1
|
Chen S, Huang B, Tian J, Zhang W. Advancements of Porphyrin-Derived Nanomaterials for Antibacterial Photodynamic Therapy and Biofilm Eradication. Adv Healthc Mater 2024; 13:e2401211. [PMID: 39073000 DOI: 10.1002/adhm.202401211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Indexed: 07/30/2024]
Abstract
The threat posed by antibiotic-resistant bacteria and the challenge of biofilm formation has highlighted the inadequacies of conventional antibacterial therapies, leading to increased interest in antibacterial photodynamic therapy (aPDT) in recent years. This approach offers advantages such as minimal invasiveness, low systemic toxicity, and notable effectiveness against drug-resistant bacterial strains. Porphyrins and their derivatives, known for their high molar extinction coefficients and singlet oxygen quantum yields, have emerged as crucial photosensitizers in aPDT. However, their practical application is hindered by challenges such as poor water solubility and aggregation-induced quenching. To address these limitations, extensive research has focused on the development of porphyrin-based nanomaterials for aPDT, enhancing the efficacy of photodynamic sterilization and broadening the range of antimicrobial activity. This review provides an overview of various porphyrin-based nanomaterials utilized in aPDT and biofilm eradication in recent years, including porphyrin-loaded inorganic nanoparticles, porphyrin-based polymer assemblies, supramolecular assemblies, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Additionally, insights into the prospects of aPDT is offered, highlighting its potential for practical implementation.
Collapse
Affiliation(s)
- Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
2
|
Pang X, Xu H, Geng Q, Han Y, Zhang H, Liu H, Zhang X, Miao M. Nanotheranostic Trojan Horse for visualization and photo-immunotherapy of multidrug-resistant bacterial infection. J Nanobiotechnology 2023; 21:492. [PMID: 38115145 PMCID: PMC10731858 DOI: 10.1186/s12951-023-02267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
Effective diagnosis and therapy for bacterial infections, especially those caused by multidrug-resistant (MDR) species, greatly challenge current antimicrobial stewardship. Monocytes, which can chemotactically migrate from the blood to infection site and elicit a robust infection infiltration, provide a golden opportunity for bacterial theranostics. Here, a nano-Trojan Horse was facilely engineered using mannose-functionalized manganese-eumelanin coordination nanoparticles (denoted as MP-MENP) for precise two-step localization and potent photothermal-immunotherapy of MDR bacterial infection. Taking advantage of the selective recognition between mannose and inflammation-associated monocytes, the MP-MENP could be passively piggybacked to infection site by circulating monocytes, and also actively target infiltrated monocytes that are already accumulated in infection microenvironment. Such dual-pronged targeting enabled an efficient imaging diagnosis of bacterial infection. Upon laser irradiation, the MP-MENP robustly produced local hyperemia to ablate bacteria, both extracellularly and intracellularly. Further combined with photothermal therapy-induced immunogenic cell death and MP-MENP-mediated macrophage reprogramming, the immunosuppressive infection microenvironment was significantly relieved, allowing an enhanced antibacterial immunity. Collectively, the proposed nanotheranostic Trojan Horse, which integrates dual-pronged targeting, precise imaging diagnosis, and high-performance photothermal immunotherapy, promises a new way for complete eradication of MDR bacterial infection.
Collapse
Affiliation(s)
- Xin Pang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China.
| | - Haohang Xu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China
| | - Qishun Geng
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yu Han
- Joint Institute of Management and Science University, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China
| | - Huiya Zhang
- Joint Institute of Management and Science University, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China
| | - Heng Liu
- Department of Radiology, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Xiao Zhang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Sun B, Liu J, Kim HJ, Rahmat JNB, Neoh KG, Zhang Y. Light-responsive smart nanocarriers for wirelessly controlled photodynamic therapy for prostate cancers. Acta Biomater 2023; 171:553-564. [PMID: 37739246 DOI: 10.1016/j.actbio.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Photodynamic therapy (PDT) is an effective non-invasive or minimally invasive treatment method against different tumors. Loading photosensitizers in nanocarriers can potentially increase their accumulation in tumor sites. However, the PDT efficacy may be hindered because of self-quenching of the encapsulated photosensitizer and the small diffusion radii of the generated reactive oxygen species (ROS). Herein, light responsive nano assemblies composed of (Polyethylene glycol)-block-poly(4,5-dimethoxy-2-nitrobenzylmethacrylate) (PEG-b-PNBMA) were designed and loaded with the photosensitizer, Rose Bengal lactone (RB), to act as a smart nanocarrier (RB-M) for the delivery of the photosensitizer. A wirelessly activated light-emitting diode (LED) implant was designed to programmatically induce the release of the loaded RB first, followed by activating PDT after diffusion of RB into the cytoplasm. The results showed that sequential '405-580 nm' irradiation of the RB-M treated 22RV1 cells resulted in the highest PDT outcome among different irradiation protocols. The combination of this smart nanocarrier and sequential '405-580 nm' irradiation strategy exhibited good PDT efficacy against 2D 22RV1 prostate cancer cells as well as 3D cancer cell spheroids. This platform overcomes the light penetration limitations in PDT, and can potentially be applied in cancer bearing patients who are unfit for chemotherapy. STATEMENT OF SIGNIFICANCE: Nanocarriers for the delivery of photosensitizer in photodynamic therapy may result in relatively low therapeutic efficacy because of self-quenching of the encapsulated photosensitizer and the small diffusion radii of the generated reactive oxygen species (ROS). Light responsive smart nanocarriers can potentially overcome this challenge. In this study, a light responsive polymer (Polyethylene glycol)-block-poly(4,5-dimethoxy-2-nitrobenzylmethacrylate) (PEG-b-PNBMA) was synthesized and utilized to fabricate the smart nanocarrier. A wirelessly activated light-emitting diode (LED) implant was designed for light delivery in deep tissue. This new approach permits wirelessly and programmatically control of photosensitizer release and PDT activation under deep tissue, thus significantly enhancing PDT efficacy against prostate cancer cells as well as 3D cancer cell spheroids. This design should have a significant impact on controllable PDT under deep tissue.
