETs in wound tissues. The in vivo wound repair effect, microbiological assays, H&E and Masson staining supported the non-toxicity of ORI/DNase-I/IPN, as well as its ability to accelerate the healing of oral ulcers and reduce inflammation. Overall, ORI/DNase-I/IPN demonstrated a therapeutic effect on OM in rats by significantly accelerating the healing process. These findings provide new insights into possible therapies for OM.
Collapse
Affiliation(s)
- Yuxue Pan
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| | - Mengyuan Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| | - Peng Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Xiangjuan Wei
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, PR China
| | - Dongmei Wang
- Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, PR China
| | - Yongwei Hao
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| | - Yongxue Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| |
Collapse
|
6
|
Wang S, Cheng M, Wang S, Jiang W, Yang F, Shen X, Zhang L, Yan X, Jiang B, Fan K. A Self‐Catalytic NO/O 2 Gas‐Releasing Nanozyme for Radiotherapy Sensitization through Vascular Normalization and Hypoxia Relief. ADVANCED MATERIALS 2024. [DOI: doi:10.1002/adma.202403921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Indexed: 04/16/2025]
Abstract
AbstractRadiotherapy (RT), essential for treating various cancers, faces challenges from tumor hypoxia, which induces radioresistance. A tumor‐targeted “prosthetic‐Arginine” coassembled nanozyme system, engineered to catalytically generate nitric oxide (NO) and oxygen (O2) in the tumor microenvironment (TME), overcoming hypoxia and enhancing radiosensitivity is presented. This system integrates the prosthetic heme of nitric oxide synthase (NOS) and catalase (CAT) with NO‐donating Fmoc‐protected Arginine and Ru3+ ions, creating HRRu nanozymes that merge NOS and CAT functionalities. Surface modification with human heavy chain ferritin (HFn) improves the targeting ability of nanozymes (HRRu‐HFn) to tumor tissues. In the TME, strategic arginine incorporation within the nanozyme allows autonomous O2 and NO release, triggered by endogenous hydrogen peroxide, elevating NO and O2 levels to normalize vasculature and improve blood perfusion, thus mitigating hypoxia. Employing the intrinsic O2‐transporting ability of heme, HRRu‐HFn nanozymes also deliver O2 directly to the tumor site. Utilizing esophageal squamous cell carcinoma as a tumor model, the studies reveal that the synergistic functions of NO and O2 production, alongside targeted delivery, enable the HRRu‐HFn nanozymes to combat tumor hypoxia and potentiate radiotherapy. This HRRu‐HFn nanozyme based approach holds the potential to reduce the radiation dose required and minimize side effects associated with conventional radiotherapy.
Collapse
Affiliation(s)
- Shuyu Wang
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
| | - Miaomiao Cheng
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
| | - Shenghui Wang
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
| | - Wei Jiang
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
| | - Feifei Yang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 China
| | - Xiaomei Shen
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 China
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Henan 450001 China
| | - Xiyun Yan
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
- Nanozyme Laboratory in Zhongyuan Henan Academy of Innovations in Medical Science Zhengzhou Henan 451163 China
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Biomacromolecules (CAS) CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan School of Basic Medical Sciences Zhengzhou University Zhengzhou Henan 450001 China
- Nanozyme Laboratory in Zhongyuan Henan Academy of Innovations in Medical Science Zhengzhou Henan 451163 China
| | - Kelong Fan
- Nanozyme Laboratory in Zhongyuan Henan Academy of Innovations in Medical Science Zhengzhou Henan 451163 China
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Biomacromolecules (CAS) CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
| |
Collapse
|
7
|
Wang Y, Pan T, Li J, Zou L, Wei X, Zhang Q, Wei T, Xu L, Ulijn RV, Zhang C. Developing Isomeric Peptides for Mimicking the Sequence-Activity Landscapes of Enzyme Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22369-22378. [PMID: 38644563 DOI: 10.1021/acsami.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Enzymes catalyze almost all material conversion processes within living organisms, yet their natural evolution remains unobserved. Short peptides, derived from proteins and featuring active sites, have emerged as promising building blocks for constructing bioactive supramolecular materials that mimic native proteins through self-assembly. Herein, we employ histidine-containing isomeric tetrapeptides KHFF, HKFF, KFHF, HFKF, FKHF, and FHKF to craft supramolecular self-assemblies, aiming to explore the sequence-activity landscapes of enzyme evolution. Our investigations reveal the profound impact of peptide sequence variations on both assembly behavior and catalytic activity as hydrolytic simulation enzymes. During self-assembly, a delicate balance of multiple intermolecular interactions, particularly hydrogen bonding and aromatic-aromatic interactions, influences nanostructure formation, yielding various morphologies (e.g., nanofibers, nanospheres, and nanodiscs). Furthermore, the analysis of the structure-activity relationship demonstrates a strong correlation between the distribution of the His active site on the nanostructures and the formation of the catalytic microenvironment. This investigation of the sequence-structure-activity paradigm reflects how natural enzymes enhance catalytic activity by adjusting the primary structure during evolution, promoting fundamental research related to enzyme evolutionary processes.
