1
|
Ghosal K, Bhattacharyya SK, Mishra V, Zuilhof H. Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior. Chem Rev 2024; 124:13216-13300. [PMID: 39621547 PMCID: PMC11638903 DOI: 10.1021/acs.chemrev.4c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Click chemistry has become one of the most powerful construction tools in the field of organic chemistry, materials science, and polymer science, as it offers hassle-free platforms for the high-yielding synthesis of novel materials and easy functionalization strategies. The absence of harsh reaction conditions or complicated workup procedures allowed the rapid development of novel biofunctional polymeric materials, such as biopolymers, tailor-made polymer surfaces, stimulus-responsive polymers, etc. In this review, we discuss various types of click reactions─including azide-alkyne cycloadditions, nucleophilic and radical thiol click reactions, a range of cycloadditions (Diels-Alder, tetrazole, nitrile oxide, etc.), sulfur fluoride exchange (SuFEx) click reaction, and oxime-hydrazone click reactions─and their use for the formation and study of biofunctional polymers. Following that, we discuss state-of-the-art biological applications of "click"-biofunctionalized polymers, including both passive applications (e.g., biosensing and bioimaging) and "active" ones that aim to direct changes in biosystems, e.g., for drug delivery, antiviral action, and tissue engineering. In conclusion, we have outlined future directions and existing challenges of click-based polymers for medicinal chemistry and clinical applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research
& Development Laboratory, Shalimar Paints
Limited, Nashik, Maharashtra 422403, India
| | | | - Vivek Mishra
- Amity
Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
- College
of Biological and Chemical Sciences, Jiaxing
University, Jiaxing 314001, China
| |
Collapse
|
2
|
Marchena M, Lambert E, Bogdanović B, Quadir F, Neri-Cruz CE, Luo J, Nadal C, Migliorini E, Gautrot JE. BMP-Binding Polysulfonate Brushes to Control Growth Factor Presentation and Regulate Matrix Remodelling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40455-40468. [PMID: 39072446 PMCID: PMC11310902 DOI: 10.1021/acsami.4c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Bone morphogenetic proteins (BMPs) are important targets to incorporate in biomaterial scaffolds to orchestrate tissue repair. Glycosaminoglycans (GAGs) such as heparin allow the capture of BMPs and their retention at the surface of biomaterials at safe concentrations. Although heparin has strong affinities for BMP2 and BMP4, two important types of growth factors regulating bone and tissue repair, it remains difficult to embed stably at the surface of a broad range of biomaterials and degrades rapidly in vitro and in vivo. In this report, biomimetic poly(sulfopropyl methacrylate) (PSPMA) brushes are proposed as sulfated GAG mimetic interfaces for the stable capture of BMPs. The growth of PSPMA brushes via a surface-initiated activator regenerated by electron transfer polymerization is investigated via ellipsometry, prior to characterization of swelling and surface chemistry via X-ray photoelectron spectroscopy and Fourier transform infrared. The capacity of PSPMA brushes to bind BMP2 and BMP4 is then characterized via surface plasmon resonance. BMP2 is found to anchor particularly stably and at high density at the surface of PSPMA brushes, and a strong impact of the brush architecture on binding capacity is observed. These results are further confirmed using a quartz crystal microbalance with dissipation monitoring, providing some insights into the mode of adsorption of BMPs at the surface of PSPMA brushes. Primary adsorption of BMP2, with relatively little infiltration, is observed on thick dense brushes, implying that this growth factor should be accessible for further binding of corresponding cell membrane receptors. Finally, to demonstrate the impact of PSPMA brushes for BMP2 capture, dermal fibroblasts were then cultured at the surface of functionalized PSPMA brushes. The presence of BMP2 and the architecture of the brush are found to have a significant impact on matrix deposition at the corresponding interfaces. Therefore, PSPMA brushes emerge as attractive coatings for scaffold engineering and stable capture of BMP2 for regenerative medicine applications.
