1
|
Guo K, Duan J, Jing X, Zhang X, Ding Q, Dong Z, Xia Q, Zhao P. Silk components and properties of the multilayer cocoon of the greater wax moth, Galleria mellonella. INSECT SCIENCE 2025. [PMID: 40296465 DOI: 10.1111/1744-7917.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
The greater wax moth Galleria mellonella is a major pest of brood combs, and produces large quantities of strong, elastic silk in the environment. However, little research has been conducted on the silk glands (SGs), silk composition and functions of G. mellonella. In this study, we compared the morphologies of the SGs of G. mellonella and Bombyx mori and found that the nuclei of the anterior SGs differ distinctly. We also investigated the protein components and morphology of the G. mellonella cocoon in terms of its multilayer structure. Proteomic analyses identified 158 secretory proteins across the various cocoon layers. Fibroin, sericin, seroin and adhesive proteins were the most abundant proteins. The expression patterns of the major silk genes were investigated, and the results revealed the specific expression of P16 and Seroin3 genes in the anterior SG. Scanning electron microscopy and proteomic analyses of the cocoon layers showed that the sericin contents in the outermost and middle layers were significantly higher than that in the innermost layer. We extracted the soluble proteins from the different cocoon layers and evaluated their antimicrobial activities in vitro. Only the outermost cocoon layer showed antibacterial activity against Escherichia coli. Mechanical property tests showed that G. mellonella silk was stronger than B. mori silk. Our study provides important information on the composition and properties of G. mellonella cocoon silk, and serves as a basis for future research and use.
Collapse
Affiliation(s)
- Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Qiao Ding
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Zhaoming Dong
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Vurro D, Liboà A, D’Onofrio I, De Giorgio G, Scaravonati S, Crepaldi M, Barcellona A, Sciancalepore C, Galstyan V, Milanese D, Riccò M, D’Angelo P, Tarabella G. Sericin Electrodes with Self-Adhesive Properties for Biosignaling. ACS Biomater Sci Eng 2025; 11:1776-1791. [PMID: 39904518 PMCID: PMC12079639 DOI: 10.1021/acsbiomaterials.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
The combination of green manufacturing approaches and bioinspired materials is growingly emerging in different scenarios, in particular in medicine, where widespread medical devices (MDs) as commercial electrodes for electrophysiology strongly increase the accumulation of solid waste after use. Electrocardiogram (ECG) electrodes exploit electrolytic gels to allow the high-quality recording of heart signals. Beyond their nonrecyclability/nonrecoverability, gel drying also affects the signal quality upon prolonged monitoring of biopotentials. Moreover, gel composition often causes skin reactions. This study aims to address the above limitation by presenting a composite based on the combination of silk sericin (SS) as a structural material, poly(vinyl alcohol) (PVA) as a robustness enhancer, and CaCl2 as a plasticizer. SS/PVA/CaCl2 formulations, optimized in terms of weight content (wt %) of single constituents, result in a biocompatible, biodegradable "green" material (free from potentially irritating cross-linking agents) that is, above all, self-adhesive on skin. The best formulation, i.e., SS(4 wt %)/PVA(4 wt %)/CaCl2(20 wt %), in terms of long-lasting skin adhesion (favored by calcium-ion coordination in the presence of environmental/skin humidity) and time-stability of electrode impedance, is used to assemble ECG electrodes showing quality trace recording over longer time scales (up to 6 h) than commercial electrodes. ECG recording is performed using customized electronics coupled to an app for data visualization.
