1
|
Golubchikov DO, Petrov AK, Popkov VA, Evdokimov PV, Putlayev VI. Advances in the Fabrication of Polycaprolactone-Based Composite Scaffolds for Bone Tissue Engineering: From Chemical Composition to Scaffold Architecture. ACS Biomater Sci Eng 2025. [PMID: 40382718 DOI: 10.1021/acsbiomaterials.5c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Thermoplastic polymer-based materials, which feature essential biological properties and opportunities to implement the cutting-edge additive manufacturing technologies aimed at obtaining high-precision 3D models, have attracted intense interest for porous and bioresorbable bone tissue implants development. Among the wide range of materials, polycaprolactone was found to provide a balance between the biodegradation rate and biocompatibility with various tissues. Recent advances in the fabrication of polymer-polymer and polymer-inorganic composites have opened new ways to improve biological and mechanical outcomes and expanded the range of applications for bone and cartilage restoration, including the development of conductive composites for electrostimulation. While the chemical composition of the manufactured scaffolds played a vital role in their general biological performance and biocompatibility with bone tissue, the micropattern and roughness of the surface were shown to be additional stimuli for stem cell differentiation. More challenges came from the fabrication technique suitable for the proposed scaffold design. Here we summarize the key challenges and advances in fabrication and approaches to the optimization of certain chemical, morphological, or geometrical parameters of polycaprolactone-based scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Daniil O Golubchikov
- Department of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander K Petrov
- Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vasily A Popkov
- Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119991, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pavel V Evdokimov
- Department of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valery I Putlayev
- Department of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Karataş M, Erzen B, Aydoğmuş E, Orhan R. PVA/chitosan biofilms enriched with biosynthesized silver nanoparticles and tea tree oil: Towards multifunctional and environmentally friendly materials. Int J Biol Macromol 2025; 312:144164. [PMID: 40373914 DOI: 10.1016/j.ijbiomac.2025.144164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/16/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
This study aims to investigate the synergistic effects of biosynthesized silver nanoparticles (AgNPs) and tea tree oil (TTO) (0, 3, 5, and 7 wt%) on enhancing the functional properties of polyvinyl alcohol/chitosan (PVA/CS) nanobiofilms. The structural, morphological, mechanical, thermal, and physicochemical properties of the films were analyzed using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), mechanical tests, thermal conductivity, dielectric constant, swelling, and water solubility studies. FTIR analysis confirmed the successful incorporation of AgNPs and TTO, while SEM images revealed structural differences between silver nanoparticles synthesized using basil extract (B-AgNPs) and silver nanoparticles synthesized using bay leaf extract (BL-AgNPs), with BL-AgNPs-based films exhibiting a denser and more uniform morphology. TTO incorporation significantly influenced the dielectric properties, thermal conductivity, and water absorption behavior of the films, reducing their swelling ratio and enhancing their hydrophobicity. The biodegradation results demonstrated that the films containing 3 wt% TTO exhibited the highest degradation rates (up to 62.90 % after 21 days), indicating enhanced environmental sustainability. Research indicates that PVA/CS biofilms doped with TTO and enhanced with AgNPs, produced using eco-friendly techniques, show great promise as biodegradable substitutes for food packaging and wound dressing applications.
Collapse
Affiliation(s)
- Mukaddes Karataş
- Fırat University, Faculty of Engineering, Department of Chemical Engineering, 23119 Elazığ, Türkiye.
| | - Buket Erzen
- Fırat University, Faculty of Engineering, Department of Chemical Engineering, 23119 Elazığ, Türkiye.
| | - Ercan Aydoğmuş
- Fırat University, Faculty of Engineering, Department of Chemical Engineering, 23119 Elazığ, Türkiye.
| | - Ramazan Orhan
- Fırat University, Faculty of Engineering, Department of Chemical Engineering, 23119 Elazığ, Türkiye.
| |
Collapse
|
3
|
Pal S, Gavhane UA, S K A. Biocompatible PVAc- g-PLLA Acrylate Polymers for DLP 3D Printing with Tunable Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62594-62605. [PMID: 39472155 DOI: 10.1021/acsami.4c11285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The technological advancement of Additive Manufacturing has enabled the fabrication of various customized artifacts and devices, which has prompted a huge demand for multimaterials that can cater to stringent mechanical, chemical, and other functional property requirements. Photocurable formulations that are widely used for Digital Light Processing (DLP)/Stereolithography (SLA) 3D printing applications are now expected to meet these new challenges of hard and soft or stretchable structural requirements in addition to good resolution in multiple scales. Here we present a biocompatible photocurable resin formulation with tunable mechanical properties that can produce hard or stretchable elastomeric 3D printed materials in a graded manner. Acrylate poly(lactic acid) (PLA) grafted polyvinyl acetate (PVAc) polymer was mixed with hydroxyl ethyl methacrylate (HEMA) and hydroxyl ethyl acrylate (HEA) as reactive diluents (50-70 wt %) in various compositions to form a series of photocurable resin formulations. Depending on the nature of the reactive diluent (HEMA or HEA) and their weight percentage, the mechanical properties of the 3D printed parts could be fine-tuned from hard (Tensile strength 20.6 ± 2 MPa, elongation 2 ± 1%) to soft (Tensile strength 1.1 ± 0.2 MPa, elongation 62 ± 8%) materials. The printed materials displayed remarkable dye absorption (95%), showing stimuli-responsive behavior for dye release (with respect to both pH and enzyme), while also demonstrating high cell viability (>90%) for mouse embryonic (WT-MEF) cells and degradability in PBS solution. These biobased 3D printing resins have the potential for a variety of applications, including tissue engineering, soft robotics, dye absorption, and elastomeric actuators.
Collapse
Affiliation(s)
- Shibam Pal
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Utreshwar Arjun Gavhane
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Asha S K
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Marshall KM, McLaren JS, Wojciechowski JP, Callens SJP, Echalier C, Kanczler JM, Rose FRAJ, Stevens MM, Dawson JI, Oreffo ROC. Bioactive coatings on 3D printed scaffolds for bone regeneration: Use of Laponite® to deliver BMP-2 in an ovine femoral condyle defect model. BIOMATERIALS ADVANCES 2024; 164:213959. [PMID: 39083876 DOI: 10.1016/j.bioadv.2024.213959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
Biomaterial-based approaches for bone regeneration seek to explore alternative strategies to repair non-healing fractures and critical-sized bone defects. Fracture non-union occurs due to a number of factors resulting in the formation of bone defects. Rigorous evaluation of the biomaterials in relevant models and assessment of their potential to translate towards clinical use is vital. Large animal experimentation can be used to model fracture non-union while scaling-up materials for clinical use. Growth factors modulate cell phenotype, behaviour and initiate signalling pathways leading to changes in matrix deposition and tissue formation. Bone morphogenetic protein-2 (BMP-2) is a potent osteogenic growth factor, with a rapid clearance time in vivo necessitating clinical use at a high dose, with potential deleterious side-effects. The current studies have examined the potential for Laponite® nanoclay coated poly(caprolactone) trimethacrylate (PCL-TMA900) scaffolds to bind BMP-2 for enhanced osteoinduction in a large animal critical-sized bone defect. An ovine femoral condyle defect model confirmed PCL-TMA900 scaffolds coated with Laponite®/BMP-2 produced significant bone formation compared to the uncoated PCL-TMA 900 scaffold in vivo, assessed by micro-computed tomography (μCT) and histology. This indicated the ability of Laponite® to deliver the bioactive BMP-2 on the PCL-TMA900 scaffold. Bone formed around the Laponite®/BMP-2 coated PCL-TMA900 scaffold, with no erroneous bone formation observed away from the scaffold material confirming localisation of BMP-2 delivery. The current studies demonstrate the ability of a nanoclay to localise and deliver bioactive BMP-2 within a tailored octet-truss scaffold for efficacious bone defect repair in a large animal model with significant implications for translation to the clinic.