Collapse
Affiliation(s)
- Metzli
Hernandez Marchena
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Lambert
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Bojana Bogdanović
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Fauzia Quadir
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Carlos E. Neri-Cruz
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Jiajun Luo
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Clemence Nadal
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Migliorini
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Julien E. Gautrot
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
3
|
Naderer C, Krobath H, Sivun D, Gvindzhiliia G, Klar TA, Jacak J. New buffer systems for photopainting of single biomolecules. RSC APPLIED INTERFACES 2024; 1:110-121. [PMID: 39166527 PMCID: PMC10805099 DOI: 10.1039/d3lf00125c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/03/2023] [Indexed: 08/23/2024]
Abstract
We present newly developed buffer systems that significantly improve the efficiency of a photochemically induced surface modification at the single molecule level. Buffers with paramagnetic cations and radical oxygen promoting species facilitate laser-assisted protein adsorption by photobleaching (LAPAP) of single fluorescently labelled oligonucleotides or biotin onto multi-photon-lithography-structured 2D and 3D acrylate scaffolds. Single molecule fluorescence microscopy has been used to quantify photopainting efficiency. We identify specific cation interaction sites for members of the cyanine, coumarin and rhodamine classes of fluorophores using quantum mechanical calculations. We show that our buffer systems provide an up to three-fold LAPAP-efficiency increase for the cyanine fluorophore, while keeping excitation parameters constant.
Collapse
Affiliation(s)
- Christoph Naderer
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria Garnisonstraße 21 4020 Linz Austria
| | - Heinrich Krobath
- Institute of Theoretical Physics, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Dmitry Sivun
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria Garnisonstraße 21 4020 Linz Austria
| | - Georgii Gvindzhiliia
- Institute of Applied Physics, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Thomas A Klar
- Institute of Applied Physics, Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria Garnisonstraße 21 4020 Linz Austria
| |
Collapse
|
4
|
Kaur A, Gautrot JE, Akutagawa K, Watson D, Bickley A, Busfield JJC. Thiyl radical induced cis/ trans isomerism in double bond containing elastomers. RSC Adv 2023; 13:23967-23975. [PMID: 37577099 PMCID: PMC10413178 DOI: 10.1039/d3ra04157c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
This report presents an evaluation of thiyl radical-induced cis/trans isomerism in double bond-containing elastomers, such as natural, polychloroprene, and polybutadiene rubbers. The study aims to extensively investigate structural changes in polymers after functionalisation using thiol-ene chemistry, a useful click reaction for modifying polymers and developing materials with new functionalities. The paper reports on the use of different thiols, and cis/trans isomerism was detected through 1H NMR analysis, even at very low alkene/thiol mole ratios. The study finds that the configurational arrangements between non-functionalised elastomer units and thiolated units followed a trans-functionalised-cis units arrangement up to an alkene/thiol mole feed ratio of 0.3, while from 0.4 onward, a combination of trans-functionalised-cis and cis-functionalised-trans configurations are found. Additionally, it is observed that by increasing the level of functionalisation, the glass transition temperature of the resulting modified elastomer also increases. Overall, this study provides valuable insights into the effects of thiol-ene chemistry on the structure and properties of elastomers and could have important implications for the development of new materials with enhanced functionality.