Collapse
Affiliation(s)
- Bowen Sun
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jiayi Liu
- Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Han Joon Kim
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Republic of Korea
| | - Juwita Norasmara Bte Rahmat
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
4
|
Chen J, Zhang Y. Hyperbranched Polymers: Recent Advances in Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:2222. [PMID: 37765191 PMCID: PMC10536223 DOI: 10.3390/pharmaceutics15092222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperbranched polymers are a class of three-dimensional dendritic polymers with highly branched architectures. Their unique structural features endow them with promising physical and chemical properties, such as abundant surface functional groups, intramolecular cavities, and low viscosity. Therefore, hyperbranched-polymer-constructed cargo delivery carriers have drawn increasing interest and are being utilized in many biomedical applications. When applied for photodynamic therapy, photosensitizers are encapsulated in or covalently incorporated into hyperbranched polymers to improve their solubility, stability, and targeting efficiency and promote the therapeutic efficacy. This review will focus on the state-of-the-art studies concerning recent progress in hyperbranched-polymer-fabricated phototherapeutic nanomaterials with emphases on the building-block structures, synthetic strategies, and their combination with the codelivered diagnostics and synergistic therapeutics. We expect to bring our demonstration to the field to increase the understanding of the structure-property relationships and promote the further development of advanced photodynamic-therapy nanosystems.
Collapse
Affiliation(s)
| | - Yichuan Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
5
|
Gnanasekar S, Kasi G, He X, Zhang K, Xu L, Kang ET. Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens. Bioact Mater 2023; 21:157-174. [PMID: 36093325 PMCID: PMC9421094 DOI: 10.1016/j.bioactmat.2022.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Nowadays, infectious diseases persist as a global crisis by causing significant destruction to public health and the economic stability of countries worldwide. Especially bacterial infections remain a most severe concern due to the prevalence and emergence of multi-drug resistance (MDR) and limitations with existing therapeutic options. Antibacterial photodynamic therapy (APDT) is a potential therapeutic modality that involves the systematic administration of photosensitizers (PSs), light, and molecular oxygen (O2) for coping with bacterial infections. Although the existing porphyrin and non-porphyrin PSs were effective in APDT, the poor solubility, limited efficacy against Gram-negative bacteria, and non-specific distribution hinder their clinical applications. Accordingly, to promote the efficiency of conventional PSs, various polymer-driven modification and functionalization strategies have been adopted to engineer multifunctional hybrid phototherapeutics. This review assesses recent advancements and state-of-the-art research in polymer-PSs hybrid materials developed for APDT applications. Further, the key research findings of the following aspects are considered in-depth with constructive discussions: i) PSs-integrated/functionalized polymeric composites through various molecular interactions; ii) PSs-deposited coatings on different substrates and devices to eliminate healthcare-associated infections; and iii) PSs-embedded films, scaffolds, and hydrogels for regenerative medicine applications. Synthetic strategies of engineered polymer-based hybrid materials integrated with photosensitizers for APDT. Utilization of photosensitizer-incorporated polymeric materials in health care applications. Challenges and opportunities in the future development of polymeric biomaterials with improved photo-bactericidal properties.