Collapse
Affiliation(s)
- Davide Vurro
- Institute
of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Aris Liboà
- Institute
of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
- Department
of Chemistry Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Ilenia D’Onofrio
- Institute
of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
- Department
of Chemistry Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Giuseppe De Giorgio
- Institute
of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Silvio Scaravonati
- Department
of Mathematical, Physical and Computer Sciences, University of Parma, GISEL & INSTM, Parco Area delle Scienze 7/A, Parma 43124, Italy
| | - Marco Crepaldi
- Electronic
Design Laboratory, Fondazione Istituto Italiano
di Tecnologia, Via Enrico
Melen 83, Genova 16152, Italy
| | - Alessandro Barcellona
- Electronic
Design Laboratory, Fondazione Istituto Italiano
di Tecnologia, Via Enrico
Melen 83, Genova 16152, Italy
| | - Corrado Sciancalepore
- Department
of Engineering for Industrial Systems and Technologies, University of Parma, Parco Area delle Scienze 181/A, Parma 43124, Italy
| | - Vardan Galstyan
- Institute
of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Daniel Milanese
- Department
of Engineering for Industrial Systems and Technologies, University of Parma, Parco Area delle Scienze 181/A, Parma 43124, Italy
| | - Mauro Riccò
- Electronic
Design Laboratory, Fondazione Istituto Italiano
di Tecnologia, Via Enrico
Melen 83, Genova 16152, Italy
| | - Pasquale D’Angelo
- Institute
of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Giuseppe Tarabella
- Institute
of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| |
Collapse
|
3
|
Ben X, Lu X, Zhao G, Wei Z, Yang J, Kan Y. Internal Secondary Structural Conformational States of Silk Fibroin Studied by Raman Spectroscopy with Band Deconvolution Analysis. Biomacromolecules 2025; 26:1992-2002. [PMID: 39982018 DOI: 10.1021/acs.biomac.4c01827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Silk fibroin (SF) is an extensively utilized biofiber recognized for its excellent mechanical properties across various applications. However, the relationship between its internal structure and mechanical behavior remains inadequately understood. In this work, we employed polarized Raman spectra to investigate how SF's secondary structures respond to external tensile loads. Our results show considerable variations in the amide III band, particularly the 1210 cm-1 random coil subpeak, under tensile stimuli. Subsequent loading-unloading experiments that plotted the peak intensity ratio of I1210 cm-1/I1226 cm-1 against tensile strain produced multiple hysteresis loops, suggesting irreversible structural changes during mechanical cycling. With additional evidence from other characteristic bands, we demonstrate that tensile elongation facilitates the transition of random coils to β-sheets within the SF network, which intrinsically contributes to the fiber's stiffening behavior. This work provides valuable insight into SF's deformation mechanism and highlights the significance of the previously underappreciated amide III band.
Collapse
Affiliation(s)
- Xiang Ben
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Xinxin Lu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Gutian Zhao
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Zhiyong Wei
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Juekuan Yang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yajing Kan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Li H, Guo Y, Yin J, Chen W, Xu H, Cheng T, Liu C. Critical roles of small silk fibroin molecules in the self-assembly and properties of regenerated silk fibroin. Int J Biol Macromol 2025; 284:137926. [PMID: 39577537 DOI: 10.1016/j.ijbiomac.2024.137926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Silk is primarily composed of silk fibroin (SF) and silk sericin (SS), with SF significantly contributing to the mechanical properties of silk fibers. SF consists of the large molecular fibroin heavy chain (Fib-H), small molecular fibroin light chain (Fib-L), and P25 protein. Degumming is a crucial step in both the silk reeling process and the preparation of regenerated silk fibroin (RSF), but it can cause damage to Fib-H. This study investigates how degumming affects small SF molecules and their influence on the properties of silk fibers and RSF. A gradient degumming treatment using various reagents was employed. SS antibody detection indicated that 3 g/L papain and sodium carbonate (Na2CO3) at concentrations ≥0.2 % almost completely removed SS. SF antibody detection revealed that Na2CO3 degumming severely damaged Fib-H and degraded Fib-L and P25. While tensile tests showed that this damage did not significantly affect the mechanical properties of SF fibers, the loss of small SF molecules reduced the mechanical properties of the RSF membranes and delayed RSF gelation. Atomic force microscopy demonstrated that RSF containing Fib-H of similar molecular weight (100-180 kDa) can self-assemble into nanofibrils when small SF molecules are present, whereas 0.5 % Na2CO3-degummed RSF lacking these small SF molecules cannot form nanofibrils. By adding additional small SF molecules to the 0.5 % Na2CO3-degummed RSF, nanofibrils can be formed. This research highlights the critical role of small SF molecules in the properties of RSF and provides a theoretical foundation for the development of RSF-derived materials.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yuanyuan Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jie Yin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Wei Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hanfu Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China.