Collapse
|
5
|
Zhao H, Chen T, Wu T, Xie L, Ma Y, Sha J. Strategy based on multiplexed brush architectures for regulating the spatiotemporal immobilization of biomolecules. BIOMATERIALS ADVANCES 2022; 141:213092. [PMID: 36191539 DOI: 10.1016/j.bioadv.2022.213092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Functional surfaces that enable both spatial and temporal control of biomolecules immobilization have attracted enormous attention for various fields including smart biointerface materials, high-throughput bioarrays, and fundamental research in the biosciences. Here, a flexible and promising method was presented for regulating the spatiotemporal arrangement of multiple biomolecules by constructing the topographically and chemically diverse polymer brushes patterned surfaces. A series of polymer brushes patterned surfaces, including antifouling brushes patterned surface, epoxy-presenting brushes patterned surface without and with antifouling background layer, were fabricated to control the spatial distribution of protein and cell adhesion through specific and nonspecific means. The fluorescence measurements demonstrated the effectiveness of spatially regulating the density of surface-immobilized protein through controlling the areal thickness of the poly (glycidyl methacrylate) (PGMA) brush patterns, leading to various complex patterns featuring well-defined biomolecule concentration gradients. Furthermore, a multiplexed surface bearing epoxy groups and azido groups with various areal densities was fabricated for regulating the spatiotemporal arrangement of different proteins, enabling binary biomolecules patterns with higher degrees of functionality and complexity. The presented strategy for the spatiotemporal control of biomolecules immobilization would boost the development of dynamic and multifunctional biosystems.
Collapse
Affiliation(s)
- Haili Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tao Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tong Wu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linsheng Xie
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulu Ma
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Sha
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Cansu Tarakci E, Nihal Gevrek T. Isocyanate group containing reactive hydrogels: Facile synthesis and efficient biofunctionalization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Tuvshindorj U, Trouillet V, Vasilevich A, Koch B, Vermeulen S, Carlier A, Alexander MR, Giselbrecht S, Truckenmüller R, de Boer J. The Galapagos Chip Platform for High-Throughput Screening of Cell Adhesive Chemical Micropatterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105704. [PMID: 34985808 DOI: 10.1002/smll.202105704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/04/2021] [Indexed: 06/14/2023]
Abstract
In vivo cells reside in a complex extracellular matrix (ECM) that presents spatially distributed biochemical and -physical cues at the nano- to micrometer scales. Chemical micropatterning is successfully used to generate adhesive islands to control where and how cells attach and restore cues of the ECM in vitro. Although chemical micropatterning has become a powerful tool to study cell-material interactions, only a fraction of the possible micropattern designs was covered so far, leaving many other possible designs still unexplored. Here, a high-throughput screening platform called "Galapagos chip" is developed. It contains a library of 2176 distinct subcellular chemical patterns created using mathematical algorithms and a straightforward UV-induced two-step surface modification. This approach enables the immobilization of ligands in geometrically defined regions onto cell culture substrates. To validate the system, binary RGD/polyethylene glycol patterns are prepared on which human mesenchymal stem cells are cultured, and the authors observe how different patterns affect cell and organelle morphology. As proof of concept, the cells are stained for the mechanosensitive YAP protein, and, using a machine-learning algorithm, it is demonstrated that cell shape and YAP nuclear translocation correlate. It is concluded that the Galapagos chip is a versatile platform to screen geometrical aspects of cell-ECM interaction.
Collapse
Affiliation(s)
- Urandelger Tuvshindorj
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Department of Biomedical Engineering and Institute, for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Vanessa Trouillet
- Institute for Applied Materials and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Aliaksei Vasilevich
- Department of Biomedical Engineering and Institute, for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Britta Koch
- Advanced Materials and Healthcare Technologies Division, The School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Steven Vermeulen
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies Division, The School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering and Institute, for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
8
|
Liu G, Sun X, Li X, Wang Z. The Bioanalytical and Biomedical Applications of Polymer Modified Substrates. Polymers (Basel) 2022; 14:826. [PMID: 35215740 PMCID: PMC8878960 DOI: 10.3390/polym14040826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/11/2023] Open
Abstract
Polymers with different structures and morphology have been extensively used to construct functionalized surfaces for a wide range of applications because the physicochemical properties of polymers can be finely adjusted by their molecular weights, polydispersity and configurations, as well as the chemical structures and natures of monomers. In particular, the specific functions of polymers can be easily achieved at post-synthesis by the attachment of different kinds of active molecules such as recognition ligand, peptides, aptamers and antibodies. In this review, the recent advances in the bioanalytical and biomedical applications of polymer modified substrates were summarized with subsections on functionalization using branched polymers, polymer brushes and polymer hydrogels. The review focuses on their applications as biosensors with excellent analytical performance and/or as nonfouling surfaces with efficient antibacterial activity. Finally, we discuss the perspectives and future directions of polymer modified substrates in the development of biodevices for the diagnosis, treatment and prevention of diseases.
