1
|
Johnson HR, Foster L, Domingo AR, Holland GP. Negative stain TEM imaging of native spider silk protein superstructures. Ultramicroscopy 2025; 271:114124. [PMID: 40056797 DOI: 10.1016/j.ultramic.2025.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Native Latrodectus hesperus (black widow) major ampullate spider silk proteins were imaged using negative stain transmission electron microscopy (NS-TEM) by isolating the silk protein hydrogel directly from the organism and solubilizing in urea. Heterogeneous micelle-like structures averaging 300 nm, similar to those imaged previously with CryoEM, were observed when stained with ammonium molybdate. A second smaller population averaging 50 nm was observed as well as large fibrils, highlighting the heterogeneous nature of the silk gland. The population of smaller silk protein micelles was enhanced at higher urea concentrations (5-8 M). This was further supported by dynamic light scattering (DLS), where two populations were observed at low urea concentrations while one small population dominated at high urea concentrations. The approach presented here provides a cost-effective route to imaging silk protein superstructures with conventional NS-TEM methods and may be applicable to other soft nanoparticle systems.
Collapse
Affiliation(s)
- Hannah R Johnson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr. San Diego CA, 92182-1030 USA
| | - Legend Foster
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr. San Diego CA, 92182-1030 USA
| | - Anikin Rae Domingo
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr. San Diego CA, 92182-1030 USA
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr. San Diego CA, 92182-1030 USA.
| |
Collapse
|
2
|
Aluculesei A, Zhang Y, Huang S, Wang Z, Cang Y, Min Y, Fytas G. Elasticity Anisotropy of Bombyx mori Silkworm Silk Fiber by Brillouin Light Spectroscopy. Biomacromolecules 2025; 26:2479-2486. [PMID: 40168590 PMCID: PMC12004526 DOI: 10.1021/acs.biomac.4c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
Silkworm silk has long been an important natural protein fiber for textile and medical applications, where its superior mechanical properties play a crucial role. Despite the many studies by conventional stress-strain tests, our understanding of the mechanical properties of silkworm silk remains limited. This work investigates the complete elastic properties of Bombyx mori silkworm silk in a noncontact, noninvasive manner by conducting Brillouin light spectroscopy experiments. The analysis of the angle-dependent sound velocities leads to the determination of the full elastic tensor and the engineering mechanical properties of the silkworm silk in natural and stretched states. In the natural state, the axial and lateral Young's moduli are 23.4 ± 1.0 and 10.4 ± 0.5 GPa, respectively, giving an elastic anisotropy of 2.3. Different from the strain-hardening behavior of the spider silk, the mechanical properties of the silkworm silk exhibit a weak strain-dependence up to the breakage strain (∼20%).
Collapse
Affiliation(s)
- Alina Aluculesei
- Institute
of Electronic Structure and Laser, FORTH, N. Plastira 100, Heraklion 70013, Greece
| | - Yuanzhong Zhang
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Shifeng Huang
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Zuyuan Wang
- School of
Mechanical and Electrical Engineering, University
of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Yu Cang
- School of
Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu
Road 100, Shanghai 200092, China
| | - Younjin Min
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Material
Science and Engineering Program, University
of California, Riverside, California 92521, United States
| | - George Fytas
- Institute
of Electronic Structure and Laser, FORTH, N. Plastira 100, Heraklion 70013, Greece
- Max Planck
Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
3
|
Wigham C, Varude V, O'Donnell H, Zha RH. The role of phosphate in silk fibroin self-assembly: a Hofmeister study. SOFT MATTER 2025; 21:2461-2470. [PMID: 40035478 DOI: 10.1039/d4sm01198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Silk fibroin is the primary protein component of the threads of Bombyx mori silkworm cocoons. Previous work has demonstrated that silk fibroin can self-assemble at solid-liquid interfaces to form dense, nanothin coatings that grow continuously from a substrate surface when exposed to potassium phosphate, a kosmotropic salt. Herein, the role of potassium phosphate in promoting silk fibroin self-assembly in solution and on surfaces is studied and compared to other salts in the Hofmeister series. Results show that strong kosmotropes, such as ammonium sulfate and potassium phosphate, promote a bimodal distribution of assembled species in solution that is indicative of a nucleation-growth mechanism. Interestingly, silk fibroin assemblies formed by potassium phosphate contain the highest β-sheet content, suggesting that phosphate-specific interactions play a role in silk fibroin self-assembly. In the presence of kosmotropic salts, silk fibroin nanoaggregates continuously accumulate at solid-liquid interfaces with varying early- and late-stage adsorption rates. Interfacial coatings formed in the presence of potassium phosphate are smooth, dense, and completely cover the underlying substrate without evidence of large-scale aggregation, whereas other kosmotropes generate rough, heterogeneous coatings. These studies thus decouple the kosmotropic effects of phosphate (via disruption of the protein hydration shell) from ion-specific behavior in driving silk fibroin self-assembly.