Collapse
Affiliation(s)
- Karen M Marshall
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK.
| | - Jane S McLaren
- School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU Oxford, UK
| | - Sebastien J P Callens
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU Oxford, UK
| | - Cécile Echalier
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Janos M Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Felicity R A J Rose
- School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham NG7 2RD, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU Oxford, UK
| | - Jonathan I Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
5
|
Marshall KM, Wojciechowski JP, Jayawarna V, Hasan A, Echalier C, Øvrebø Ø, Yang T, Zhou K, Kanczler JM, Mata A, Salmeron-Sanchez M, Stevens MM, Oreffo ROC. Considerations of growth factor and material use in bone tissue engineering using biodegradable scaffolds in vitro and in vivo. Sci Rep 2024; 14:25832. [PMID: 39468149 PMCID: PMC11519456 DOI: 10.1038/s41598-024-75198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024] Open
Abstract
Bone tissue engineering aims to harness materials to develop functional bone tissue to heal 'critical-sized' bone defects. This study examined a robust, coated poly(caprolactone) trimethacrylate (PCL-TMA) 3D-printable scaffold designed to augment bone formation. Following optimisation of the coatings, three bioactive coatings were examined, i) elastin-like polypeptide (ELP), ii) poly(ethyl acrylate) (PEA), fibronectin (FN) and bone morphogenetic protein-2 (BMP-2) applied sequentially (PEA/FN/BMP-2) and iii) both ELP and PEA/FN/BMP-2 coatings applied concurrently. The scaffold material was robust and showed biodegradability. The coatings demonstrated a significant (p < 0.05) osteogenic response in vitro in alkaline phosphatase gene upregulation and alkaline phosphatase production. The PCL-TMA scaffold and coatings supported angiogenesis and displayed excellent biocompatibility following evaluation on the chorioallantoic membrane assay. No significant (p < 0.05) heterotopic bone formed on the scaffolds within a murine subcutaneous implantation model, compared to the positive control of BMP-2 loaded collagen sponge following examination by micro-computed tomography or histology. The current studies demonstrate a range of innovative coated scaffold constructs with in vitro efficacy and clearly illustrate the importance of an appropriate in vivo environment to validate in vitro functionality prior to scale up and preclinical application.
Collapse
Affiliation(s)
- Karen M Marshall
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom.
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Department of Engineering Science, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Vineetha Jayawarna
- School of Engineering, Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Abshar Hasan
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Cécile Echalier
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Øystein Øvrebø
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Tao Yang
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Department of Engineering Science, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Kun Zhou
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Janos M Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Department of Chemical and Environmental Engineering and NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Manuel Salmeron-Sanchez
- School of Engineering, Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, United Kingdom
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
- Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Department of Engineering Science, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, United Kingdom.
| |
Collapse
|
6
|
Coppola B, Menotti F, Longo F, Banche G, Mandras N, Palmero P, Allizond V. New Generation of Osteoinductive and Antimicrobial Polycaprolactone-Based Scaffolds in Bone Tissue Engineering: A Review. Polymers (Basel) 2024; 16:1668. [PMID: 38932017 PMCID: PMC11207319 DOI: 10.3390/polym16121668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
With respect to other fields, bone tissue engineering has significantly expanded in recent years, leading not only to relevant advances in biomedical applications but also to innovative perspectives. Polycaprolactone (PCL), produced in the beginning of the 1930s, is a biocompatible and biodegradable polymer. Due to its mechanical and physicochemical features, as well as being easily shapeable, PCL-based constructs can be produced with different shapes and degradation kinetics. Moreover, due to various development processes, PCL can be made as 3D scaffolds or fibres for bone tissue regeneration applications. This outstanding biopolymer is versatile because it can be modified by adding agents with antimicrobial properties, not only antibiotics/antifungals, but also metal ions or natural compounds. In addition, to ameliorate its osteoproliferative features, it can be blended with calcium phosphates. This review is an overview of the current state of our recent investigation into PCL modifications designed to impair microbial adhesive capability and, in parallel, to allow eukaryotic cell viability and integration, in comparison with previous reviews and excellent research papers. Our recent results demonstrated that the developed 3D constructs had a high interconnected porosity, and the addition of biphasic calcium phosphate improved human cell attachment and proliferation. The incorporation of alternative antimicrobials-for instance, silver and essential oils-at tuneable concentrations counteracted microbial growth and biofilm formation, without affecting eukaryotic cells' viability. Notably, this challenging research area needs the multidisciplinary work of material scientists, biologists, and orthopaedic surgeons to determine the most suitable modifications on biomaterials to design favourable 3D scaffolds based on PCL for the targeted healing of damaged bone tissue.
Collapse
Affiliation(s)
- Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| |
Collapse
|
7
|
Naik SS, Torris A, Choudhury NR, Dutta NK, Sukumaran Nair K. Biodegradable and 3D printable lysine functionalized polycaprolactone scaffolds for tissue engineering applications. BIOMATERIALS ADVANCES 2024; 159:213816. [PMID: 38430722 DOI: 10.1016/j.bioadv.2024.213816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Tissue engineering (TE) has sparked interest in creating scaffolds with customizable properties and functional bioactive sites. However, due to limitations in medical practices and manufacturing technologies, it is challenging to replicate complex porous frameworks with appropriate architectures and bioactivity in vitro. To address these challenges, herein, we present a green approach that involves the amino acid (l-lysine) initiated polymerization of ɛ-caprolactone (CL) to produce modified polycaprolactone (PCL) with favorable active sites for TE applications. Further, to better understand the effect of morphology and porosity on cell attachment and proliferation, scaffolds of different geometries with uniform and interconnected pores are designed and fabricated, and their properties are evaluated in comparison with commercial PCL. The scaffold morphology and complex internal micro-architecture are imaged by micro-computed tomography (micro-CT), revealing pore size in the range of ~300-900 μm and porosity ranging from 30 to 70 %, while based on the geometry of scaffolds the compressive strength varied from 143 ± 19 to 214 ± 10 MPa. Additionally, the degradation profiles of fabricated scaffolds are found to be influenced by both the chemical nature and product design, where Lys-PCL-based scaffolds with better porosity and lower crystallinity degraded faster than commercial PCL scaffolds. According to in vitro studies, Lys-PCL scaffolds have produced an environment that is better for cell adhesion and proliferation. Moreover, the scaffold design affects the way cells interact; Lys-PCL with zigzag geometry has demonstrated superior in vitro vitality (>90 %) and proliferation in comparison to other designs. This study emphasizes the importance of enhancing bioactivity while meeting morphology and porosity requirements in the design of scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Sonali S Naik
- Polymer Science and Engineering, CSIR-National Chemical Laboratory, Pune-411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Arun Torris
- Polymer Science and Engineering, CSIR-National Chemical Laboratory, Pune-411008, India
| | | | - Naba K Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kiran Sukumaran Nair
- Polymer Science and Engineering, CSIR-National Chemical Laboratory, Pune-411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
8
|
Ahmadi M, Ehrmann K, Koch T, Liska R, Stampfl J. From Unregulated Networks to Designed Microstructures: Introducing Heterogeneity at Different Length Scales in Photopolymers for Additive Manufacturing. Chem Rev 2024; 124:3978-4020. [PMID: 38546847 PMCID: PMC11009961 DOI: 10.1021/acs.chemrev.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
Photopolymers have been optimized as protective and decorative coating materials for decades. However, with the rise of additive manufacturing technologies, vat photopolymerization has unlocked the use of photopolymers for three-dimensional objects with new material requirements. Thus, the originally highly cross-linked, amorphous architecture of photopolymers cannot match the expectations for modern materials anymore, revealing the largely unanswered question of how diverse properties can be achieved in photopolymers. Herein, we review how microstructural features in soft matter materials should be designed and implemented to obtain high performance materials. We then translate these findings into chemical design suggestions for enhanced printable photopolymers. Based on this analysis, we have found microstructural heterogenization to be the most powerful tool to tune photopolymer performance. By combining the chemical toolbox for photopolymerization and the analytical toolbox for microstructural characterization, we examine current strategies for physical heterogenization (fillers, inkjet printing) and chemical heterogenization (semicrystalline polymers, block copolymers, interpenetrating networks, photopolymerization induced phase separation) of photopolymers and put them into a material scientific context to develop a roadmap for improving and diversifying photopolymers' performance.