Collapse
Affiliation(s)
- Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China; (G.L.); (X.L.)
| | - Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| | - Xiaodong Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China; (G.L.); (X.L.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| |
Collapse
|
9
|
Kim J, Lee JY, Park HY, Kim H, Kang JH, Kim HJ, Jeong W. Combination of peptides with biological, organic, and inorganic materials for synergistically enhanced diagnostics and therapeutics. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joo‐Young Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Jae Yun Lee
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyunji Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Woo‐Jin Jeong
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| |
Collapse
|
10
|
The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater 2021; 126:45-62. [PMID: 33727195 DOI: 10.1016/j.actbio.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Bioactive surfaces modified with functional peptides are critical for both fundamental research and practical application of implant materials and tissue repair. However, when bioactive molecules are tethered on biomaterial surfaces, their functions can be compromised due to unwanted fouling (mainly nonspecific protein adsorption and cell adhesion). In recent years, researchers have continuously studied antifouling strategies to obtain low background noise and effectively present the function of bioactive molecules. In this review, we describe several commonly used antifouling strategies and analyzed their advantages and drawbacks. Among these strategies, antifouling molecules are widely used to construct the antifouling layer of various bioactive surfaces. Subsequently, we summarize various structures of antifouling molecules and their surface grafting methods and characteristics. Application of these functionalized surfaces in microarray, biosensors, and implants are also introduced. Finally, we discuss the primary challenges associated with antifouling layers in fabricating bioactive surfaces and provide prospects for the future development of this field. STATEMENT OF SIGNIFICANCE: The nonspecific protein adsorption and cell adhesion will cause unwanted background "noise" on the surface of biological materials and detecting devices and compromise the performance of functional molecules and, therefore, impair the performance of materials and the sensitivity of devices. In addition, the selection of antifouling surfaces with proper chain length and high grafting density is also of great importance and requires further studies. Otherwise, the surface-tethered bioactive molecules may not function in their optimal status or even fail to display their functions. Based on these two critical issues, we summarize antifouling molecules with different structures, variable grafting methods, and diverse applications in biomaterials and biomedical devices reported in literature. Overall, we expect to shed some light on choosing the appropriate antifouling molecules in fabricating bioactive surfaces.
Collapse
|
11
|
Comparative adhesion of chemically and physically crosslinked poly(acrylic acid)-based hydrogels to soft tissues. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Horowitz JA, Zhong X, DePalma SJ, Ward Rashidi MR, Baker BM, Lahann J, Forrest SR. Printable Organic Electronic Materials for Precisely Positioned Cell Attachment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1874-1881. [PMID: 33497243 PMCID: PMC9794193 DOI: 10.1021/acs.langmuir.0c03319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Over the past 3 decades, there has been a vast expansion of research in both tissue engineering and organic electronics. Although the two fields have interacted little, the materials and fabrication technologies which have accompanied the rise of organic electronics offer the potential for innovation and translation if appropriately adapted to pattern biological materials for tissue engineering. In this work, we use two organic electronic materials as adhesion points on a biocompatible poly(p-xylylene) surface. The organic electronic materials are precisely deposited via vacuum thermal evaporation and organic vapor jet printing, the proven, scalable processes used in the manufacture of organic electronic devices. The small molecular-weight organics prevent the subsequent growth of antifouling polyethylene glycol methacrylate polymer brushes that grow within the interstices between the molecular patches, rendering these background areas both protein and cell resistant. Last, fibronectin attaches to the molecular patches, allowing for the selective adhesion of fibroblasts. The process is simple, reproducible, and promotes a high yield of cell attachment to the targeted sites, demonstrating that biocompatible organic small-molecule materials can pattern cells at the microscale, utilizing techniques widely used in electronic device fabrication.