Collapse
Affiliation(s)
- Caleb Wigham
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Vrushali Varude
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Henry O'Donnell
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - R Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
4
|
Italia V, Jons A, Kaparthi B, Faulk B, Maccarini M, Bertoncello P, Meissner K, Martin DK, Bondos SE. Chemical and temporal manipulation of early steps in protein assembly tunes the structure and intermolecular interactions of protein-based materials. Protein Sci 2025; 34:e70000. [PMID: 39840718 PMCID: PMC11751906 DOI: 10.1002/pro.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 01/30/2025]
Abstract
The Drosophila intrinsically disordered protein Ultrabithorax (Ubx) undergoes a series of phase transitions, beginning with noncovalent interactions between apparently randomly organized monomers, and evolving over time to form increasingly ordered coacervates. This assembly process ends when specific dityrosine covalent bonds lock the monomers in place, forming macroscale materials. Inspired by this hierarchical, multistep assembly process, we analyzed the impact of protein concentration, assembly time, and subphase composition on the early, noncovalent stages of Ubx assembly, which are extremely sensitive to their environment. We discovered that in low salt buffers, we can generate a new type of Ubx material from early coacervates using 5-fold less protein, and 100-fold less assembly time. Comparison of the new materials with standard Ubx fibers also revealed differences in the extent of wrinkling on the fiber surface. A new image analysis technique based on autocorrelation of scanning electron microscopy (SEM) images was developed to quantify these structural differences. These differences extend to the molecular level: new materials form more dityrosine covalent cross-links per monomer, but without requiring the specific tyrosine residues necessary for crosslinking previously established materials. We conclude that varying the assembly conditions represents a facile and inexpensive process for creating new materials. Most new biopolymers are created by changing the composition of the monomers or the method used to drive assembly. In contrast, in this study we used the same monomers and assembly approach, but altered the assembly time and chemical environment to create a new material with unique properties.