Collapse
Affiliation(s)
- Mojtaba Ahmadi
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Katharina Ehrmann
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Thomas Koch
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Robert Liska
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Jürgen Stampfl
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| |
Collapse
|
9
|
Domingo-Roca R, Gilmour L, Dobre O, Sarrigiannidis S, Sandison ME, O'Leary R, Jackson-Camargo JC, Mulvana HE. 3D Printing of Noncytotoxic High-Resolution Microchannels in Bisphenol-A Ethoxylate Dimethacrylate Tissue-Mimicking Materials. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1101-1109. [PMID: 37886413 PMCID: PMC10599442 DOI: 10.1089/3dp.2021.0235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The ability to create cell-laden fluidic models that mimic the geometries and physical properties of vascularized tissue would be extremely beneficial to the study of disease etiologies and future therapies, including in the case of cancer where there is increasing interest in studying alterations to the microvasculature. Engineered systems can present significant advantages over animal studies, alleviating challenges associated with variable complexity and control. Three-dimensional (3D)-printable tissue-mimicking hydrogels can offer an alternative, where control of the biophysical properties of the materials can be achieved. Hydrogel-based systems that can recreate complex 3D structures and channels with diameters <500 μm are challenging to produce. We present a noncytotoxic photo-responsive hydrogel that supports 3D printing of complex 3D structures with microchannels down to 150 μm in diameter. Fine tuning of the 3D-printing process has allowed the production of complex structures, where for demonstration purposes we present a helical channel with diameters between 250 and 370 μm around a central channel of 150 μm in diameter in materials with mechanical and acoustic properties that closely replicate those of tissue. The ability to control and accurately reproduce the complex features of the microvasculature has value across a wide range of biomedical applications, especially when the materials involved accurately mimic the physical properties of tissue. An approach that is additionally cell compatible provides a unique setup that can be exploited to study aspects of biomedical research with an unprecedented level of accuracy.
Collapse
Affiliation(s)
- Roger Domingo-Roca
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Lauren Gilmour
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Oana Dobre
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | | | - Mairi E. Sandison
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Richard O'Leary
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Joseph C. Jackson-Camargo
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Helen E. Mulvana
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
10
|
Thijssen Q, Quaak A, Toombs J, De Vlieghere E, Parmentier L, Taylor H, Van Vlierberghe S. Volumetric Printing of Thiol-Ene Photo-Cross-Linkable Poly(ε-caprolactone): A Tunable Material Platform Serving Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210136. [PMID: 36827642 DOI: 10.1002/adma.202210136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Indexed: 05/12/2023]
Abstract
Current thoroughly described biodegradable and cross-linkable polymers mainly rely on acrylate cross-linking. However, despite the swift cross-linking kinetics of acrylates, the concomitant brittleness of the resulting materials limits their applicability. Here, photo-cross-linkable poly(ε-caprolactone) networks through orthogonal thiol-ene chemistry are introduced. The step-growth polymerized networks are tunable, predictable by means of the rubber elasticity theory and it is shown that their mechanical properties are significantly improved over their acrylate cross-linked counterparts. Tunability is introduced to the materials, by altering Mc (or the molar mass between cross-links), and its effect on the thermal properties, mechanical strength and degradability of the materials is evaluated. Moreover, excellent volumetric printability is illustrated and the smallest features obtained via volumetric 3D-printing to date are reported, for thiol-ene systems. Finally, by means of in vitro and in vivo characterization of 3D-printed constructs, it is illustrated that the volumetrically 3D-printed materials are biocompatible. This combination of mechanical stability, tunability, biocompatibility, and rapid fabrication by volumetric 3D-printing charts a new path toward bedside manufacturing of biodegradable patient-specific implants.
Collapse
Affiliation(s)
- Quinten Thijssen
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Astrid Quaak
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Joseph Toombs
- Department of Mechanical Engineering, University of California, Berkeley, 6159 Etcheverry Hall, Berkeley, CA, 94720-1740, USA
| | - Elly De Vlieghere
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| | - Hayden Taylor
- Department of Mechanical Engineering, University of California, Berkeley, 6159 Etcheverry Hall, Berkeley, CA, 94720-1740, USA
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, 9000, Belgium
| |
Collapse
|
11
|
Allen BN, Wendland RJ, Thompson JD, Tucker BA, Worthington KS. Photopolymerization Parameters Influence Mechanical, Microstructural, and Cell Loading Properties of Rapidly Fabricated Cell Scaffolds. ACS Biomater Sci Eng 2023; 9:2663-2671. [PMID: 37075323 PMCID: PMC10170473 DOI: 10.1021/acsbiomaterials.3c00408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Engineered scaffolds are commonly used to assist in cellular transplantations, providing crucial support and specific architecture for a variety of tissue engineering applications. Photopolymerization as a fabrication technique for cell scaffolds enables precise spatial and temporal control of properties and structure. One simple technique to achieve a two-dimensional structure is the use of a patterned photomask, which results in regionally selective photo-cross-linking. However, the relationships between photopolymerization parameters like light intensity and exposure time and outcomes like structural fidelity and mechanical properties are not well-established. In this work, we used photopolymerization to generate degradable polycaprolactone triacrylate (PCLTA) scaffolds with a defined microstructure. We examined the impact of light intensity and exposure time on scaffold properties such as shear modulus and micropore structure. To assess feasibility in a specific application and determine the relationship between parameter-driven properties and cell loading, we cultured retinal progenitor cells on the PCLTA scaffolds. We found that light intensity and polymerization time directly impact the scaffold stiffness and micropore structure, which in turn influenced the cell loading capacity of the scaffold. Because material stiffness and topography are known to impact cell viability and fate, understanding the effect of scaffold fabrication parameters on mechanical and structural properties is critical to optimizing cell scaffolds for specific applications.