Collapse
Affiliation(s)
- Jeffrey A Horowitz
- Department of Electrical and Computer Engineering, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Xiaoyang Zhong
- Department of Materials Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan 48109, United States
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, Michigan 48109, United States
| | - Maria R Ward Rashidi
- Department of Materials Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan 48109, United States
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, Michigan 48109, United States
| | - Joerg Lahann
- Department of Materials Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan 48109, United States
| | - Stephen R Forrest
- Department of Electrical and Computer Engineering, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Colak B, Wu L, Cozens EJ, Gautrot JE. Modulation of Thiol-Ene Coupling by the Molecular Environment of Polymer Backbones for Hydrogel Formation and Cell Encapsulation. ACS APPLIED BIO MATERIALS 2020; 3:6497-6509. [PMID: 35021781 DOI: 10.1021/acsabm.0c00908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Thiol-ene radical coupling is increasingly used for the biofunctionalization of biomaterials and the formation of 3D hydrogels enabling cell encapsulation. Indeed, thiol-ene chemistry presents interesting features that are particularly attractive for platforms requiring specific reactions of peptides or proteins, in particular in situ, during cell culture or encapsulation: thiol-ene coupling occurs specifically between a thiol and a nonactivated alkene (unlike Michael addition); it is relatively tolerant to the presence of oxygen; and it can be triggered by light. Despite such interest, little is known about the factors impacting polymer thiol-ene chemistry in situ. Here, we explore some of the molecular parameters controlling photoinitiated thiol-ene coupling (with UV and visible-light irradiation), with a series of alkene-functionalized polymer backbones. 1H NMR spectroscopy is used to quantify the efficiency of couplings, whereas photorheology allows correlation to gelation and mechanical properties of the resulting materials. We identify the impact of weak electrolytes in regulating coupling efficiency, presumably via thiol deprotonation and regulation of local diffusion. The conformation of associated polymer chains, regulated by the pH, is also proposed to play an important role in the modulation of both thiol-ene coupling and cross-linking efficiencies. Ultimately, suitable conditions for cell encapsulations are identified for a range of polymer backbones and their impact on cytocompatibility is investigated for cell encapsulation and tissue engineering applications. Overall, our work demonstrates the importance of polymer backbone design to regulate thiol-ene coupling and in situ hydrogel formation.
Collapse
|
14
|
|
15
|
Nutan B, Jewrajka SK. PEGylated gold nanoparticles promoted rapid macromolecular chain-end transformation and formation of injectable hydrogels. J Mater Chem B 2020; 8:465-477. [DOI: 10.1039/c9tb02001b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Highly stable PEGylated Au NPs with low grafting density exhibit significant effect towards azide–alkyne click cycloaddition and Michael addition reactions leading to rapid formation of injectable hydrogels and biologically relevant macromolecules.
Collapse
Affiliation(s)
- Bhingaradiya Nutan
- Membrane Science and Separation Technology Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
| | - Suresh K. Jewrajka
- Membrane Science and Separation Technology Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
| |
Collapse
|
16
|
Abstract
Shear-thinning hydrogels that utilize thiol-Michael chain-extension and free radical polymerization have a tunable stretchability.