| |
Collapse
|
5
|
Zhang S, Liu R, Lan F, Wang Y, Wang H, Liu Y, Ren C, Gao H. Effects of different rearing methods on cocoon silk strength in silkworm Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2292-2302. [PMID: 39475353 DOI: 10.1093/jee/toae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 01/11/2025]
Abstract
In recent years, the use of artificial diet to rear silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has advanced rapidly in China. However, significant differences are found in the production and performance of silk from silkworms reared on artificial diet and mulberry leaves, thereby affecting the development of artificial diet usage in sericulture. To understand the reasons for these differences, we tested the following 3 rearing methods: all-instar mulberry leaf rearing (Mul), all-instar artificial diet rearing (Diet), and instars 1-3 reared on artificial diet followed by instars 4-5 reared on mulberry leaf (Mix). The results showed that the silk production was significantly lower under Diet than Mix and Mul. Electron microscopy images revealed that the protein synthesis and energy supply were decreased under Dier and Mix compared with Mul. Subsequent strength analysis indicated that the relative strength of silk was highest under Mix, followed by Mul, and weakest under Diet. However, no significant differences in elongation were observed among treatments. The β-sheet content of silk was significantly higher under Mix than Diet and Mul, and a similar trend was observed for the crystallinity. Furthermore, the elevated expression of BmChiNAG and the reduced expression of BmTpn genes may be a significant factor for the notable disparities in cocoon silk fineness and strength among the threes. These findings provide deep insights into the differences in silk produced by silkworms reared on mulberry leaves and artificial diet, as well as providing a reference for improving artificial diet for rearing silkworms.
Collapse
Affiliation(s)
- Shengxiang Zhang
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| | - Ran Liu
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| | - Fengjie Lan
- Department of Sericulture, Sericulture and Edible Fungus Institute, Yibin Academy of Agricultural Sciences, Yibin, Sichuan 644699, China
| | - Yi Wang
- Department of Sericulture, Sericulture and Edible Fungus Institute, Yibin Academy of Agricultural Sciences, Yibin, Sichuan 644699, China
| | - Huizhen Wang
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| | - Yangyang Liu
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| | - Chunjiu Ren
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| | - Huiju Gao
- Department of Sericulture, College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
6
|
Yang H, Guo Y, Wang J, Tao C, Cao J, Cheng T, Liu C. Bmgsb is involved in the determination of cell fate by affecting the cell cycle genes in the silk gland of Bombyx mori. Int J Biol Macromol 2024; 283:136914. [PMID: 39515687 DOI: 10.1016/j.ijbiomac.2024.136914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Silk gland is the only organ of silkworm that can produce silk protein, which is a natural macromolecular protein complex and widely utilized in various fields such as biomaterials and biomedicine. The development of silk gland and the expression patterns of silk protein crucial for the silk industry. In this study, the function of a transcription factor Bmgsb was investigated with CRISPR/Cas9 and transgenic system. It was found that the homozygous individuals in the Bmgsb KO line experienced spinning failure and pupae death, the AMSG exhibited defects, and the ASG displayed abnormal curvature. These phenotypes were accompanied by increased DNA endoreplication and significantly upregulated expression of fibroin genes in the ASG. RT-qPCR results confirmed significant upregulation of cell cycle-related genes, including cyclin G and cyclin T in the Bmgsb KO line. Furthermore, ectopic expression of Bmgsb in the PSG weakened PSG curvature, inhibited DNA endoreplication, and downregulated the expression of fibroin genes. These findings strongly suggest that Bmgsb plays a crucial role in determining cell fate in the silk gland and regulating the expression of silk protein through the cyclin pathway. Our research provides a theoretical foundation for further studies on organ differentiation and have implications for the silk industry.