Collapse
Affiliation(s)
- Yaling Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tiezheng Pan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lina Zou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xuewen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tingting Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), New York, New York 10031, United States
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Chunqiu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Liu Y, Li Y, Wu H, Xu S, Zhang B, Li S, Du R, Jiang M, Chen Z, Lv Y, Wang ZG. Robust Oxidase-Mimetic Supramolecular Nanocatalyst for Lignin Biodegradation. NANO LETTERS 2024; 24:2520-2528. [PMID: 38359360 DOI: 10.1021/acs.nanolett.3c04505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Enzymatic catalysis presents an eco-friendly, energy-efficient method for lignin degradation. However, challenges arise due to the inherent incompatibility between enzymes and native lignin. In this work, we introduce a supramolecular catalyst composed of fluorenyl-modified amino acids and Cu2+, designed based on the aromatic stacking of the fluorenyl group, which can operate in ionic liquid environments suitable for the dissolution of native lignin. Amino acids and halide anions of ionic liquids shape the copper site's coordination sphere, showcasing remarkable catechol oxidase-mimetic activity. The catalyst exhibits thermophilic property, and maintains oxidative activity up to 75 °C, which allows the catalyzed degradation of the as-dissolved native lignin with high efficiency even without assistance of the electron mediator. In contrast, at this condition, the native copper-dependent oxidase completely lost its activity. This catalyst with superior stability and activity offer promise for sustainable lignin valorization through biocatalytic routes compatible with ionic liquid pretreatment, addressing limitations in native enzymes for industrially relevant conditions.
Collapse
Affiliation(s)
- Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Li
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shan Li
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minquan Jiang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziman Chen
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongqin Lv
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Du R, Teng Q, Xu S, Jiang M, Irmisch P, Wang ZG. Self-Assembly of Designed Peptides with DNA to Accelerate the DNA Strand Displacement Process for Dynamic Regulation of DNAzymes. ACS NANO 2023; 17:24753-24762. [PMID: 38061002 DOI: 10.1021/acsnano.3c05124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Toehold-mediated DNA strand displacement (TMSD) is a powerful tool for controlling DNA-based molecular reactions and devices. However, the slow kinetics of TMSD reactions often limit their efficiency and practical applications. Inspired by the chemical structures of natural DNA-operating enzymes (e.g., helicase), we designed lysine-rich peptides to self-assemble with DNA-based systems. Our approach allows for accelerating the TMSD reactions, even during multiple displacement events, enhancing their overall efficiency and utility. We found that the acceleration is dependent on the peptide's sequence, length, and concentration as well as the length of the DNA toehold domain. Molecular dynamics simulations revealed that the peptides promote toehold binding between the double-stranded target and the single-stranded invader, thereby facilitating strand displacement. Furthermore, we integrated our approach into a horseradish peroxidase-mimicking DNAzyme, enabling the dynamic modulation of enzymatic functions on and off. We anticipate that the established acceleration of strand displacement reactions and the modulation of enzymatic activities offer enhanced functionality and control in the design of programmable DNA-based nanodevices.
Collapse
Affiliation(s)
- Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiao Teng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minquan Jiang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Patrick Irmisch
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Abstract
Enzymes fold into three-dimensional structures to distribute amino acid residues for catalysis, which inspired the supramolecular approach to construct enzyme-mimicking catalysts. A key concern in the development of supramolecular strategies is the ability to confine and orient functional groups to form enzyme-like active sites in artificial materials. This review introduces the design principles and construction of supramolecular nanomaterials exhibiting catalytic functions of heme-dependent enzymes, a large class of metalloproteins, which rely on a heme cofactor and spatially configured residues to catalyze diverse reactions via a complex multistep mechanism. We focus on the structure-activity relationship of the supramolecular catalysts and their applications in materials synthesis/degradation, biosensing, and therapeutics. The heme-free catalysts that catalyze reactions achieved by hemeproteins are also briefly discussed. Towards the end of the review, we discuss the outlook on the challenges related to catalyst design and future prospective, including the development of structure-resolving techniques and design concepts, with the aim of creating enzyme-mimicking materials that possess catalytic power rivaling that of natural enzymes..