Collapse
Affiliation(s)
- Dylan Karis
- Department of Chemistry
- University of Washington
- Seattle
- USA
| | | |
Collapse
|
17
|
Ippel BD, Arts B, Keizer HM, Dankers PYW. Combinatorial functionalization with bisurea-peptides and antifouling bisurea additives of a supramolecular elastomeric biomaterial. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2019; 57:1725-1735. [PMID: 32025088 PMCID: PMC6988465 DOI: 10.1002/polb.24907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
The bioactive additive toolbox to functionalize supramolecular elastomeric materials expands rapidly. Here we have set an explorative step toward screening of complex combinatorial functionalization with antifouling and three peptide-containing additives in a bisurea-based supramolecular system. Thorough investigation of surface properties of thin films with contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy, was correlated to cell-adhesion of endothelial and smooth muscle cells to apprehend their respective predictive values for functional biomaterial development. Peptides were presented at the surface alone, and in combinatorial functionalization with the oligo(ethylene glycol)-based non-cell adhesive additive. The bisurea-RGD additive was cell-adhesive in all conditions, whereas the endothelial cell-specific bisurea-REDV showed limited bioactive properties in all chemical nano-environments. Also, aspecific functionality was observed for a bisurea-SDF1α peptide. These results emphasize that special care should be taken in changing the chemical nano-environment with peptide functionalization. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1725-1735.
Collapse
Affiliation(s)
- Bastiaan D. Ippel
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 513 5600EindhovenManitobaThe Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue EngineeringEindhoven University of TechnologyPO Box 513 5600EindhovenManitobaThe Netherlands
| | - Boris Arts
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 513 5600EindhovenManitobaThe Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical BiologyEindhoven University of TechnologyPO Box 513, 5600EindhovenManitobaThe Netherlands
| | - Henk M. Keizer
- SyMO‐Chem B.VDen Dolech 2, 5612EindhovenArizonaThe Netherlands
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 513 5600EindhovenManitobaThe Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue EngineeringEindhoven University of TechnologyPO Box 513 5600EindhovenManitobaThe Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical BiologyEindhoven University of TechnologyPO Box 513, 5600EindhovenManitobaThe Netherlands
| |
Collapse
|
18
|
Lian J, Xu H, Duan S, Ding X, Hu Y, Zhao N, Ding X, Xu FJ. Tunable Adhesion of Different Cell Types Modulated by Thermoresponsive Polymer Brush Thickness. Biomacromolecules 2019; 21:732-742. [DOI: 10.1021/acs.biomac.9b01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiamin Lian
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Haifeng Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
19
|
Chen L, Li P, Lu X, Wang S, Zheng Z. Binary polymer brush patterns from facile initiator stickiness for cell culturing. Faraday Discuss 2019; 219:189-202. [PMID: 31317169 DOI: 10.1039/c9fd00013e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a new initiator stickiness method to fabricate micropatterned binary polymer brush surfaces, which are ideal platforms for studying cell adhesion behavior. The atom transfer radical polymerization (ATRP) initiator, ω-mercaptoundecyl bromoisobutyrate (MUDBr), is found to adsorb on several hosting polymer brushes, including poly[oligo(ethylene glycol)methyl ether methacrylate] (POEGMA), poly(2-hydroxyethyl methacrylate) (PHEMA), and poly(glycidyl methacrylate) (PGMA) brushes. Based on the initiator stickiness, micropatterned initiator molecules are printed onto a layer of homogenous hosting polymer brushes via microcontact printing (μCP), and then, vertically, a patterned second layer of polymer brushes is grown from the initiator areas. With this simple, fast, and additive method, we demonstrate the fabrication of various binary polymer brushes, and show their applications for patterning cell microarrays and controlling cell orientation. This new approach to generating binary polymer brushes shows great potential for the manipulation of interfacial phenomena, facilitating a range of applications from semiconductors and lubrication to fundamental cell biology studies.