Collapse
Affiliation(s)
| | - Amanda Jons
- Department of Cell Biology and Genetics, Texas A&M Health Science CenterTexas A&M UniversityBryanTexasUSA
- Interdisciplinary Graduate Program in GeneticsTexas A&M UniversityCollege StationTexasUSA
| | - Bhavika Kaparthi
- Department of Cell Biology and Genetics, Texas A&M Health Science CenterTexas A&M UniversityBryanTexasUSA
| | - Britt Faulk
- Department of Medical Physiology, School of MedicineTexas A&M UniversityBryanTexasUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Marco Maccarini
- University Grenoble Alpes, SyNaBi, TIMC‐IMAG/CNRS/INSERM, UMR 5525GrenobleFrance
| | | | - Ken Meissner
- Department of PhysicsSwansea UniversitySwanseaUK
- Present address:
Department of Metallurgical, Materials, and Biomedical EngineeringUniversity of Texas at El PasoEl PasoTexasUSA
| | - Donald K. Martin
- University Grenoble Alpes, SyNaBi, TIMC‐IMAG/CNRS/INSERM, UMR 5525GrenobleFrance
| | - Sarah E. Bondos
- Department of Cell Biology and Genetics, Texas A&M Health Science CenterTexas A&M UniversityBryanTexasUSA
- Interdisciplinary Graduate Program in GeneticsTexas A&M UniversityCollege StationTexasUSA
- Department of Medical Physiology, School of MedicineTexas A&M UniversityBryanTexasUSA
| |
Collapse
|
5
|
Landreh M, Osterholz H, Chen G, Knight SD, Rising A, Leppert A. Liquid-liquid crystalline phase separation of spider silk proteins. Commun Chem 2024; 7:260. [PMID: 39533043 PMCID: PMC11557605 DOI: 10.1038/s42004-024-01357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of proteins can be considered an intermediate solubility regime between disperse solutions and solid fibers. While LLPS has been described for several pathogenic amyloids, recent evidence suggests that it is similarly relevant for functional amyloids. Here, we review the evidence that links spider silk proteins (spidroins) and LLPS and its role in the spinning process. Major ampullate spidroins undergo LLPS mediated by stickers and spacers in their repeat regions. During spinning, the spidroins droplets shift from liquid to crystalline states. Shear force, altered ion composition, and pH changes cause micelle-like spidroin assemblies to form an increasingly ordered liquid-crystalline phase. Interactions between polyalanine regions in the repeat regions ultimately yield the characteristic β-crystalline structure of mature dragline silk fibers. Based on these findings, we hypothesize that liquid-liquid crystalline phase separation (LLCPS) can describe the molecular and macroscopic features of the phase transitions of major ampullate spidroins during spinning and speculate whether other silk types may use a similar mechanism to convert from liquid dope to solid fiber.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
| | - Hannah Osterholz
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Gefei Chen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Stefan D Knight
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anna Rising
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Axel Leppert
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
6
|
Wigham C, Fink TD, Sorci M, O'Reilly P, Park S, Kim J, Varude VR, Zha RH. Phosphate-Driven Interfacial Self-Assembly of Silk Fibroin for Continuous Noncovalent Growth of Nanothin Defect-Free Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58121-58134. [PMID: 39413432 DOI: 10.1021/acsami.4c07528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Silk fibroin is a fiber-forming protein derived from the thread of Bombyx mori silkworm cocoons. This biocompatible protein, under the kosmotropic influence of potassium phosphate, can undergo supramolecular self-assembly driven by a random coil to β-sheet secondary structure transition. By leveraging concurrent nonspecific adsorption and self-assembly of silk fibroin, we demonstrate an interfacial phenomenon that yields adherent, defect-free nanothin protein coatings that grow continuously in time, without observable saturation in mass deposition. This noncovalent growth of silk fibroin coatings is a departure from traditionally studied protein adsorption phenomena, which generally yield adsorbed layers that saturate in mass with time and often do not completely cover the surface. Here, we explore the fundamental mechanisms of coating growth by examining the effects of coating solution parameters that promote or inhibit silk fibroin self-assembly. Results show a strong dependence of coating kinetics and structure on solution pH, salt species, and salt concentration. Moreover, coating growth was observed to occur in two stages: an early stage driven by protein-surface interactions and a late stage driven by protein-protein interactions. To describe this phenomenon, we developed a kinetic adsorption model with Langmuir-like behavior at early times and a constant steady-state growth rate at later times. Structural analysis by FTIR and photoinduced force microscopy show that small β-sheet-rich structures serve as anchoring sites for absorbing protein nanoaggregates, which is critical for coating formation. Additionally, β-sheets are preferentially located at the interface between protein nanoaggregates in the coating, suggesting their role in forming stable, robust coatings.