Collapse
Affiliation(s)
- Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yuanyuan Guo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jinxia Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Li P, Tan D, Su A, Xiong X, Gao S, Zhang H, Yang J, Jian J, Zheng J, Jiang Q. Gallic acid functionalized silk fibroin/gelatin composite wound dressing for enhanced wound healing. Biomed Mater 2024; 20:015002. [PMID: 39467383 DOI: 10.1088/1748-605x/ad8c09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
As the incidence of chronic wounds increases, the requirements for wound dressings are rising. The specific aim of this study is to propose a novel gallic acid (GA) functionalized silk fibroin (SF) and gelatin (Gel) composite wound dressing in which GA is used as an antibacterial and wound healing substance. Via electrospinning, SF, Gel, and GA mixed solutions could be conveniently fabricated into a composite nanofiber mat (SF-Gel-GA), consisting of uniform fibers with an average diameter around 134.57 ± 84 nm. The internal mesh structure of SF-Gel-GA provides sufficient drug loading capacity, proper moisture permeability, and proper degradation rate. SF-Gel-GA presents excellent biocompatibility. NIH-3T3 fibroblast cells could adhere and spread stably on the SF-Gel-GA surface with slightly promoted proliferation. In the presence of SF-Gel-GA, the growth of both Gram-positive and Gram-negative bacteria, includingStaphylococcus aureusandPseudomonas aeruginosa, is significantly inhibited in both plate and suspension cultures. A cutaneous excisional mouse wound model proves the efficient ability of SF-Gel-GA to promote wound healing. Compared with pure SF dressing and commercial Tegaderm Hydrocolloid3Mdressing, the wound closure rate with SF-Gel-GA treatment is significantly improved. The histological assessments further demonstrate SF-Gel-GA could facilitate collagen deposition, neovascularization, and epithelialization at wound sites to promote wound healing. In conclusion, a novel SF-Gel-GA composite wound dressing with efficient wound healing activities have been developed for chronic wound treatment with broad healing potential.
Collapse
Affiliation(s)
- Ping Li
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
- Banan Hospital Affiliated to Chongqing Medical University, Chongqing 401320, People's Republic of China
| | - Ding Tan
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Aihua Su
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xingliang Xiong
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shasha Gao
- Chongqing University Three Gorges Hospital, Chongqing 400000, People's Republic of China
| | - Haiyang Zhang
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jiaqi Yang
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jie Jian
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zheng
- Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qifeng Jiang
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
8
|
Qian Z, Sun C, Li Q, Xie Y, Zhan L, Liu X, Wang G, Wei Y, Qiu J, Peng Q. Unravelling the antioxidant behaviour of self-assembly β-Sheet in silk fibroin. Redox Biol 2024; 76:103307. [PMID: 39213701 PMCID: PMC11401358 DOI: 10.1016/j.redox.2024.103307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Local oxidative stress in diseases or injury severely hinders cell homeostasis and organ regeneration. Antioxidant therapy is an effective strategy for oxidative stress treatment. Biomaterials with good biocompatibility and reactive oxygen species (ROS) scavenging ability are good choices for antioxidant therapeutics. However, there are few natural biomaterials that are identified with both biocompatibility and strong antioxidant activity. Here, we show, for the first time, that silk fibroin (SF) is a strong antioxidant, which can eliminate ROS in both cells and zebrafish. We further demonstrate that the β-sheet structures turn into a random coiled structure when SF is treated with hydrogen peroxide. The content of β-sheet structures can be increased by heating, thus enhancing the antioxidation properties of SF. Therefore, SF can serve as a good antioxidant biomaterial for therapeutics, and its β-sheet structure-based antioxidation mechanism provides a novel theoretical basis, which could be a new cue for more antioxidant biomaterial discovery and identification.