Collapse
Affiliation(s)
- Brittany N Allen
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242-1002, United States
| | - Rion J Wendland
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242-1002, United States
- Department of Ophthalmology and Visual Sciences, Roy J. Carver College of Medicine, Institute for Vision Research, The University of Iowa, Iowa City, Iowa 52242-1002, United States
| | - Jacob D Thompson
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242-1002, United States
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences, Roy J. Carver College of Medicine, Institute for Vision Research, The University of Iowa, Iowa City, Iowa 52242-1002, United States
| | - Kristan S Worthington
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242-1002, United States
- Department of Ophthalmology and Visual Sciences, Roy J. Carver College of Medicine, Institute for Vision Research, The University of Iowa, Iowa City, Iowa 52242-1002, United States
| |
Collapse
|
12
|
Pariskar A, Sharma PK, Murty US, Banerjee S. Effect of Tartrazine as Photoabsorber for Improved Printing Resolution of 3D Printed "Ghost Tablets": Non-Erodible Inert Matrices. J Pharm Sci 2023; 112:1020-1031. [PMID: 36410417 DOI: 10.1016/j.xphs.2022.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Stereolithography (SLA) 3D printing of pharmaceuticals suffers from the problem of light scattering, which leads to over-curing, resulting in the printing of objects that are non-compliant with design dimensions and the overloading of drugs. To minimize this problem, photoabsorbers such as tartrazine (food grade) can be used to absorb the stray light produced by scattering, leading to unintended photopolymerization. Ghost tablets (i.e., non-erodible inert matrices) were additively manufactured using SLA with varying ratios of polyethylene glycol diacrylate (PEGDA): polyethylene glycol (PEG) 300, along with tartrazine concentrations. The 3D printed ghost tablets containing maximum (0.03%) tartrazine were extremely precise in size and adhered to the nominal value of the metformin hydrochloride content. Resolution analysis reinstated the influence of tartrazine in achieving highly precise objects of even 0.07 mm2 area. Furthermore, 3D printed ghost tablets were characterized using analytical means, and swelling studies. Additionally, ghost tablets were tested for their mechanical robustness using dynamic mechanical and texture analysis, and were able to withstand strains of up to 5.0% without structural failure. The printed ghost tablets displayed a fast metformin hydrochloride release profile, with 93.14% release after 12 h when the PEG 300 ratio was at its maximum. Ghost tablets were also subjected to in vivo X-ray imaging, and the tablets remained intact even after four hours of administration and were eventually excreted in an intact form through fecal excretion.
Collapse
Affiliation(s)
- Amit Pariskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Peeyush Kumar Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India.
| |
Collapse
|
13
|
Geoghegan N, O'Loughlin M, Delaney C, Rochfort KD, Kennedy M, Kolagatla S, Podhorska L, Rodriguez BJ, Florea L, Kelleher SM. Controlled degradation of polycaprolactone-based micropillar arrays. Biomater Sci 2023; 11:3077-3091. [PMID: 36876330 PMCID: PMC10152922 DOI: 10.1039/d3bm00165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Herein we demonstrate the fabrication of arrays of micropillars, achieved through the combination of direct laser writing and nanoimprint lithography. By combining two diacrylate monomers, polycaprolactone dimethacrylate (PCLDMA) and 1,6-hexanediol diacrylate (HDDA), two copolymer formulations that, owing to the varying ratios of the hydrolysable ester functionalities present in the polycaprolactone moiety, can be degraded in the presence of base in a controllable manner. As such, the degradation of the micropillars can be tuned over several days as a function of PCLDMA concentration within the copolymer formulations, and the topography greatly varied over a short space of time, as visualised using scanning electron microscopy and atomic force microscopy. Crosslinked neat HDDA was used as a control material, demonstrating that the presence of the PCL was responsible for the ability of the microstructures to degrade in the controlled manner. In addition, the mass loss of the crosslinked materials was minimal, demonstrating the degradation of microstructured surfaces without loss of bulk properties was possible. Moreover, the compatibility of these crosslinked materials with mammalian cells was explored. The influence of both indirect and direct contact of the materials with A549 cells was assessed by profiling indices reflective of cytotoxicity such as morphology, adhesion, metabolic activity, oxidative balance, and release of injury markers. No significant changes in the aforementioned profile were observed in the cells cultured under these conditions for up to 72 h, with the cell-material interaction suggesting these materials may have potential in microfabrication contexts towards biomedical application purposes.
Collapse
Affiliation(s)
- Niamh Geoghegan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,CURAM, Science Foundation Ireland Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Mark O'Loughlin
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Colm Delaney
- School of Chemistry and AMBER, the SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, Ireland
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Meabh Kennedy
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Srikanth Kolagatla
- School of Chemistry and AMBER, the SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lucia Podhorska
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Brian J Rodriguez
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Larisa Florea
- School of Chemistry and AMBER, the SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, Ireland
| | - Susan M Kelleher
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,CURAM, Science Foundation Ireland Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
14
|
Dellago B, Altun AA, Liska R, Baudis S. Exploring the limits of toughness enhancers for
3D
printed photopolymers as bone replacement materials. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Barbara Dellago
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing Vienna Austria
- Institute of Applied Synthetic Chemistry TU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Altan Alpay Altun
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing Vienna Austria
- Lithoz GmbH Vienna Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry TU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Stefan Baudis
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing Vienna Austria
- Institute of Applied Synthetic Chemistry TU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| |
Collapse
|
15
|
Constant E, King O, Weems AC. Bioderived 4D Printable Terpene Photopolymers from Limonene and β-Myrcene. Biomacromolecules 2022; 23:2342-2352. [PMID: 35608477 DOI: 10.1021/acs.biomac.2c00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Green manufacturing and reducing our cultural dependency on petrochemicals have been topics of growing interest in the past decade, particularly for three-dimensional (3D) printable photopolymers where often toxic solvents and reagents have been required. Here, a simple solvent-free, free-radical polymerization is utilized to homo- and copolymerize limonene and β-myrcene monomers to produce oligomeric photopolymers (Mn < 11 kDa) displaying Newtonian, low viscosities (∼10 Pa × s) suitable for thiol-ene photo-cross-linking, yielding photoset materials in a digital light processing (DLP)-type 3D printer. The resulting photosets display tunable thermomechanical properties (poly(limonene) displays elastic moduli exceeding 1 GPa) compared with previous works focusing on monomeric terpenes as well as four-dimensional (4D) shape memory behavior. The utility of such photopolymers for biomedical applications is briefly considered on the premise of the hydrophilic nature (measured by contact angle) as well as their cytocompatibility upon seeding films with macrophages. These terpene-derived, green 4D photopolymers are shown to have promising physical behaviors suitable for an array of manufacturing and 3D printing applications.