Collapse
Affiliation(s)
- Caleb Wigham
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tanner D Fink
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mirco Sorci
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Sung Park
- Molecular Vista, San Jose, California 95119, United States
| | - Jeongae Kim
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Vrushali R Varude
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - R Helen Zha
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
7
|
Leppert A, Feng J, Railaite V, Bohn Pessatti T, Cerrato CP, Mörman C, Osterholz H, Lane DP, Maia FRNC, Linder MB, Rising A, Landreh M. Controlling Drug Partitioning in Individual Protein Condensates through Laser-Induced Microscale Phase Transitions. J Am Chem Soc 2024; 146:19555-19565. [PMID: 38963823 PMCID: PMC11258780 DOI: 10.1021/jacs.4c06688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Gelation of protein condensates formed by liquid-liquid phase separation occurs in a wide range of biological contexts, from the assembly of biomaterials to the formation of fibrillar aggregates, and is therefore of interest for biomedical applications. Soluble-to-gel (sol-gel) transitions are controlled through macroscopic processes such as changes in temperature or buffer composition, resulting in bulk conversion of liquid droplets into microgels within minutes to hours. Using microscopy and mass spectrometry, we show that condensates of an engineered mini-spidroin (NT2repCTYF) undergo a spontaneous sol-gel transition resulting in the loss of exchange of proteins between the soluble and the condensed phase. This feature enables us to specifically trap a silk-domain-tagged target protein in the spidroin microgels. Surprisingly, laser pulses trigger near-instant gelation. By loading the condensates with fluorescent dyes or drugs, we can control the wavelength at which gelation is triggered. Fluorescence microscopy reveals that laser-induced gelation significantly further increases the partitioning of the fluorescent molecules into the condensates. In summary, our findings demonstrate direct control of phase transitions in individual condensates, opening new avenues for functional and structural characterization.
Collapse
Affiliation(s)
- Axel Leppert
- Department
of Cell and Molecular Biology, Uppsala University, S-75124 Uppsala, Sweden
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17165 Solna, Sweden
| | - Jianhui Feng
- Bioproducts
and Biosystems, Aalto University, Fi-00076 Aalto, Espoo, Finland
| | - Vaida Railaite
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17165 Solna, Sweden
| | - Tomas Bohn Pessatti
- Department
of Anatomy Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-75007 Uppsala, Sweden
| | - Carmine P. Cerrato
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17165 Solna, Sweden
| | - Cecilia Mörman
- Department
of Biosciences and Nutrition, Karolinska
Institutet, S-14157 Huddinge, Sweden
- Department
of Biology and Chemistry, Paul Scherrer
Institute, 5232 Villingen, Switzerland
| | - Hannah Osterholz
- Department
of Cell and Molecular Biology, Uppsala University, S-75124 Uppsala, Sweden
| | - David P. Lane
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17165 Solna, Sweden
| | - Filipe R. N. C. Maia
- Department
of Cell and Molecular Biology, Uppsala University, S-75124 Uppsala, Sweden
| | - Markus B. Linder
- Bioproducts
and Biosystems, Aalto University, Fi-00076 Aalto, Espoo, Finland
| | - Anna Rising
- Department
of Anatomy Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-75007 Uppsala, Sweden
- Department
of Biosciences and Nutrition, Karolinska
Institutet, S-14157 Huddinge, Sweden
| | - Michael Landreh
- Department
of Cell and Molecular Biology, Uppsala University, S-75124 Uppsala, Sweden
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17165 Solna, Sweden
| |
Collapse
|
8
|
Yin Y, Griffo A, Gutiérrez Cruz A, Hähl H, Jacobs K, Linder MB. Effect of Phosphate on the Molecular Properties, Interactions, and Assembly of Engineered Spider Silk Proteins. Biomacromolecules 2024; 25:3990-4000. [PMID: 38916967 PMCID: PMC11238326 DOI: 10.1021/acs.biomac.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Phosphate plays a vital role in spider silk spinning and has been utilized in numerous artificial silk spinning attempts to replicate the remarkable mechanical properties of natural silk fiber. Its application in artificial processes has, however, yielded varying outcomes. It is thus necessary to investigate the origins and mechanisms behind these differences. By using recombinant silk protein SC-ADF3 derived from the garden spider Araneus diadematus, here, we describe its conformational changes under various conditions, elucidating the effect of phosphate on SC-ADF3 silk protein properties and interactions. Our results demonstrate that elevated phosphate levels induce the irreversible conformational conversion of SC-ADF3 from random coils to β-sheet structures, leading to decreased protein solubility over time. Furthermore, exposure of SC-ADF3 to phosphate stiffens already formed structures and reduces the ability to form new interactions. Our findings offer insights into the underlying mechanism through which phosphate-induced β-sheet structures in ADF3-related silk proteins impede fiber formation in the subsequent phases. From a broader perspective, our studies emphasize the significance of silk protein conformation for functional material formation, highlighting that the formation of β-sheet structures at the initial stages of protein assembly will affect the outcome of material forming processes.