Collapse
Affiliation(s)
- Lina Chen
- Laboratory for Advanced Interfacial Materials and Devices, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China.
| | | | | | | | | |
Collapse
|
20
|
Zhao H, Sha J, Wang X, Jiang Y, Chen T, Wu T, Chen X, Ji H, Gao Y, Xie L, Ma Y. Spatiotemporal control of polymer brush formation through photoinduced radical polymerization regulated by DMD light modulation. LAB ON A CHIP 2019; 19:2651-2662. [PMID: 31250865 DOI: 10.1039/c9lc00419j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Spatially arranged polymer brushes provide the essential capability of precisely regulating the surface physicochemical and functional properties of various substrates. A novel and flexible polymer brush patterning methodology, which is based on employing a digital mirror device (DMD)-based light modulation technique to spatiotemporally regulate a surface-initiated photoinduced atom transfer radical polymerization (photo-ATRP) process, is presented. Various characterization techniques confirm that the spatially and/or temporally controlled brush formation results in complex PEG-derived brush patterns in accordance with a customized digital image design. A series of step-and-exposure strategies, including in situ multiple exposure, dynamic multiple exposure and dynamic sequential exposure, are developed to implement spatiotemporal regulation of the photo-ATRP process, leading to complex patterned and gradient brushes featuring binary functionalities, pyramid nanostructures and radial directional chemical gradients. Moreover, tunable and radial directional concentration gradients of various biomacromolecules (e.g., streptavidin) are obtained through preparation of height gradients of azido-functionalized brushes and subsequent orthogonal chemical activation aimed at specific protein immobilization. Finally, a unidirectional concentration gradient of fibronectin, surrounded by non-fouling PEG brushes, is fabricated and applied for human umbilical vein endothelial cell (HUVEC) adhesion experiments, whose preliminary results indicate gradient-dependent cell adhesion behavior in response to the concentration gradient of fibronectin. The presented fabrication technique could be integrated with microfluidic devices for sensors and bio-reactors, paving the way for novel approaches for lab-on-a-chip technologies.
Collapse
Affiliation(s)
- Haili Zhao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Jin Sha
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Xiaofeng Wang
- National Center for International Joint Research of Micro-nano Molding Technology, School of Mechanics and Engineering Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongchao Jiang
- National Center for International Joint Research of Micro-nano Molding Technology, School of Mechanics and Engineering Sciences, Zhengzhou University, Zhengzhou, China
| | - Tao Chen
- School of Physics and Astronomy, Yunnan University, Kunming, China
| | - Tong Wu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Chen
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Huajian Ji
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Yang Gao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Linsheng Xie
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| | - Yulu Ma
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
21
|
Lueckgen A, Garske DS, Ellinghaus A, Mooney DJ, Duda GN, Cipitria A. Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration. Biomaterials 2019; 217:119294. [PMID: 31276949 DOI: 10.1016/j.biomaterials.2019.119294] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023]
Abstract
Enzymatically-degradable materials recapitulate the dynamic and reciprocal interactions between cells and their native microenvironment by allowing cells to actively shape the degradation process. In order to engineer a synthetic 3D environment enabling cells to orchestrate the degradation of the surrounding material, norbornene-modified alginate was crosslinked with two different peptide crosslinkers susceptible to cleavage by matrix metalloproteinases using UV-initiated thiol-ene chemistry. Resulting hydrogels were characterized for their initial mechanical and rheological properties, and their degradation behavior was measured by tracking changes in wet weight upon enzyme incubation. This process was found to be a function of the crosslinker type and enzyme concentration, indicating that degradation kinetics could be controlled and tuned. When mouse embryonic fibroblasts were encapsulated in 3D, cell number remained constant and viability was high in all materials, while cell spreading and extensive filopodia formation was observed only in the degradable gels, not in non-degradable controls. After implanting hydrogels into the backs of C57/Bl6 mice for 8 weeks, histological stainings of recovered gel remnants and surrounding tissue revealed higher tissue and cell infiltration into degradable materials compared to non-degradable controls. This alginate-based material platform with cell-empowered enzymatic degradation could prove useful in diverse tissue engineering contexts, such as regeneration and drug delivery.