Collapse
|
6
|
Hohlfeld BF, Steen D, Wieland GD, Achazi K, Kulak N, Haag R, Wiehe A. Bromo- and glycosyl-substituted BODIPYs for application in photodynamic therapy and imaging. Org Biomol Chem 2023; 21:3105-3120. [PMID: 36799212 DOI: 10.1039/d2ob02174a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The introduction of heavy atoms into the BODIPY-core structure has proven to be a straightforward strategy for optimizing the design of such dyes towards enhanced generation of singlet oxygen rendering them suitable as photosensitizers for photodynamic therapy (PDT). In this work, BODIPYs are presented by combining the concept of bromination with nucleophilic aromatic substitution (SNAr) of a pentafluorophenyl or a 4-fluoro-3-nitrophenyl moiety to introduce functional groups, thus improving the phototoxic effect of the BODIPYs as well as their solubility in the biological environment. The nucleophilic substitution enabled functionalization with various amines and alcohols as well as unprotected thiocarbohydrates. The phototoxic activity of these more than 50 BODIPYs has been assessed in cellular assays against four cancer cell lines in order to more broadly evaluate their PDT potential, thus accounting for the known variability between cell lines with respect to PDT activity. In these investigations, dibrominated polar-substituted BODIPYs, particularly dibrominated glyco-substituted compounds, showed promising potential as photomedicine candidates. Furthermore, the cellular uptake of the glycosylated BODIPYs has been confirmed via fluorescence microscopy.
Collapse
Affiliation(s)
- Benjamin F Hohlfeld
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| | - Dorika Steen
- Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| | | | - Katharina Achazi
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Nora Kulak
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Rainer Haag
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Arno Wiehe
- Institut für Chemie u. Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany.
| |
Collapse
|
7
|
Souza TH, Sarmento-Neto JF, Souza SO, Raposo BL, Silva BP, Borges CP, Santos BS, Cabral Filho PE, Rebouças JS, Fontes A. Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021; 49:100454. [DOI: 10.1016/j.jphotochemrev.2021.100454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
9
|
Wang Z, Xu FJ, Yu B. Smart Polymeric Delivery System for Antitumor and Antimicrobial Photodynamic Therapy. Front Bioeng Biotechnol 2021; 9:783354. [PMID: 34805129 PMCID: PMC8599151 DOI: 10.3389/fbioe.2021.783354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) has attracted tremendous attention in the antitumor and antimicrobial areas. To enhance the water solubility of photosensitizers and facilitate their accumulation in the tumor/infection site, polymeric materials are frequently explored as delivery systems, which are expected to show target and controllable activation of photosensitizers. This review introduces the smart polymeric delivery systems for the PDT of tumor and bacterial infections. In particular, strategies that are tumor/bacteria targeted or activatable by the tumor/bacteria microenvironment such as enzyme/pH/reactive oxygen species (ROS) are summarized. The similarities and differences of polymeric delivery systems in antitumor and antimicrobial PDT are compared. Finally, the potential challenges and perspectives of those polymeric delivery systems are discussed.
Collapse
Affiliation(s)
- Zhijia Wang
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Fu-Jian Xu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Bingran Yu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
10
|
Kettenmann SD, White M, Colard-Thomas J, Kraft M, Feßler AT, Danz K, Wieland G, Wagner S, Schwarz S, Wiehe A, Kulak N. Investigating Alkylated Prodigiosenes and Their Cu(II)-Dependent Biological Activity: Interactions with DNA, Antimicrobial and Photoinduced Anticancer Activity. ChemMedChem 2021; 17:e202100702. [PMID: 34779147 PMCID: PMC9306646 DOI: 10.1002/cmdc.202100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Indexed: 11/23/2022]
Abstract
Prodigiosenes are a family of red pigments with versatile biological activity. Their tripyrrolic core structure has been modified many times in order to manipulate the spectrum of activity. We have been looking systematically at prodigiosenes substituted at the C ring with alkyl chains of different lengths, in order to assess the relevance of this substituent in a context that has not been investigated before for these derivatives: Cu(II) complexation, DNA binding, self‐activated DNA cleavage, photoinduced cytotoxicity and antimicrobial activity. Our results indicate that the hydrophobic substituent has a clear influence on the different aspects of their biological activity. The cytotoxicity study of the Cu(II) complexes of these prodigiosenes shows that they exhibit a strong cytotoxic effect towards the tested tumor cell lines. The Cu(II) complex of a prodigiosene lacking any alkyl chain excelled in its photoinduced anticancer activity, thus demonstrating the potential of prodigiosenes and their metal complexes for an application in photodynamic therapy (PDT). Two derivatives along with their Cu(II) complexes showed also antimicrobial activity against Staphylococcus aureus strains.