Collapse
Affiliation(s)
- Yin Yin
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
- Finnish
Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Alessandra Griffo
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Department
of Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Adrián Gutiérrez Cruz
- Department
of Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Hendrik Hähl
- Department
of Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Karin Jacobs
- Department
of Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- Max
Planck School “Matter to Life”, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Markus B. Linder
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
- Finnish
Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
9
|
Maraldo A, Rnjak-Kovacina J, Marquis C. Tyrosine - a structural glue for hierarchical protein assembly. Trends Biochem Sci 2024; 49:633-648. [PMID: 38653686 DOI: 10.1016/j.tibs.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Protein self-assembly, guided by the interplay of sequence- and environment-dependent liquid-liquid phase separation (LLPS), constitutes a fundamental process in the assembly of numerous intrinsically disordered proteins. Heuristic examination of these proteins has underscored the role of tyrosine residues, evident in their conservation and pivotal involvement in initiating LLPS and subsequent liquid-solid phase transitions (LSPT). The development of tyrosine-templated constructs, designed to mimic their natural counterparts, emerges as a promising strategy for creating adaptive, self-assembling systems with diverse applications. This review explores the central role of tyrosine in orchestrating protein self-assembly, delving into key interactions and examining its potential in innovative applications, including responsive biomaterials and bioengineering.
Collapse
Affiliation(s)
- Anton Maraldo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
| | - Christopher Marquis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
10
|
Chen Z, Cheng C, Liu L, Lin B, Xiong Y, Zhu W, Zheng K, He B. Tyrosine Mutation in the Characteristic Motif of the Amorphous Region of Spidroin for Self-Assembly Capability Enhancement. ACS OMEGA 2024; 9:22441-22449. [PMID: 38799334 PMCID: PMC11112579 DOI: 10.1021/acsomega.4c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Spidroin, with robust mechanical performance and good biocompatibility, could fulfill broad applications in material science and biomedical fields. Development of miniature spidroin has made abundant fiber production economically feasible, but the mechanical properties of artificial silk still fall short of natural silk. The mechanism behind mechanical properties of spidroin usually focuses on β-microcrystalline regions; the effect of amorphous regions was barely studied. In this study, residue tyrosines (Y) were designed to replace asparagine (N)/glutamic acid (Q) in the characteristic motifs (GGX)n in amorphous regions for performance enhancement of spidroin; the mutants presented lower free energy and significantly exhibited stronger van der Waals and electrostatic interactions, which might result from π-π stacking interactions between the phenyl rings in the side chain of tyrosine. Additionally, the soluble expressions of wild-type spidroin and mutant spidroin were achieved when heterologously expressed in E. coli, with yields of 560 mg/L (2REP), 590 mg/L (2REPM), 240 mg/L (4REP), and 280 mg/L (4REPM). Significantly, secondary structure analysis confirmed that the mutant spidroin more avidly forms more β-sheets than the wild-type spidroin, and aggregation morphology suggested that mutant spidroin displayed better self-assembly capacity and was easier to form artificial spider silk fibers; in particular, self-assembled 4REPM nanofibrils had an average modulus of 11.2 ± 0.35 GPa, about 2 times higher than self-assembled B. mori silk nanofibrils and almost the same as that of native spider dragline silk fibers (10-15 GPa). Thus, we first demonstrated a new influence mechanism of the amorphous region's characteristic motif on the self-assembly and material properties of spidroin. Our study provides a reference for the design of high-performance material proteins and their heterologous preparation.