Collapse
Affiliation(s)
- Zhiyong Qian
- Department of Anatomy the Basic Medicine College, Inner Mongolia Medical University, Hohhot, 010000, Inner Mongolia, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Chang Sun
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Qianqian Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yafan Xie
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Lingpeng Zhan
- Institute for Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiangli Liu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Guanbo Wang
- Institute for Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China; School of Materials Science and Engineering, North Minzu University, Yinchuan, 750021, China.
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
9
|
Tao C, Li J, Du W, Qin X, Cao J, Liu C, Cheng T. Broad Complex-Z2 directly activates BmMBF2 to inhibit the silk protein synthesis in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 277:134211. [PMID: 39069049 DOI: 10.1016/j.ijbiomac.2024.134211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Silk proteins, as natural macromolecules, have extensive applications in biomaterials and biomedicine. In the silkworm, the expression of silk protein genes is negatively associated with ecdysone during the molt stage, while it is positively correlated with juvenile hormone during the intermolt stage. In our previous study, overexpression of an isoform Z2 of Broad Complex (BmBrC-Z2), an ecdysone early response factor, significantly reduced the expression of silk protein genes. However, the underlying regulatory mechanism remains unclear. In this study, we conducted transcriptomic analysis and found that overexpressing BmBrC-Z2 significantly upregulated the expression level of multiprotein bridging factor 2 (BmMBF2), an inhibitor of fibroin heavy chain (FibH). Further investigations revealed that BmBrC-Z2 directly regulated BmMBF2 by binding to cis-regulatory elements, as demonstrated using Dual-Luciferase Reporter Gene Assay, EMSA, and ChIP-PCR assay. Additionally, when using the CRISPR/Cas9 system to knock out BmMBF2, silk protein genes were significantly upregulated during the molt stage of mutant larvae. These findings uncover the negative regulation of silk protein synthesis by the ecdysone signaling cascade, specifically through the manipulation of BmMBF2 expression during the molt stage. This study enhances to our understanding of the temporal regulatory mechanism governing silk protein synthesis and offers a potential strategy for improving silk yield.
Collapse
Affiliation(s)
- Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jiaojiao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Wenjie Du
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Jiang W, Guo K, Dong H, Zhang X, Guo Z, Duan J, Jing X, Xia Q, Zhao P. Mutation in the Bombyx mori BmGMC2 gene impacts silk production and silk protein synthesis. Int J Biol Macromol 2024; 274:133400. [PMID: 38925172 DOI: 10.1016/j.ijbiomac.2024.133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Silk is a natural protein fiber that is predominantly comprised of fibroin and sericin. In addition, it contains seroins, protease inhibitors, enzymes, and other proteins. We found an ecdysone oxidase BmGMC2, notably, which is specifically and highly expressed only in the silk glands of silkworms (Bombyx mori L.). It is also one of the main components of non-cocoon silk, however, its precise function remains unclear. In this study, we examined the spatiotemporal expression pattern of this protein and obtained a homozygous mutant strain (K-GMC2) using the CRISPR-Cas9 system. Compared to the wild-type strain (WT), the silk production and main silk proteins significantly decreased in the larval stage, and the adhesive strength of native silk proteins decreased in the final instar. Proteomic data indicated the abundance of ribosomal proteins decreased significantly in K-GMC2, differentially expressed proteins (DEPs) were enriched in pathways related to neurodegenerative diseases and genetic information processing, indicating that knockout may lead to a certain degree of cell stress, affecting the synthesis of silk proteins. This study investigated the expression pattern and gene function of ecdysone oxidase BmGMC2 in silk and silk glands, laying the groundwork for understanding the role of enzymes in the production of silk fibers.