Collapse
Affiliation(s)
- Aline Lueckgen
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Daniela S Garske
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - David J Mooney
- School of Engineering and Applied Sciences - Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Georg N Duda
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Amaia Cipitria
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
22
|
Sinha AK, Equbal D. Thiol−Ene Reaction: Synthetic Aspects and Mechanistic Studies of an Anti-Markovnikov-Selective Hydrothiolation of Olefins. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800639] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Arun K. Sinha
- Medicinal and Process Chemistry Division; C.S.I.R.-Central Drug Research Institute; Council of Scientific and Industrial Research); Lucknow- 226021 (U.P.) India
- Academy of Scientific and Innovative Research (AcSIR); Postal Staff College Area, Sector 19; Kamla Nehru Nagar; Ghaziabad, Uttar Pradesh- 201002
| | - Danish Equbal
- Medicinal and Process Chemistry Division; C.S.I.R.-Central Drug Research Institute; Council of Scientific and Industrial Research); Lucknow- 226021 (U.P.) India
| |
Collapse
|
23
|
Gopinathan J, Noh I. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications. Tissue Eng Regen Med 2018; 15:531-546. [PMID: 30603577 PMCID: PMC6171698 DOI: 10.1007/s13770-018-0152-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The tissue engineering and regenerative medicine approach require biomaterials which are biocompatible, easily reproducible in less time, biodegradable and should be able to generate complex three-dimensional (3D) structures to mimic the native tissue structures. Click chemistry offers the much-needed multifunctional hydrogel materials which are interesting biomaterials for the tissue engineering and bioprinting inks applications owing to their excellent ability to form hydrogels with printability instantly and to retain the live cells in their 3D network without losing the mechanical integrity even under swollen state. METHODS In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels-Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions. RESULTS The click chemistry-based hydrogels are formed spontaneously on mixing of reactive compounds and can encapsulate live cells with high viability for a long time. The recent works reported by combining the advantages of click chemistry and 3D bioprinting technology have shown to produce 3D tissue constructs with high resolution using biocompatible hydrogels as bioinks and in situ injectable forms. CONCLUSION Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.
Collapse
Affiliation(s)
- Janarthanan Gopinathan
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
24
|
Tang P, di Cio S, Wang W, E Gautrot J. Surface-Initiated Poly(oligo(2-alkyl-2-oxazoline)methacrylate) Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10019-10027. [PMID: 30032621 DOI: 10.1021/acs.langmuir.8b01682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymer brushes are particularly performant antifouling coatings, owing to their high grafting density that prevents unwanted biomacromolecules to diffuse through the coating and adhere to the underlying substrate. In addition to this structural feature, polymer brushes require a relatively high level of hydrophilicity and a globally neutral structure to display ultrahigh protein resistance. Poly(2-alkyl-2-oxaolines) are attractive building blocks for such coatings as they can display relatively high hydrophilicity, owing to their amide repeat units, but can also be side-chain and end-chain functionalized relatively readily. However, poly(2-alkyl-2-oxazolines) have not yet been introduced through a radical-mediated grafting from polymer brush structure that would confer the high level of grafting density that is the hallmark of highly protein resistant brushes. Here, we present the formation of a series of poly(oligo(2-alkyl-2-oxazoline)methacrylate) brushes generated via a grafting from approach, via atom transfer radical polymerization. We characterize the chemical structure of the resulting coatings via ellipsometry, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. We show that allyl end groups can be introduced as a side chain of these brushes to allow functionalization via thiol-ene chemistry. We demonstrate the excellent protein resistance of these coatings in single protein solutions as well as serum solutions at concentration typically used for cell culture. Finally, we demonstrate the feasibility of using these brushes for the micropatterning of cells and the generation of cell-based assays.
Collapse
|
25
|
Steele TWJ, Klok HA. Stimuli-Sensitive and -Responsive Polymer Biomaterials. Biomacromolecules 2018; 19:1375-1377. [DOI: 10.1021/acs.biomac.8b00145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Terry W. J. Steele
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|