Collapse
Affiliation(s)
- Ziyang Chen
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Cheng Cheng
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Li Liu
- Biomass
Molecular Engineering Center and Department of Materials Science and
Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Baoyang Lin
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Yongji Xiong
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Weiyu Zhu
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 Puzhu South Road, Nanjing 211816, China
| | - Ke Zheng
- Biomass
Molecular Engineering Center and Department of Materials Science and
Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bingfang He
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 Puzhu South Road, Nanjing 211816, China
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China
| |
Collapse
|
11
|
Wu D, Koscic A, Schneider S, Dubini RCA, Rodriguez Camargo DC, Schneider S, Rovó P. Unveiling the Dynamic Self-Assembly of a Recombinant Dragline-Silk-Mimicking Protein. Biomacromolecules 2024; 25:1759-1774. [PMID: 38343096 PMCID: PMC10934265 DOI: 10.1021/acs.biomac.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Despite the considerable interest in the recombinant production of synthetic spider silk fibers that possess mechanical properties similar to those of native spider silks, such as the cost-effectiveness, tunability, and scalability realization, is still lacking. To address this long-standing challenge, we have constructed an artificial spider silk gene using Golden Gate assembly for the recombinant bacterial production of dragline-mimicking silk, incorporating all the essential components: the N-terminal domain, a 33-residue-long major-ampullate-spidroin-inspired segment repeated 16 times, and the C-terminal domain (N16C). This designed silk-like protein was successfully expressed in Escherichia coli, purified, and cast into films from formic acid. We produced uniformly 13C-15N-labeled N16C films and employed solid-state magic-angle spinning nuclear magnetic resonance (NMR) for characterization. Thus, we could demonstrate that our bioengineered silk-like protein self-assembles into a film where, when hydrated, the solvent-exposed layer of the rigid, β-nanocrystalline polyalanine core undergoes a transition to an α-helical structure, gaining mobility to the extent that it fully dissolves in water and transforms into a highly dynamic random coil. This hydration-induced behavior induces chain dynamics in the glycine-rich amorphous soft segments on the microsecond time scale, contributing to the elasticity of the solid material. Our findings not only reveal the presence of structurally and dynamically distinct segments within the film's superstructure but also highlight the complexity of the self-organization responsible for the exceptional mechanical properties observed in proteins that mimic dragline silk.
Collapse
Affiliation(s)
- Dongqing Wu
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anamaria Koscic
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sonja Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Romeo C. A. Dubini
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, 80799 Munich, Germany
| | - Diana C. Rodriguez Camargo
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sabine Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Petra Rovó
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Institute
of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
12
|
Chalek K, Soni A, Lorenz CD, Holland GP. Proline-Tyrosine Ring Interactions in Black Widow Dragline Silk Revealed by Solid-State Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Biomacromolecules 2024; 25:1916-1922. [PMID: 38315982 DOI: 10.1021/acs.biomac.3c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Selective one-dimensional 13C-13C spin-diffusion solid-state nuclear magnetic resonance (SSNMR) provides evidence for CH/π ring packing interactions between Pro and Tyr residues in 13C-enriched Latrodectus hesperus dragline silk. The secondary structure of Pro-containing motifs in dragline spider silks consistently points to an elastin-like type II β-turn conformation based on 13C chemical shift analysis. 13C-13C spin diffusion measurements as a function of mixing times allow for the measurement of spatial proximity between the Pro and Tyr rings to be ∼0.5-1 nm, supporting strong Pro-Tyr ring interactions that likely occur through a CH/π mechanism. These results are supported by molecular dynamics (MD) simulations and analysis and reveals new insights into the secondary structure and Pro-Tyr ring stacking interactions for one of nature's toughest biomaterials.