Collapse
Affiliation(s)
| | - Matthew White
- Imperial College London, Department of Chemistry, UNITED KINGDOM
| | - Julien Colard-Thomas
- Ecole Nationale Superieur de Chimie de Paris: Ecole nationale superieure de chimie de Paris, Chimie, FRANCE
| | - Matilda Kraft
- Freie Universität Berlin: Freie Universitat Berlin, Institut für Chemie und Biochemie, GERMANY
| | - Andrea T Feßler
- Freie Universität Berlin: Freie Universitat Berlin, Institute for Microbiology, GERMANY
| | - Karin Danz
- Fraunhofer-Institut fur Biomedizinische Technik IBMT, Zellmodelle und Toxikologie, GERMANY
| | | | - Sylvia Wagner
- Fraunhofer-Institut fur Biomedizinische Technik IBMT, Zellmodelle und Toxikologie, GERMANY
| | - Stefan Schwarz
- Freie Universität Berlin: Freie Universitat Berlin, Institut für Mikrobiologie, GERMANY
| | | | - Nora Kulak
- Otto von Guericke Universitat Magdeburg, Institut für Chemie, Universitätsplatz 2, 39106, Magdeburg, GERMANY
| |
Collapse
|
11
|
He J, Xia K, Zhao B, Song W, Zheng Y, Xiao G, Wu H, Zheng N. Codelivery of High-Molecular-Weight Poly-porphyrins and HIF-1α Inhibitors for In Vivo Synergistic Anticancer Therapy. Biomacromolecules 2021; 22:4783-4793. [PMID: 34623134 DOI: 10.1021/acs.biomac.1c01073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) is showing great potential in the treatment of cancer diseases, and photosensitizers play crucial roles in absorbing the energy of light and generating reactive oxygen species (ROS) during PDT. Most of the photosensitizers bearing macrocyclic structures have strong hydrophobicity and suffer from the π-π interaction and undesired aggregation caused quenching (ACQ), which severely limit the PDT efficacy. Moreover, the continuous oxygen consumption during PDT also leads to the upregulated expression of hypoxia-inducible factor-1α (HIF-1α), which can aggravate the growth of tumors. To overcome the abovementioned problems, polymerized photosensitizers repelled by flexible thioketal linkers were designed and synthesized using a multicomponent polymerization (MCP) method to afford the poly-porphyrins with high molecular weight (Mw > 20 000 g/mol) under room temperature. The ACQ effect could be significantly inhibited by introducing flexible chains and increasing Mw, leading to the improvement in the singlet oxygen quantum yield and phototoxicity simultaneously. An HIF-1α inhibitor, Lificiguat (YC-1) was synthesized as a chemodrug and codelivered with poly-porphyrins to decrease the expression of HIF-1α and inhibit tumor growth under hypoxia. With the synergistic PDT and chemotherapy, poly-porphyrin/YC-1 micelles showed excellent therapeutic antitumor efficacy both in vitro and in vivo.
Collapse
Affiliation(s)
- Junnan He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kangkai Xia
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian 116024, P. R. China
| | - Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wangze Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yubin Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guishan Xiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian 116024, P. R. China
| | - Nan Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
12
|
Zhou Y, Deng W, Mo M, Luo D, Liu H, Jiang Y, Chen W, Xu C. Stimuli-Responsive Nanoplatform-Assisted Photodynamic Therapy Against Bacterial Infections. Front Med (Lausanne) 2021; 8:729300. [PMID: 34604266 PMCID: PMC8482315 DOI: 10.3389/fmed.2021.729300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial infections are common diseases causing tremendous deaths in clinical settings. It has been a big challenge to human beings because of the antibiotics abuse and the newly emerging microbes. Photodynamic therapy (PDT) is a reactive oxygen species-based therapeutic technique through light-activated photosensitizer (PS). Recent studies have highlighted the potential of PDT as an alternative method of antibacterial treatment for its broad applicability and high efficiency. However, there are some shortcomings due to the low selectivity and specificity of PS. Growing evidence has shown that drug delivery nanoplatforms have unique advantages in enhancing therapeutic efficacy of drugs. Particularly, stimuli-responsive nanoplatforms, as a promising delivery system, provide great opportunities for the effective delivery of PS. In the present mini-review, we briefly introduced the unique microenvironment in bacterial infection tissues and the application of PDT on bacterial infections. Then we review the stimuli-responsive nanoplatforms (including pH-, enzymes-, redox-, magnetic-, and electric-) used in PDT against bacterial infections. Lastly, some perspectives have also been proposed to further promote the future developments of antibacterial PDT.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenmin Deng
- Department of Clinical Pharmacy, The People's Hospital of Dianbai District, Maoming, China
| | - Mulan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dexu Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Houhe Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangdong-Hongkong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou, China.,Sydney Vital Translational Cancer Research Centre, Sydney, NSW, Australia
| | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & National Medical Products Administration Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Xu S, Zhong Y, Nie C, Pan Y, Adeli M, Haag R. Co-Delivery of Doxorubicin and Chloroquine by Polyglycerol Functionalized MoS2 Nanosheets for Efficient Multidrug-Resistant Cancer Therapy. Macromol Biosci 2021; 21:e2100233. [PMID: 34411417 DOI: 10.1002/mabi.202100233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Indexed: 01/11/2023]
Abstract
2D MoS2 has shown a great potential in biomedical applications, due to its superior loading capacity, photothermal property, and biodegradation. In this work, polyglycerol functionalized MoS2 nanosheets with photothermal and pH dual-stimuli responsive properties are used for the co-delivery of doxorubicin and chloroquine and treatment of multidrug-resistant HeLa (HeLa-R) cells. The polyglycerol functionalized MoS2 nanosheets with 80 nm average size show a high biocompatibility and loading efficiency (≈90%) for both drugs. The release of drugs from the nanosheets at pH 5.5 is significantly promoted by laser irradiation leading to efficient destruction of incubated HeLa-R cells. In vitro evaluation shows that the designed nanoplatform has a high ability to kill HeLa-R cells. Confocal experiments demonstrate that the synthesized drug delivery system enhances the cellular uptake of DOX via folic acid targeting ligand. Taking advantage of the combined properties including biocompatibility and targeting ability as well as high loading capacity and photothermal release, this multifunctional nanosystem is a promising candidate for anticancer therapy.