Collapse
Affiliation(s)
- Eric Constant
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Olivia King
- Molecular and Chemical Biology, Ohio University, Athens, Ohio 45701, United States
| | - Andrew C Weems
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States.,Molecular and Chemical Biology, Ohio University, Athens, Ohio 45701, United States.,Department of Mechanical Engineering, Translational Biosciences, Orthopedic and Musculoskeletal Neurological Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
16
|
Fuoco T, Chen M, Jain S, Wang XV, Wang L, Finne-Wistrand A. Hydrogel Polyester Scaffolds via Direct-Ink-Writing of Ad Hoc Designed Photocurable Macromonomer. Polymers (Basel) 2022; 14:711. [PMID: 35215623 PMCID: PMC8876641 DOI: 10.3390/polym14040711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Synthetic, degradable macromonomers have been developed to serve as ink for 3D printing technologies based on direct-ink-writing. The macromonomers are purposely designed to be cross-linkable under the radical mechanism, to impart hydrophilicity to the final material, and to have rheological properties matching the printer's requirements. The suitable viscosity enables the ink to be printed at room temperature, in absence of organic solvents, and to be cross-linked to manufacture soft 3D scaffolds that show no indirect cytotoxicity and have a hydration capacity of up to 100% their mass and a compressive modulus in the range of 0.4-2 MPa.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 100-44 Stockholm, Sweden; (S.J.); (A.F.-W.)
| | - Mo Chen
- Department of Production Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 68, SE 114-28 Stockholm, Sweden; (X.V.W.); (L.W.)
| | - Shubham Jain
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 100-44 Stockholm, Sweden; (S.J.); (A.F.-W.)
| | - Xi Vincent Wang
- Department of Production Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 68, SE 114-28 Stockholm, Sweden; (X.V.W.); (L.W.)
| | - Lihui Wang
- Department of Production Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 68, SE 114-28 Stockholm, Sweden; (X.V.W.); (L.W.)
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 100-44 Stockholm, Sweden; (S.J.); (A.F.-W.)
| |
Collapse
|
17
|
Thijssen Q, Cornelis K, Alkaissy R, Locs J, Damme LV, Schaubroeck D, Willaert R, Snelling S, Mouthuy PA, Van Vlierberghe S. Tough Photo-Cross-Linked PCL-Hydroxyapatite Composites for Bone Tissue Engineering. Biomacromolecules 2022; 23:1366-1375. [PMID: 35147420 DOI: 10.1021/acs.biomac.1c01584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acrylate-based photo-cross-linked poly(ε-caprolactone) (PCL) tends to show low elongation and strength. Incorporation of osteo-inductive hydroxyapatite (HAp) further enhances this effect, which limits its applicability in bone tissue engineering. To overcome this, the thiol-ene click reaction is introduced for the first time in order to photo-cross-link PCL composites with 0, 10, 20, and 30 wt % HAp nanoparticles. It is demonstrated that the elongation at break and ultimate strength increase 10- and 2-fold, respectively, when the photopolymerization mechanism is shifted from a radical chain-growth (i.e., acrylate cross-linking) toward a radical step-growth polymerization (i.e., thiol-ene cross-linking). Additionally, it is illustrated that osteoblasts can attach to and proliferate on the surface of the photo-cross-linked PCL-HAp composites. Finally, the incorporation of HAp nanoparticles is shown to reduce the ALP activity of osteoblasts. Overall, thiol-ene cross-linked PCL-HAp composites can be considered as promising potential materials for bone tissue engineering.
Collapse
Affiliation(s)
- Quinten Thijssen
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Kim Cornelis
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Rand Alkaissy
- Nuffield department of Orthopaedics Rheumatology and Musculoskeletal Sciences (NDORMS), B4495, Headington, Oxford OX3 7LD, United Kingdom
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovation and Development Centre, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia.,Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga LV-1658, Latvia
| | - Lana Van Damme
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - David Schaubroeck
- Centre for Microsystems Technology (CMST), imec and Ghent University, Technologiepark-Zwijnaarde 126, 9052 Ghent, Belgium
| | - Robin Willaert
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Sarah Snelling
- Nuffield department of Orthopaedics Rheumatology and Musculoskeletal Sciences (NDORMS), B4495, Headington, Oxford OX3 7LD, United Kingdom
| | - Pierre-Alexis Mouthuy
- Nuffield department of Orthopaedics Rheumatology and Musculoskeletal Sciences (NDORMS), B4495, Headington, Oxford OX3 7LD, United Kingdom
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
18
|
Alvarez Echazú MI, Perna O, Olivetti CE, Antezana PE, Municoy S, Tuttolomondo MV, Galdopórpora JM, Alvarez GS, Olmedo DG, Desimone MF. Recent Advances in Synthetic and Natural Biomaterials-Based Therapy for Bone Defects. Macromol Biosci 2022; 22:e2100383. [PMID: 34984818 DOI: 10.1002/mabi.202100383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Indexed: 12/31/2022]
Abstract
Synthetic and natural biomaterials are a promising alternative for the treatment of critical-sized bone defects. Several parameters such as their porosity, surface, and mechanical properties are extensively pointed out as key points to recapitulate the bone microenvironment. Many biomaterials with this pursuit are employed to provide a matrix, which can supply the specific environment and architecture for an adequate bone growth. Nevertheless, some queries remain unanswered. This review discusses the recent advances achieved by some synthetic and natural biomaterials to mimic the native structure of bone and the manufacturing technology applied to obtain biomaterial candidates. The focus of this review is placed in the recent advances in the development of biomaterial-based therapy for bone defects in different types of bone. In this context, this review gives an overview of the potentialities of synthetic and natural biomaterials: polyurethanes, polyesters, hyaluronic acid, collagen, titanium, and silica as successful candidates for the treatment of bone defects.
Collapse
Affiliation(s)
- María I Alvarez Echazú
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina.,Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Marcelo T. de Alvear 2142 (1122), CABA, Argentina
| | - Oriana Perna
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Christian E Olivetti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Pablo E Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - María V Tuttolomondo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Juan M Galdopórpora
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Gisela S Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| | - Daniel G Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Marcelo T. de Alvear 2142 (1122), CABA, Argentina.,CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz 2290, Buenos Aires, 1425, Argentina
| | - Martín F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Junín 956, Piso 3°, (1113) Buenos Aires, Argentina., Universidad de Buenos Aires, Junín 956, Piso 3°, Buenos Aires, 1113, Argentina
| |
Collapse
|
19
|
Liu Y, Yuan X, Wu J, Hu X, Zhu N, Guo K. Access to high-molecular-weight poly(γ-butyrolactone) by using simple commercial catalysts. Polym Chem 2022. [DOI: 10.1039/d1py01340h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simple commercial organomagnesium catalysts were utilized for efficient access to high-molecular-weight poly(γ-butyrolactone) and facile manipulation of the reaction conditions enabled the polymer topology controlled.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jiaqi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
20
|
Backes EH, Harb SV, Beatrice CAG, Shimomura KMB, Passador FR, Costa LC, Pessan LA. Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review. J Biomed Mater Res B Appl Biomater 2021; 110:1479-1503. [PMID: 34918463 DOI: 10.1002/jbm.b.34997] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 08/02/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Polycaprolactone (PCL) has been extensively applied on tissue engineering because of its low-melting temperature, good processability, biodegradability, biocompatibility, mechanical resistance, and relatively low cost. The advance of additive manufacturing (AM) technologies in the past decade have boosted the fabrication of customized PCL products, with shorter processing time and absence of material waste. In this context, this review focuses on the use of AM techniques to produce PCL scaffolds for various tissue engineering applications, including bone, muscle, cartilage, skin, and cardiovascular tissue regeneration. The search for optimized geometry, porosity, interconnectivity, controlled degradation rate, and tailored mechanical properties are explored as a tool for enhancing PCL biocompatibility and bioactivity. In addition, rheological and thermal behavior is discussed in terms of filament and scaffold production. Finally, a roadmap for future research is outlined, including the combination of PCL struts with cell-laden hydrogels and 4D printing.