Collapse
Affiliation(s)
- Kevin Chalek
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92181-1030, United States
| | - Ashana Soni
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92181-1030, United States
| | - Christian D Lorenz
- Biological Physics & Soft Matter Group, Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92181-1030, United States
| |
Collapse
|
13
|
Ebbinghaus T, Lang G, Scheibel T. Biomimetic polymer fibers-function by design. BIOINSPIRATION & BIOMIMETICS 2023; 18:041003. [PMID: 37307815 DOI: 10.1088/1748-3190/acddc1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Biomimicry applies the fundamental principles of natural materials, processes, and structures to technological applications. This review presents the two strategies of biomimicry-bottom-up and top-down approaches, using biomimetic polymer fibers and suitable spinning techniques as examples. The bottom-up biomimicry approach helps to acquire fundamental knowledge on biological systems, which can then be leveraged for technological advancements. Within this context, we discuss the spinning of silk and collagen fibers due to their unique natural mechanical properties. To achieve successful biomimicry, it is imperative to carefully adjust the spinning solution and processing parameters. On the other hand, top-down biomimicry aims to solve technological problems by seeking solutions from natural role models. This approach will be illustrated using examples such as spider webs, animal hair, and tissue structures. To contextualize biomimicking approaches in practical applications, this review will give an overview of biomimetic filter technologies, textiles, and tissue engineering.
Collapse
Affiliation(s)
- Thomas Ebbinghaus
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Gregor Lang
- Department of Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bayreuth Center for Material Science (BayMAT), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
14
|
Leppert A, Chen G, Lama D, Sahin C, Railaite V, Shilkova O, Arndt T, Marklund EG, Lane DP, Rising A, Landreh M. Liquid-Liquid Phase Separation Primes Spider Silk Proteins for Fiber Formation via a Conditional Sticker Domain. NANO LETTERS 2023. [PMID: 37084706 DOI: 10.1021/acs.nanolett.3c00773] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many protein condensates can convert to fibrillar aggregates, but the underlying mechanisms are unclear. Liquid-liquid phase separation (LLPS) of spider silk proteins, spidroins, suggests a regulatory switch between both states. Here, we combine microscopy and native mass spectrometry to investigate the influence of protein sequence, ions, and regulatory domains on spidroin LLPS. We find that salting out-effects drive LLPS via low-affinity stickers in the repeat domains. Interestingly, conditions that enable LLPS simultaneously cause dissociation of the dimeric C-terminal domain (CTD), priming it for aggregation. Since the CTD enhances LLPS of spidroins but is also required for their conversion into amyloid-like fibers, we expand the stickers and spacers-model of phase separation with the concept of folded domains as conditional stickers that represent regulatory units.
Collapse
Affiliation(s)
- Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17165 Solna, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, S-14157 Huddinge, Sweden
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17165 Solna, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17165 Solna, Sweden
- Linderstro̷m-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Vaida Railaite
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17165 Solna, Sweden
| | - Olga Shilkova
- Department of Biosciences and Nutrition, Karolinska Institutet, S-14157 Huddinge, Sweden
| | - Tina Arndt
- Department of Biosciences and Nutrition, Karolinska Institutet, S-14157 Huddinge, Sweden
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, S-75123 Uppsala, Sweden
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17165 Solna, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, S-14157 Huddinge, Sweden
- Department of Anatomy Physiology and Biochemistry, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17165 Solna, Sweden
- Department of Cell and Molecular Biology, Uppsala University, S-75124 Uppsala, Sweden
| |
Collapse
|