Collapse
Affiliation(s)
- Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Haonan Dong
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
11
|
Zhang T, Ma S, Zhang Z, Guo Y, Yang D, Lu W. Overview and Evolution of Insect Fibroin Heavy Chain (FibH). Int J Mol Sci 2024; 25:7179. [PMID: 39000286 PMCID: PMC11241164 DOI: 10.3390/ijms25137179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The FibH gene, crucial for silk spinning in insects, encodes a protein that significantly influences silk fiber mechanics. Due to its large size and repetitive sequences, limited known sequences of insect FibH impede comprehensive understanding. Here, we analyzed 114 complete FibH gene sequences from Lepidoptera (71 moths, 24 butterflies) and 13 Trichoptera, revealing single-copy FibH in most species, with 2-3 copies in Hesperinae and Heteropterinae (subfamily of skippers). All FibH genes are structured with two exons and one intron (39-45 bp), with the second exon being notably longer. Moths exhibit higher GC content in FibH compared to butterflies and Trichoptera. The FibH composition varies among species, with moths and butterflies favoring Ala, Gly, Ser, Pro, Gln, and Asn, while Trichoptera FibH is enriched in Gly, Ser, and Arg, and has less Ala. Unique to Trichoptera FibH are Tyr, Val, Arg, and Trp, whereas Lepidoptera FibH is marked by polyAla (polyalanine), polySer (polyserine), and the hexapeptide GAGSGA. A phylogenetic analysis suggests that Lepidoptera FibH evolved from Trichoptera, with skipper FibH evolving from Papilionoidea. This study substantially expands the FibH repertoire, providing a foundation for the development of artificial silk.
Collapse
Affiliation(s)
- Tong Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (T.Z.); (S.M.); (Y.G.); (D.Y.)
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (T.Z.); (S.M.); (Y.G.); (D.Y.)
| | - Ziyang Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China;
| | - Yongkang Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (T.Z.); (S.M.); (Y.G.); (D.Y.)
| | - Daiying Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (T.Z.); (S.M.); (Y.G.); (D.Y.)
| | - Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; (T.Z.); (S.M.); (Y.G.); (D.Y.)
| |
Collapse
|
12
|
Shi R, Lu W, Yang J, Ma S, Wang A, Sun L, Xia Q, Zhao P. Ectopic expression of BmeryCA in Bombyx mori increases silk yield and mechanical properties by altering the pH of posterior silk gland. Int J Biol Macromol 2024; 271:132695. [PMID: 38810858 DOI: 10.1016/j.ijbiomac.2024.132695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The silk glands are the specialized tissue where silk protein synthesis, secretion, and conformational transitions take place, with pH playing a critical role in both silk protein synthesis and fiber formation. In the present study, we have identified erythrocyte carbonic anhydrase (BmeryCA) belonging to the α-CA class in the silk gland, which is a Zn2+ dependent metalloenzyme capable of efficiently and reversibly catalyzing the hydrated reaction of CO2 to HCO3-, thus participating in the regulation of acid-base balance. Multiple sequence alignments revealed that the active site of BmeryCA was highly conserved. Tissue expression profiling showed that BmeryCA had relatively high expression levels in hemolymph and epidermis but is barely expressed in the posterior silk gland (PSG). By specifically overexpressing BmeryCA in the PSG, we generated transgenic silkworms. Ion-selective microelectrode (ISM) measurements demonstrated that specifically overexpression of BmeryCA in the PSG led to a shift in pH from weakly alkaline to slightly neutral conditions. Moreover, the resultant PSG-specific BmeryCA overexpression mutant strain displayed a significant increase in both silk yield and silk fiber mechanical properties. Our research provided new insights into enhancing silk yield and improving the mechanical properties of silk fibers.