Collapse
Affiliation(s)
- Shaohui Xu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Yinan Zhong
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Yuanwei Pan
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| | - Mohsen Adeli
- Faculty of Science, Department of Chemistry, Lorestan University, Khorramabad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin, 14195, Germany
| |
Collapse
|
14
|
Hohlfeld BF, Gitter B, Kingsbury CJ, Flanagan KJ, Steen D, Wieland GD, Kulak N, Senge MO, Wiehe A. Dipyrrinato-Iridium(III) Complexes for Application in Photodynamic Therapy and Antimicrobial Photodynamic Inactivation. Chemistry 2021; 27:6440-6459. [PMID: 33236800 PMCID: PMC8248005 DOI: 10.1002/chem.202004776] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Indexed: 12/24/2022]
Abstract
The generation of bio-targetable photosensitizers is of utmost importance to the emerging field of photodynamic therapy and antimicrobial (photo-)therapy. A synthetic strategy is presented in which chelating dipyrrin moieties are used to enhance the known photoactivity of iridium(III) metal complexes. Formed complexes can thus be functionalized in a facile manner with a range of targeting groups at their chemically active reaction sites. Dipyrrins with N- and O-substituents afforded (dipy)iridium(III) complexes via complexation with the respective Cp*-iridium(III) and ppy-iridium(III) precursors (dipy=dipyrrinato, Cp*=pentamethyl-η5 -cyclopentadienyl, ppy=2-phenylpyridyl). Similarly, electron-deficient [IrIII (dipy)(ppy)2 ] complexes could be used for post-functionalization, forming alkenyl, alkynyl and glyco-appended iridium(III) complexes. The phototoxic activity of these complexes has been assessed in cellular and bacterial assays with and without light; the [IrIII (Cl)(Cp*)(dipy)] complexes and the glyco-substituted iridium(III) complexes showing particular promise as photomedicine candidates. Representative crystal structures of the complexes are also presented.
Collapse
Affiliation(s)
- Benjamin F. Hohlfeld
- Institut für Chemie u. BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- biolitec research GmbHOtto-Schott-Str. 1507745JenaGermany
| | | | - Christopher J. Kingsbury
- Medicinal Chemistry, Trinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College Dublin, The University of DublinSt James's HospitalDublin8Ireland
| | - Keith J. Flanagan
- Medicinal Chemistry, Trinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College Dublin, The University of DublinSt James's HospitalDublin8Ireland
| | - Dorika Steen
- biolitec research GmbHOtto-Schott-Str. 1507745JenaGermany
| | | | - Nora Kulak
- Institut für Chemie u. BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- Institut für ChemieOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine InstituteTrinity Centre for Health SciencesTrinity College Dublin, The University of DublinSt James's HospitalDublin8Ireland
- Institute for Advanced Study (TUM-IAS)Technical University of MunichLichtenbergstrasse 2a85748GarchingGermany
| | - Arno Wiehe
- Institut für Chemie u. BiochemieFreie Universität BerlinTakustr. 314195BerlinGermany
- biolitec research GmbHOtto-Schott-Str. 1507745JenaGermany
| |
Collapse
|
15
|
Bej R, Achazi K, Haag R, Ghosh S. Polymersome Formation by Amphiphilic Polyglycerol-b-polydisulfide-b-polyglycerol and Glutathione-Triggered Intracellular Drug Delivery. Biomacromolecules 2020; 21:3353-3363. [DOI: 10.1021/acs.biomac.0c00775] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Katharina Achazi
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
- Technical Research Center, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
16
|
Araújo ARL, Tomé AC, Santos CIM, Faustino MAF, Neves MGPMS, Simões MMQ, Moura NMM, Abu-Orabi ST, Cavaleiro JAS. Azides and Porphyrinoids: Synthetic Approaches and Applications. Part 1-Azides, Porphyrins and Corroles. Molecules 2020; 25:E1662. [PMID: 32260294 PMCID: PMC7181322 DOI: 10.3390/molecules25071662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Azides and porphyrinoids (such as porphyrin and corrole macrocycles) can give rise to new derivatives with significant biological properties and as new materials' components. Significant synthetic approaches have been studied. A wide range of products (e.g., microporous organic networks, rotaxane and dendritic motifs, dendrimers as liquid crystals, as blood substitutes for transfusions and many others) can now be available and used for several medicinal and industrial purposes.