Collapse
Affiliation(s)
- Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Liu H, Yang X, Huang B, Liu H. A universal approach for synthesis of copper nanoclusters templated by G-rich oligonucleotide sequences and their applications in sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122740. [PMID: 37080047 DOI: 10.1016/j.saa.2023.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Herein, five common G4 sequences have been selected, including three different length of telomere DNA, hemin aptamer, and thrombin aptamer, to synthesize Cu nanoclusters (Cu NCs) in-situ. All G4s are proper templates for Cu NCs with low temperature treatment. The particles (G4-Cu NCs) smaller than 3 nm in diameter were obtained and showed light green fluorescence. This is the first report of metal clusters templated by G4s in-situ. As proof of the concept, hemin and alkaline phosphatase (ALP) were used as the targets to test whether the system can monitor the interaction between G4s and its substrate. The results suggest that G4-Cu NCs can indicate the behavior of G4 and its interaction with hemin, and sensing ALP is achieved with the aid of ATP. The linear ranges of hemin and ALP are 300-4000 nM and 10-500 U/L, respectively, and the corresponding limits of detection as low as 97 nM for hemin and 2.8 U/L for ALP. Moreover, this present system has been successfully applied for the detection of ALP in human serum samples with satisfactory recoveries. This synthesis approach is universal, and it can be easily extended to evaluating the formation of G4, or monitoring the interaction between G4 and its substrate, or selective targeting individual G4, or sensitive detection of other important biomarkers by changing template G4 sequence.
Collapse
Affiliation(s)
- Hong Liu
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital &Chongqing Cancer Institute, Chongqing 400000, China
| | - Xuliang Yang
- Department of Thoracic Surgery, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| | - Bo Huang
- Department of Thoracic Surgery, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400000, China
| | - Hongxiang Liu
- Department of Thoracic Surgery, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400000, China.
| |
Collapse
|
12
|
Abstract
Natural enzymes catalyze biochemical transformations in superior catalytic efficiency and remarkable substrate specificity. The excellent catalytic repertoire of enzymes is attributed to the sophisticated chemical structures of their active sites, as a result of billions-of-years natural evolution. However, large-scale practical applications of natural enzymes are restricted due to their poor stability, difficulty in modification, and high costs of production. One viable solution is to fabricate supramolecular catalysts with enzyme-mimetic active sites. In this review, we introduce the principles and strategies of designing peptide-based artificial enzymes which display catalytic activities similar to those of natural enzymes, such as aldolases, laccases, peroxidases, and hydrolases (mainly the esterases and phosphatases). We also discuss some multifunctional enzyme-mimicking systems which are capable of catalyzing orthogonal or cascade reactions. We highlight the relationship between structures of enzyme-like active sites and the catalytic properties, as well as the significance of these studies from an evolutionary point of view.
Collapse
|
13
|
Zhu B, Li L, Wang B, Miao L, Zhang J, Wu J. Introducing Nanozymes: New Horizons in Periodontal and Dental Implant Care. Chembiochem 2022; 24:e202200636. [PMID: 36510344 DOI: 10.1002/cbic.202200636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The prevalence of periodontal and peri-implant diseases has been increasing worldwide and has gained a lot of attention. As multifunctional nanomaterials with enzyme-like activity, nanozymes have earned a place in the biomedical field. In periodontics and implantology, nanozymes have contributed greatly to research on maintaining periodontal health and improving implant success rates. To highlight this progress, we review nanozymes for antimicrobial therapy, anti-inflammatory therapy, tissue regeneration promotion, and synergistic effects in periodontal and peri-implant diseases. The future prospects of nanozymes in periodontology and implantology are also discussed along with challenges.
Collapse
Affiliation(s)
- Bijun Zhu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Linfeng Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Bao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Jinli Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiangjiexing Wu
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
14
|
Liu Q, Hu K, She Y, Hu Y. In-situ growth G4-nanowire-driven electrochemical biosensor for probing H2O2 in living cell and the activity of terminal deoxynucleotidyl transferase. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|