Collapse
Affiliation(s)
- Eduardo Henrique Backes
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Samarah Vargas Harb
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Cesar Augusto Gonçalves Beatrice
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Kawany Munique Boriolo Shimomura
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | | | - Lidiane Cristina Costa
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Luiz Antonio Pessan
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
21
|
Aldemir Dikici B, Malayeri A, Sherborne C, Dikici S, Paterson T, Dew L, Hatton P, Ortega Asencio I, MacNeil S, Langford C, Cameron NR, Claeyssens F. Thiolene- and Polycaprolactone Methacrylate-Based Polymerized High Internal Phase Emulsion (PolyHIPE) Scaffolds for Tissue Engineering. Biomacromolecules 2021; 23:720-730. [PMID: 34730348 DOI: 10.1021/acs.biomac.1c01129] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Highly porous emulsion templated polymers (PolyHIPEs) provide a number of potential advantages in the fabrication of scaffolds for tissue engineering and regenerative medicine. Porosity enables cell ingrowth and nutrient diffusion within, as well as waste removal from, the scaffold. The properties offered by emulsion templating alone include the provision of high interconnected porosity, and, in combination with additive manufacturing, the opportunity to introduce controlled multiscale porosity to complex or custom structures. However, the majority of monomer systems reported for PolyHIPE preparation are unsuitable for clinical applications as they are nondegradable. Thiol-ene chemistry is a promising route to produce biodegradable photocurable PolyHIPEs for the fabrication of scaffolds using conventional or additive manufacturing methods; however, relatively little research has been reported on this approach. This study reports the groundwork to fabricate thiol- and polycaprolactone (PCL)-based PolyHIPE materials via a photoinitiated thiolene click reaction. Two different formulations, either three-arm PCL methacrylate (3PCLMA) or four-arm PCL methacrylate (4PCLMA) moieties, were used in the PolyHIPE formulation. Biocompatibility of the PolyHIPEs was investigated using human dermal fibroblasts (HDFs) and human osteosarcoma cell line (MG-63) by DNA quantification assay, and developed PolyHIPEs were shown to be capable of supporting cell attachment and viability.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom.,Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom.,Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Atra Malayeri
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom
| | - Colin Sherborne
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom
| | - Serkan Dikici
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom.,Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
| | - Thomas Paterson
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Lindsey Dew
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom
| | - Paul Hatton
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Ilida Ortega Asencio
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom
| | - Caitlin Langford
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia.,School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, United Kingdom.,Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
22
|
Sandmeier M, Paunović N, Conti R, Hofmann L, Wang J, Luo Z, Masania K, Wu N, Kleger N, Coulter FB, Studart AR, Grützmacher H, Leroux JC, Bao Y. Solvent-Free Three-Dimensional Printing of Biodegradable Elastomers Using Liquid Macrophotoinitiators. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Matthias Sandmeier
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Nevena Paunović
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Riccardo Conti
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Leopold Hofmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jieping Wang
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Zhi Luo
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Kunal Masania
- Complex Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Na Wu
- Lab of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Nicole Kleger
- Complex Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Fergal Brian Coulter
- Complex Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - André R. Studart
- Complex Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Hansjörg Grützmacher
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Yinyin Bao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
23
|
Rungrod A, Kapanya A, Punyodom W, Molloy R, Meerak J, Somsunan R. Synthesis of Poly(ε-caprolactone) Diacrylate for Micelle-Cross-Linked Sodium AMPS Hydrogel for Use as Controlled Drug Delivery Wound Dressing. Biomacromolecules 2021; 22:3839-3859. [PMID: 34378381 DOI: 10.1021/acs.biomac.1c00683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study focuses on the synthesis of poly(ε-caprolactone) diacrylate (PCLDA) for the fabrication of micelle-cross-linked sodium AMPS wound dressing hydrogels. The novel synthetic approach of PCLDA is functionalizing a PCL diol with acrylic acid. The influences of varying the PCL diol/AA molar ratio and temperature on the suitable conditions for the synthesis of PCLDA are discussed. The hydrogel was synthesized through micellar copolymerization of sodium 2-acrylamido-2-methylpropane sulfonate (Na-AMPS) as a basic monomer and PCLDA as a hydrophobic association monomer. In this study, an attempt was made to develop new hydrogel wound dressings meant for the release of antibacterial drugs (ciprofloxacin and silver sulfadiazine). The chemical structures, morphology, porosity, and water interaction of the hydrogels were characterized. The hydrogels' swelling ratio and water vapor transmission rate (WVTR) showed a high swelling capacity (4688-10753%) and good WVTR (approximately 2000 g·m-2·day-1), which can be controlled through variation of the PCLDA concentration. The mechanical property results confirmed that PCLDA improved the mechanical properties of the hydrogel; the stress increased from 37 to 68 kPa, and the strain increased from 198 to 360% with increasing PCLDA (0-30% wt of Na-AMPS). These hydrogels presented no cytotoxicity based on over 70% cell viability responses (L929 fibroblasts) using an in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, the drug release mechanism, kinetic models, and antibacterial activity were determined. The results demonstrated that antibiotics were released from the hydrogel with a Fickian diffusion mechanism and antibacterial activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus). Based on the results obtained, and bearing in mind that further progress still needs to be made, the fabricated hydrogels show considerable potential for meeting the stringent property requirements of hydrogel wound dressings.
Collapse
Affiliation(s)
- Amlika Rungrod
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichaya Kapanya
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Robert Molloy
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.,Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jomkhwan Meerak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Runglawan Somsunan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Risangud N, Jiraborvornpongsa N, Pasee S, Kaewkong P, Kunkit N, Sungkhaphan P, Janvikul W. Poly(ester‐
co
‐glycidyl methacrylate) for digital light processing in biomedical applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.51391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nuttapol Risangud
- Biofunctional Materials and Devices Research Group National Metal and Materials Technology Center Klong Luang Pathumthani Thailand
| | - Noppakhate Jiraborvornpongsa
- Biofunctional Materials and Devices Research Group National Metal and Materials Technology Center Klong Luang Pathumthani Thailand
- Metallurgy and Materials Science Research Institute Chulalongkorn University Patumwan Bangkok Thailand
| | - Supasin Pasee
- Biofunctional Materials and Devices Research Group National Metal and Materials Technology Center Klong Luang Pathumthani Thailand
- Educational Research Development and Demonstration Institute Srinakharinwirot University Ongkharak Nakhon Nayok Thailand
| | - Pakkanun Kaewkong
- Biofunctional Materials and Devices Research Group National Metal and Materials Technology Center Klong Luang Pathumthani Thailand
| | - Nootcharee Kunkit
- Biofunctional Materials and Devices Research Group National Metal and Materials Technology Center Klong Luang Pathumthani Thailand
| | - Piyarat Sungkhaphan
- Biofunctional Materials and Devices Research Group National Metal and Materials Technology Center Klong Luang Pathumthani Thailand
| | - Wanida Janvikul
- Biofunctional Materials and Devices Research Group National Metal and Materials Technology Center Klong Luang Pathumthani Thailand
| |
Collapse
|
25
|
Field J, Haycock JW, Boissonade FM, Claeyssens F. A Tuneable, Photocurable, Poly(Caprolactone)-Based Resin for Tissue Engineering-Synthesis, Characterisation and Use in Stereolithography. Molecules 2021; 26:1199. [PMID: 33668087 PMCID: PMC7956195 DOI: 10.3390/molecules26051199] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Stereolithography is a useful additive manufacturing technique for the production of scaffolds for tissue engineering. Here we present a tuneable, easy-to-manufacture, photocurable resin for use in stereolithography, based on the widely used biomaterial, poly(caprolactone) (PCL). PCL triol was methacrylated to varying degrees and mixed with photoinitiator to produce a photocurable prepolymer resin, which cured under UV light to produce a cytocompatible material. This study demonstrates that poly(caprolactone) methacrylate (PCLMA) can be produced with a range of mechanical properties and degradation rates. By increasing the degree of methacrylation (DM) of the prepolymer, the Young's modulus of the crosslinked PCLMA could be varied from 0.12-3.51 MPa. The accelerated degradation rate was also reduced from complete degradation in 17 days to non-significant degradation in 21 days. The additive manufacturing capabilities of the resin were demonstrated by the production of a variety of different 3D structures using micro-stereolithography. Here, β-carotene was used as a novel, cytocompatible photoabsorber and enabled the production of complex geometries by giving control over cure depth. The PCLMA presented here offers an attractive, tuneable biomaterial for the production of tissue engineering scaffolds for a wide range of applications.