Collapse
Affiliation(s)
- Ana R. L. Araújo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Augusto C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Carla I. M. Santos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
- CQE, Centro de Química Estrutural and IN-Institute of Nanoscience and Nanotechnology of Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Maria G. P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Mário M. Q. Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| | | | - José A. S. Cavaleiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.L.A.); (A.C.T.); (C.I.M.S.); (M.A.F.F.); (M.G.P.M.S.N.); (M.M.Q.S.)
| |
Collapse
|
17
|
Lv X, Zhang J, Yang D, Shao J, Wang W, Zhang Q, Dong X. Recent advances in pH-responsive nanomaterials for anti-infective therapy. J Mater Chem B 2020; 8:10700-10711. [DOI: 10.1039/d0tb02177f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design and synthesis of pH-responsive antibacterial nanomaterials and their applications in anti-infective therapy.
Collapse
Affiliation(s)
- Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Jiayao Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Wenjun Wang
- School of Physical Science and Information Technology
- Liaocheng University
- Liaocheng 252059
- China
| | - Qi Zhang
- School of Pharmaceutical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
- School of Chemistry and Materials Science
| |
Collapse
|
18
|
Abstract
Synthesis, aqueous aggregation, hydrophobic guest encapsulation, non-covalent encapsulation stability and glutathione responsive degradation of amphiphilic hyperbranched polydisulfides have been reported.
Collapse
Affiliation(s)
- Raju Bej
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Priya Rajdev
- Technical Research Center
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Ranajit Barman
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
- Technical Research Center
| |
Collapse
|
19
|
Cao H, Zhong S, Wang Q, Chen C, Tian J, Zhang W. Enhanced photodynamic therapy based on an amphiphilic branched copolymer with pendant vinyl groups for simultaneous GSH depletion and Ce6 release. J Mater Chem B 2020; 8:478-483. [DOI: 10.1039/c9tb02120e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An amphiphilic branched copolymer with pendent vinyl groups was synthesized to enhance the efficacy of photodynamic therapy through “thio–ene“ click reaction for simultaneous GSH depletion and Ce6 release.
Collapse
Affiliation(s)
- Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Sheng Zhong
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qiusheng Wang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering
- Biomedical Nanotechnology Center
- School of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
20
|
Liu Z, Xue Y, Wu M, Yang G, Lan M, Zhang W. Sensitization of Hypoxic Tumor to Photodynamic Therapy via Oxygen Self-Supply of Fluorinated Photosensitizers. Biomacromolecules 2019; 20:4563-4573. [DOI: 10.1021/acs.biomac.9b01368] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mengsi Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
21
|
Xiao B, Wang Q, Zhang S, Li XY, Long SQ, Xiao Y, Xiao S, Ni XL. Cucurbit[7]uril-anchored polymer vesicles enhance photosensitization in the nucleus. J Mater Chem B 2019; 7:5966-5971. [PMID: 31524915 DOI: 10.1039/c9tb01526d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective photosensitizers (PSs) are highly desirable in many applications, such as photodynamic therapy and catalytic chemistry. Here, we demonstrated that vesicles of cucurbit[7]uril (Q[7] or CB[7])-anchored polymers enhanced photosensitization in the nucleus. The polyacrylic acid chain spacer triggered Q[7] polymers on the surfaces of the vesicles at a regular distance, thus not only leading to efficient inhibition of the aggregation induced self-quenching of the porphyrin based cationic PS in aqueous solution but also maintaining the PS at high concentration on the nanoscale via stable host-guest interactions. Further experiments indicated that Q[7] polymer based vesicles as a PS loading vehicle had a high penetration depth, entering the nuclei of cancer cells. Therefore, highly enhanced photosensitization and efficient anticancer effects were achieved.