Collapse
Affiliation(s)
- Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jie Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Le Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
13
|
Karahisar Turan S, Kılıç Süloğlu A, İde S, Türkeş T, Barlas N. In vitro and in vivo investigation of Argiope bruennichi spider silk-based novel biomaterial for medical use. Biopolymers 2024; 115:e23572. [PMID: 38491802 DOI: 10.1002/bip.23572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
As a natural and biocompatible material with high strength and flexibility, spider silk is frequently used in biomedical studies. In this study, the availability of Argiope bruennichi spider silk as a surgical suture material was investigated. The effects of spider silk-based and commercial sutures, with and without Aloe vera coating, on wound healing were evaluated by a rat dorsal skin flap model, postoperatively (7th and 14th days). Biochemical, hematological, histological, immunohistochemical, small angle x-ray scattering (SAXS) analyses and mechanical tests were performed. A. bruennichi silk did not show any cytotoxic effect on the L929 cell line according to MTT and LDH assays, in vitro. The silk materials did not cause any allergic reaction, infection, or systemic effect in rats according to hematological and biochemical analyses. A. bruennichi spider silk group showed a similar healing response to commercial sutures. SAXS analysis showed that the 14th-day applications of A. bruennichi spider silk and A. vera coated commercial suture groups have comparable structural results with control group. In conclusion, A. bruennichi spider silk is biocompatible in line with the parameters examined and shows a healing response similar to the commercial sutures commonly used in the skin.
Collapse
Affiliation(s)
| | - Aysun Kılıç Süloğlu
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Semra İde
- Department of Physics Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Tuncay Türkeş
- Department of Biology, Faculty of Arts and Sciences, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Nurhayat Barlas
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Peng Z, Hu W, Yang X, Liu Q, Shi X, Tang X, Zhao P, Xia Q. Overexpression of bond-forming active protein for efficient production of silk with structural changes and properties enhanced in silkworm. Int J Biol Macromol 2024; 264:129780. [PMID: 38290638 DOI: 10.1016/j.ijbiomac.2024.129780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Silkworm silk exhibits excellent mechanical properties, biocompatibility, and has potential applications in the biomedical sector. This study focused on enhancing the mechanical properties of Bombyx mori silk by overexpressing three bond-forming active proteins (BFAPs): AFP, HSP, and CRP in the silk glands of silkworms. Rheological tests confirmed increased viscoelasticity in the liquid fibroin stock solution of transgenic silkworms, and dynamic mechanical thermal analysis (DMTA) indicated that all three BFAPs participated in the interactions between fibroin molecular networks in transgenic silk. The mechanical property assay indicated that all three BFAPs improved the mechanical characteristics of transgenic silk, with AFP and HSP having the most significant effects. A synchrotron radiation Fourier transform infrared spectroscopy assay showed that all three BFAPs increased the β-sheet content of transgenic silk. Synchrotron radiation wide-angle X-ray diffraction assay showed that all three BFAPs changed the crystallinity, crystal size, and orientation factor of the silk. AFP and HSP significantly improved the mechanical attributes of transgenic silk through increased crystallinity, refined crystal size, and a slight decrease in orientation. This study opens new possibilities for modifying silk and other fiber materials.
Collapse
Affiliation(s)
- Zhangchuan Peng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, China
| | - Wenbo Hu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xi Yang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qingsong Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - XiaoTing Shi
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xin Tang
- Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China.