Collapse
Affiliation(s)
- Jonathan Field
- The School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (J.F.); (F.M.B.)
| | - John W. Haycock
- The Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, UK;
- The Neuroscience Institute, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Fiona M. Boissonade
- The School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (J.F.); (F.M.B.)
- The Neuroscience Institute, The University of Sheffield, Sheffield S10 2HQ, UK
| | - Frederik Claeyssens
- The Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, UK;
- The Neuroscience Institute, The University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
26
|
Kovylin RS, Aleynik DY, Fedushkin IL. Modern Porous Polymer Implants: Synthesis, Properties, and Application. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The needs of modern surgery triggered the intensive development of transplantology, medical materials science, and tissue engineering. These directions require the use of innovative materials, among which porous polymers occupy one of the leading positions. The use of natural and synthetic polymers makes it possible to adjust the structure and combination of properties of a material to its particular application. This review generalizes and systematizes the results of recent studies describing requirements imposed on the structure and properties of synthetic (or artificial) porous polymer materials and implants on their basis and the advantages and limitations of synthesis methods. The most extensively employed, promising initial materials are considered, and the possible areas of application of polymer implants based on these materials are highlighted.
Collapse
|
27
|
Fuoco T, Nguyen TT, Kivijärvi T, Finne-Wistrand A. Organocatalytic strategy to telechelic oligo(ε-caprolactone-co-p-dioxanone): Photocurable macromonomers for polyester networks. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Wang J, Li J, Wang X, Cheng Q, Weng Y, Ren J. Synthesis and properties of UV-curable polyester acrylate resins from biodegradable poly(l-lactide) and poly(ε-caprolactone). REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Hasa E, Stansbury JW, Guymon CA. Manipulation of crosslinking in photo-induced phase separated polymers to control morphology and thermo-mechanical properties. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Elomaa L, Keshi E, Sauer IM, Weinhart M. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110958. [DOI: 10.1016/j.msec.2020.110958] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
|
31
|
Dong Z, Shen Y, Zhao S, Wang X, Han M, Zhao N, Ao H, Guo Y. Influence of Hydrophobic Chains in Nanocarriers on Antitumor Efficacy of Docetaxel Nanoparticles. Mol Pharm 2020; 17:1205-1214. [PMID: 32073273 DOI: 10.1021/acs.molpharmaceut.9b01228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The composition of amphiphilic nanocarriers can affect the antitumor efficacy of drug-loaded nanoparticles and should be researched systematically. In this paper, to study the influence of hydrophobic chains, an amphiphilic copolymer (PEG45PCL17) and hydrophilic PEG (PEG45) were utilized as nanocarriers to prepare docetaxel-loaded nanoparticles (DTX/PEG45PCL17 nanoparticles and DTX/PEG45 nanoparticles) through an antisolvent precipitation method. The two DTX nanoparticles presented a similar drug loading content of approximately 60% and a sheet-like morphology. During the preparation procedure, the drug loading content affected the morphology of DTX nanoparticles, and the nanocarrier composition influenced the particle size. Compared with DTX/PEG45 nanoparticles, DTX/PEG45PCL17 nanoparticles showed a smaller mean diameter and better in vitro and in vivo antitumor activity. The cytotoxicity of DTX/PEG45PCL17 nanoparticles against 4T1 cells was 1.31 μg mL-1, 3.4-fold lower than that of DTX/PEG45 nanoparticles. More importantly, DTX/PEG45PCL17 nanoparticles showed significantly higher antitumor activity in vivo, with an inhibition rate over 80%, 1.5-fold higher than that of DTX/PEG45 nanoparticles. Based on these results, antitumor activity appears to be significantly affected by the particle size, which was determined by the composition of the nanocarrier. In summary, to improve antitumor efficacy, the amphiphilic structure should be considered and optimized in the design of nanocarriers.
Collapse
Affiliation(s)
- Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yiping Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.,Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, No. 138, Tongda Street, Daoli District, Harbin 150076, China
| | - Shuang Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.,Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, No. 138, Tongda Street, Daoli District, Harbin 150076, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Ning Zhao
- Department of Pharmacy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No.1, Xiyuancaochang, Haidian District, Beijing 100091, China
| | - Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
32
|
Aldemir Dikici B, Reilly GC, Claeyssens F. Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by In Vitro Generated Extracellular Matrix Decoration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12510-12524. [PMID: 32100541 PMCID: PMC7146758 DOI: 10.1021/acsami.9b23100] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/26/2020] [Indexed: 05/05/2023]
Abstract
Tissue engineering (TE)-based bone grafts are favorable alternatives to autografts and allografts. Both biochemical properties and the architectural features of TE scaffolds are crucial in their design process. Synthetic polymers are attractive biomaterials to be used in the manufacturing of TE scaffolds, due to various advantages, such as being relatively inexpensive, enabling precise reproducibility, possessing tunable mechanical/chemical properties, and ease of processing. However, such scaffolds need modifications to improve their limited interaction with biological tissues. Structurally, multiscale porosity is advantageous over single-scale porosity; therefore, in this study, we have considered two key points in the design of a bone repair material; (i) manufacture of multiscale porous scaffolds made of photocurable polycaprolactone (PCL) by a combination of emulsion templating and three-dimensional (3D) printing and (ii) decoration of these scaffolds with the in vitro generated bone-like extracellular matrix (ECM) to create biohybrid scaffolds that have improved biological performance compared to PCL-only scaffolds. Multiscale porous scaffolds were fabricated, bone cells were cultured on them, and then they were decellularized. The biological performance of these constructs was tested in vitro and in vivo. Mesenchymal progenitors were seeded on PCL-only and biohybrid scaffolds. Cells not only showed improved attachment on biohybrid scaffolds but also exhibited a significantly higher rate of cell growth and osteogenic activity. The chick chorioallantoic membrane (CAM) assay was used to explore the angiogenic potential of the biohybrid scaffolds. The CAM assay indicated that the presence of the in vitro generated ECM on polymeric scaffolds resulted in higher angiogenic potential and a high degree of tissue infiltration. This study demonstrated that multiscale porous biohybrid scaffolds present a promising approach to improve bioactivity, encourage precursors to differentiate into mature bones, and to induce angiogenesis.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department
of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| | - Gwendolen C. Reilly
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| | - Frederik Claeyssens
- Department
of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
33
|
Fan D, Staufer U, Accardo A. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering (Basel) 2019; 6:E113. [PMID: 31847117 PMCID: PMC6955903 DOI: 10.3390/bioengineering6040113] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing techniques provides the tools to engineer these architectures at different scales. Moreover, it is now possible to tailor their biomechanical and topological properties while taking inspiration from the characteristics of the extracellular matrix, the three-dimensional scaffold in which cells proliferate, migrate, and differentiate. In such context, there is therefore a continuous quest for synthetic and nature-derived composite materials that must hold biocompatible, biodegradable, bioactive features and also be compatible with the envisioned fabrication strategy. The structure of the current review is intended to provide to both micro-engineers and cell biologists a comparative overview of the characteristics, advantages, and drawbacks of the major 3D printing techniques, the most promising biomaterials candidates, and the trade-offs that must be considered in order to replicate the properties of natural microenvironments.