Collapse
Affiliation(s)
- Bo Xiao
- Department of Chemistry, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jia Q, Song Q, Li P, Huang W. Rejuvenated Photodynamic Therapy for Bacterial Infections. Adv Healthc Mater 2019; 8:e1900608. [PMID: 31240867 DOI: 10.1002/adhm.201900608] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Indexed: 12/31/2022]
Abstract
The emergence of multidrug resistant bacterial strains has hastened the exploration of advanced microbicides and antibacterial techniques. Photodynamic antibacterial therapy (PDAT), an old-fashioned technique, has been rejuvenated to combat "superbugs" and biofilm-associated infections owing to its excellent characteristics of noninvasiveness and broad antibacterial spectrum. More importantly, bacteria are less likely to produce drug resistance to PDAT because it does not require specific targeting interaction between photosensitizers (PSs) and bacteria. This review mainly focuses on recent developments and future prospects of PDAT. The mechanisms of PDAT against bacteria and biofilms are briefly introduced. In addition to classical macrocyclic PSs, several innovative PSs, including non-self-quenching PSs, conjugated polymer-based PSs, and nano-PSs, are summarized in detail. Numerous multifunctional PDAT systems such as in situ light-activated PDAT, stimuli-responsive PDAT, oxygen self-enriching enhanced PDAT, and PDAT-based multimodal therapy are highlighted to overcome the inherent defects of PDAT in vivo (e.g., limited penetration depth of light and hypoxic environment of infectious sites).
Collapse
Affiliation(s)
- Qingyan Jia
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Qing Song
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Peng Li
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Wei Huang
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
23
|
Carbon dot-DNA-protoporphyrin hybrid hydrogel for sustained photoinduced antimicrobial activity. J Colloid Interface Sci 2019; 553:228-238. [PMID: 31212225 DOI: 10.1016/j.jcis.2019.06.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 01/23/2023]
Abstract
An assembly of hybrid hydrogel derived from Carbon Dot (CD), Protoporphyrin IX (PpIX) and DNA is reported here. PpIX and CD were covalently conjugated to 5'-phosphate termini of Cytosine (C) rich single strand DNA (ssDNA) separately. The CD-DNA-PpIX hybrid hydrogel was assembled through the formation of intercalated motif (i-motif) DNA network structure from CD-DNA and PpIX-DNA conjugates where CD act as crosslinkers in the hydrogel as well as energy donor to excite the photosensitizer (PS), PpIX. While hydrogel derived from only PpIX-DNA conjugate showed an inadequate sol-gel transition, the same could be precisely achieved from the CD-DNA-PpIX hybrid hydrogel by controlled pH adjustment. Distinct photophysical properties of CD and PpIX including fluorescence emission potentially enable tracking of the PS loading and hydrogel dissolution that was visually detectable under UV illumination. Reactive Oxygen Species (ROS) generation and subsequent killing of gram-positive bacteria (Staphylococcus aureus (S. aureus)) were observed following excitation of PpIX (acceptor) in the hybrid hydrogel either through energy transfer from CD or by direct irradiation of PpIX with visible light. Complete dissolution of hydrogel and sustained release of PpIX and subsequent ROS generation was achieved over 10-11 days that could kill S. aureus systematically. This study provides a promising strategy to address self-quenching and solubility of PS for its sustained release in Antimicrobial Photodynamic Therapy (A-PDT) applications through smart hydrogel formulation.
Collapse
|
24
|
Braegelman AS, Webber MJ. Integrating Stimuli-Responsive Properties in Host-Guest Supramolecular Drug Delivery Systems. Theranostics 2019; 9:3017-3040. [PMID: 31244940 PMCID: PMC6567965 DOI: 10.7150/thno.31913] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
Host-guest motifs are likely the most recognizable manifestation of supramolecular chemistry. These complexes are characterized by the organization of small molecules on the basis of preferential association of a guest within the portal of a host. In the context of their therapeutic use, the primary application of these complexes has been as excipients which enhance the solubility or improve the stability of drug formulations, primarily in a vial. However, there may be opportunities to go significantly beyond such a role and leverage key features of the affinity, specificity, and dynamics of the interaction itself toward "smarter" therapeutic designs. One approach in this regard would seek stimuli-responsive host-guest recognition, wherein a complex forms in a manner that is sensitive to, or can be governed by, externally applied triggers, disease-specific proteins and analytes, or the presence of a competing guest. This review will highlight the general and phenomenological design considerations governing host-guest recognition and the specific types of chemistry which have been used and are available for different applications. Finally, a discussion of the molecular engineering and design approaches which enable sensitivity to a variety of different stimuli are highlighted. Ultimately, these molecular-scale approaches offer an assortment of new chemistry and material design tools toward improving precision in drug delivery.
Collapse
Affiliation(s)
| | - Matthew J. Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
25
|
Hao J, Lu ZS, Li CM, Xu LQ. A maltoheptaose-decorated BODIPY photosensitizer for photodynamic inactivation of Gram-positive bacteria. NEW J CHEM 2019. [DOI: 10.1039/c9nj02987g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A maltoheptaose-decorated BODIPY with high singlet oxygen generation efficacy was synthesized for photodynamic inactivation of Gram-positive bacteria in planktonic forms and biofilms.
Collapse
Affiliation(s)
- Jie Hao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing
| | - Zhi Song Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing
| | - Chang Ming Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing
| | - Li Qun Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials and Energy
- Southwest University
- Chongqing
| |
Collapse
|
26
|
Hu J, Wei P, Seeberger PH, Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem Asian J 2018; 13:3448-3459. [PMID: 30251341 DOI: 10.1002/asia.201801088] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery by nanomaterials has been extensively investigated as an effective strategy to surmount obstacles in the conventional treatment of cancer and infectious diseases, such as systemic toxicity, low drug efficacy, and drug resistance. Mannose-binding C-type lectins, which primarily include mannose receptor (MR, CD206) and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), are highly expressed on various cancer cells, endothelial cells, macrophages, and dendritic cells (DCs), which make them attractive targets for therapeutic effect. Mannosylated nanomaterials hold great potential in cancer and infection treatment on account of their direct therapeutic effect on targeted cells, modulation of the tumor microenvironment, and stimulation of immune response through antigen presentation. This review presents the recent advances in mannose-based targeted delivery nanoplatforms incorporated with different therapies in the biomedical field.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peng Wei
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| |
Collapse
|
27
|
Li F, Chen C, Yang X, He X, Zhao Z, Li J, Yu Y, Yang X, Wang J. Acetal-Linked Hyperbranched Polyphosphoester Nanocarriers Loaded with Chlorin e6 for pH-Activatable Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21198-21205. [PMID: 29897728 DOI: 10.1021/acsami.8b06758] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocarrier-mediated photodynamic therapy (PDT), which involves the systemic delivery of photosensitizers (PSs) into tumor tissue and tumor cells, has emerged as an attractive treatment for cancer. However, insufficient PS release limits intracellular cytotoxic reactive oxygen species (ROS) generation, which has become a major obstacle to improving the PDT therapeutic efficacy. Herein, a novel hyperbranched polyphosphoester (hbPPE) containing numerous acetal bonds (S-hbPPE/Ce6) was explored as a chlorin e6 (Ce6) nanocarrier for PDT. S-hbPPE/Ce6 with a branched topological structure efficiently encapsulated Ce6 and then significantly enhanced its internalization by tumor cells. Subsequently, the endo-/lysosomal acid microenvironment rapidly cleaved the acetal linkage of S-hbPPE and destroyed the nanostructure of S-hbPPE/Ce6, resulting in increased Ce6 release and obviously elevated the intracellular ROS generation under illumination. Therefore, treatment with S-hbPPE/Ce6 noticeably enhanced the PDT therapeutic efficacy, indicating that such a pH-sensitive hbPPE nanocarrier has great potential to improve the PDT therapeutic efficacy for cancer therapy.
Collapse
Affiliation(s)
- Feng Li
- Department of Respiration, Shanghai Public Health Clinical Center , Fudan University , Shanghai 201508 , China
| | - Chao Chen
- Department of Medical Materials and Rehabilitation Engineering, School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Xixi Yang
- Division of Gastroenterology, Affiliated Provincial Hospital , Anhui Medical University , No. 17 Lu Jiang Road , Hefei , Anhui 230001 , China
| | - Xinyu He
- Institutes for Life Sciences, School of Medicine, and National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou , Guangdong 510006 , P. R. China
| | - Zhangyan Zhao
- Department of Respiration, Shanghai Public Health Clinical Center , Fudan University , Shanghai 201508 , China
| | - Jie Li
- Department of Medical Materials and Rehabilitation Engineering, School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Yue Yu
- Division of Gastroenterology, Affiliated Provincial Hospital , Anhui Medical University , No. 17 Lu Jiang Road , Hefei , Anhui 230001 , China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine, and National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou , Guangdong 510006 , P. R. China
| | - Jun Wang
- Institutes for Life Sciences, School of Medicine, and National Engineering Research Center for Tissue Restoration and Reconstruction , South China University of Technology , Guangzhou , Guangdong 510006 , P. R. China
| |
Collapse
|
28
|
Li K, Berton P, Kelley SP, Rogers RD. Singlet Oxygen Production and Tunable Optical Properties of Deacetylated Chitin-Porphyrin Crosslinked Films. Biomacromolecules 2018; 19:3291-3300. [PMID: 29901993 DOI: 10.1021/acs.biomac.8b00605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kai Li
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- College of Arts and Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Paula Berton
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Steven P. Kelley
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Robin D. Rogers
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- College of Arts and Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- 525 Solutions, Inc., P.O. Box 2206, Tuscaloosa, Alabama 35403, United States
| |
Collapse
|