Collapse
Affiliation(s)
| | | | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands; (D.F.); (U.S.)
| |
Collapse
|
34
|
Fuoco T, Ahlinder A, Jain S, Mustafa K, Finne-Wistrand A. Poly(ε-caprolactone- co- p-dioxanone): a Degradable and Printable Copolymer for Pliable 3D Scaffolds Fabrication toward Adipose Tissue Regeneration. Biomacromolecules 2019; 21:188-198. [PMID: 31549825 DOI: 10.1021/acs.biomac.9b01126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The advancement of 3D printing technologies in the fabrication of degradable scaffolds for tissue engineering includes, from the standpoint of the polymer chemists, an urgent need to develop new materials that can be used as ink and are suitable for medical applications. Here, we demonstrate that a copolymer of ε-caprolactone (CL) with low amounts of p-dioxanone (DX) (15 mol %) is a degradable and printable material that suits the requirements of melt extrusion 3D printing technologies, including negligible degradation during thermal processing. It is therefore a potential candidate for soft tissue regeneration. The semicrystalline CL/DX copolymer is processed at a lower temperature than a commercial polycaprolactone (PCL), shaped as a filament for melt extrusion 3D printing and as porous and pliable scaffolds with a gradient design. Scaffolds have Young's modulus in the range of 60-80 MPa, values suitable for provision of structural support for damaged soft tissue such as breast tissue. SEM and confocal microscope indicate that the CL/DX copolymer scaffolds support adipose stem cell attachment, spreading, and proliferation.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| | - Astrid Ahlinder
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| | - Shubham Jain
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine , University of Bergen , 5020 Bergen , Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| |
Collapse
|
35
|
Thompson JR, Worthington KS, Green BJ, Mullin NK, Jiao C, Kaalberg EE, Wiley LA, Han IC, Russell SR, Sohn EH, Guymon CA, Mullins RF, Stone EM, Tucker BA. Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomater 2019; 94:204-218. [PMID: 31055121 DOI: 10.1016/j.actbio.2019.04.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
Cell replacement therapies are often enhanced by utilizing polymer scaffolds to improve retention or direct cell orientation and migration. Obstacles to refinement of such polymer scaffolds often include challenges in controlling the microstructure of biocompatible molecules in three dimensions at cellular scales. Two-photon polymerization of acrylated poly(caprolactone) (PCL) could offer a means of achieving precise microstructural control of a material in a biocompatible platform. In this work, we studied the effect of various formulation and two-photon polymerization parameters on minimum laser power needed to achieve polymerization, resolution, and fidelity to a target 3D model designed to be used for retinal cell replacement. Overall, we found that increasing the concentration of crosslink-able groups decreased polymerization threshold and the size of resolvable features while increasing fidelity of the scaffold to the 3D model. In general, this improvement was achieved by increasing the number of acrylate groups per prepolymer molecule, increasing the acrylated PCL concentration, or decreasing its molecular weight. Resulting two-photon polymerized PCL scaffolds successfully supported human iPSC derived retinal progenitor cells in vitro. Sub-retinal implantation of cell free scaffolds in a porcine model of retinitis pigmentosa did not cause inflammation, infection or local or systemic toxicity after one month. In addition, comprehensive ISO 10993 testing of photopolymerized scaffolds revealed a favorable biocompatibility profile. These results represent an important step towards understanding how two-photon polymerization can be applied to a wide range of biologically compatible chemistries for various biomedical applications. STATEMENT OF SIGNIFICANCE: Inherited retinal degenerative blindness results from the death of light sensing photoreceptor cells. To restore high-acuity vision a photoreceptor cell replacement strategy will likely be necessary. Unfortunately, single cell injection typically results in poor cell survival and integration post-transplantation. Polymeric biomaterial cell delivery scaffolds can be used to promote donor cell viability, control cellular polarity and increase packing density. A challenge faced in this endeavor has been developing methods suitable for generating scaffolds that can be used to deliver stem cell derived photoreceptors in an ordered columnar orientation (i.e., similar to that of the native retina). In this study we combined the biomaterial poly(caprolactone) with two-photon lithography to generate a biocompatible, clinically relevant scaffold suitable for retina cell delivery.
Collapse
Affiliation(s)
- Jessica R Thompson
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Kristan S Worthington
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Brian J Green
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Nathaniel K Mullin
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Emily E Kaalberg
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Ian C Han
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Stephen R Russell
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Elliott H Sohn
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA.
| |
Collapse
|
36
|
Scruggs BA, Jiao C, Cranston CM, Kaalberg E, Wang K, Russell SR, Wiley LA, Mullins RF, Stone EM, Tucker BA, Sohn EH. Optimizing Donor Cellular Dissociation and Subretinal Injection Parameters for Stem Cell-Based Treatments. Stem Cells Transl Med 2019; 8:797-809. [PMID: 31004408 PMCID: PMC6646699 DOI: 10.1002/sctm.18-0210] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/07/2019] [Indexed: 01/08/2023] Open
Abstract
Subretinal delivery of stem cell‐derived retinal cells as a strategy to treat retinal degenerative blindness holds great promise. Currently, two clinical trials are underway in which human fetal retinal progenitor cells (RPCs) are being delivered to patients by intravitreal or subretinal injection to preserve or restore vision, respectively. With the advent of the induced pluripotent stem cell (iPSC), and in turn three‐dimensional derivation of retinal tissue, it is now possible to generate autologous RPCs for cell replacement. The purpose of this study was to evaluate the effect of commonly used cell isolation and surgical manipulation strategies on donor cell viability. iPSC‐RPCs were subjected to various conditions, including different dissociation and isolation methods, injection cannula sizes, and preinjection storage temperatures and times. The effects of commonly used surgical techniques on both host and donor cell viability were evaluated in Yucatan mini‐pigs (n = 61 eyes). We found a significant increase in cell viability when papain was used for RPC isolation. In addition, a significant decrease in cell viability was detected when using the 41G cannula compared with 31G and at storage times of 4 hours compared with 30 minutes. Although 96.4% of all eyes demonstrated spontaneous retinal reattachment following injection, retinal pigment epithelium (RPE) abnormalities were seen more frequently in eyes receiving injections via a 31G cannula; interestingly, eyes that received cell suspensions were relatively protected against such RPE changes. These findings indicate that optimization of donor cell isolation and delivery parameters should be considered when developing a subretinal cell replacement strategy. stem cells translational medicine2019;8:797&809
Collapse
Affiliation(s)
- Brittni A Scruggs
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Chunhua Jiao
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Cathryn M Cranston
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Emily Kaalberg
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Stephen R Russell
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Luke A Wiley
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Robert F Mullins
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Budd A Tucker
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Elliott H Sohn
- University of Iowa Institute for Vision Research and the Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|