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China.
| |
Collapse
|
15
|
Lu W, Shi R, Li X, Ma S, Yang D, Shang D, Xia Q. A review on complete silk gene sequencing and de novo assembly of artificial silk. Int J Biol Macromol 2024; 264:130444. [PMID: 38417762 DOI: 10.1016/j.ijbiomac.2024.130444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Silk, especially spider and insect silk, is a highly versatile biomaterial with potential applications in biomedicine, materials science, and biomimetic engineering. The primary structure of silk proteins is the basis for the mechanical properties of silk fibers. Biotechnologies such as single-molecule sequencing have facilitated an increasing number of reports on new silk genes and assembled silk proteins. Therefore, this review aims to provide a comprehensive overview of the recent advances in representative spider and insect silk proteins, focusing on identification methods, sequence characteristics, and de novo design and assembly. The review discusses three identification methods for silk genes: polymerase chain reaction (PCR)-based sequencing, PCR-free cloning and sequencing, and whole-genome sequencing. Moreover, it reveals the main spider and insect silk proteins and their sequences. Subsequent de novo assembly of artificial silk is covered and future research directions in the field of silk proteins, including new silk genes, customizable artificial silk, and the expansion of silk production and applications are discussed. This review provides a basis for the genetic aspects of silk production and the potential applications of artificial silk in material science and biomedical engineering.
Collapse
Affiliation(s)
- Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xue Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Daiying Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Deli Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
16
|
Park W, Yoon T, Chang H, You J, Na S. An atomistic scale simulation study of structural properties in the silk-fibrohexamerin complex. NANOSCALE 2024; 16:821-832. [PMID: 38093650 DOI: 10.1039/d3nr04787c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The use of Bombyx mori silk fibroin in composite materials has been extensively explored in many studies, owing to its remarkable mechanical properties. Recently, the N-glycan-engineered P25 protein was utilized to improve the mechanical properties of silk. However, the mechanism by which N-glycan-engineered P25 protein enhances the mechanical properties of silk remains unclear. This study analyzed the interaction between the P25 protein and silkworm silk using quantum mechanics/molecular mechanics multiscale simulations and discovered stronger hydrogen bonding between the amorphous domain and the P25 protein. The results confirmed that glycoengineering of the mannose molecule in N-glycan in orders of three, five, and seven increased the hydrogen bonding of the amorphous structures. However, P25 has fewer binding interactions with the crystalline domain. Silk amino acids and mannose molecules were analyzed using QM simulations, and hydroxyl and charged amino acids in the amorphous domains were found to have relatively higher reactivity with mannose molecules in N-glycans than basic and aliphatic amino acids in the crystalline domain. This study demonstrates how the N-glycan-engineered P25 protein can improve the mechanical properties of silk fibroin and identifies a key factor for N-glycan-engineered proteins.
Collapse
Affiliation(s)
- Wooboum Park
- Department of Mechanical Engineering, Korea University, 02841, Seoul, Republic of Korea.
| | - Taeyoung Yoon
- Department of Mechanical Engineering, Korea University, 02841, Seoul, Republic of Korea.
| | - Hyunjoon Chang
- HITS Inc., 124, Teheran-ro, Gangnam-gu, Seoul, 06234, Republic of Korea
| | - Juneseok You
- Department of Mechanical Engineering, Korea University, 02841, Seoul, Republic of Korea.
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, 02841, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Zhang X, Zhang J, Wu K, Yang H, Cheng T, Liu C. Identification and Functions of JHE 6 Specifically Expressed in Bombyx mori Silk Gland. INSECTS 2023; 14:908. [PMID: 38132582 PMCID: PMC10743834 DOI: 10.3390/insects14120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Juvenile hormone esterase (JHE) is the specific enzyme that degrades juvenile hormone (JH) and regulates the JH titer in insects. JH also regulates the development of the silk gland and the synthesis and secretion of silk proteins in Bombyx mori. Here, we identified nine possible JHE family members, Bmjhe1-9. Notably, Bmjhe6 is specifically expressed in the silk gland. Using semi-quantitative, quantitative real-time RT-PCR and Western blot, it was confirmed that Bmjhe6 was specifically expressed in the middle silk gland (MSG) with high levels in the anterior region of the MSG (A-MSG). The immunofluorescence localization analysis revealed that Bmjhe6 is produced within cells, secreted into the gland lumen, and co-transported with silk proteins into the anterior silk gland (ASG). In vitro hormone induction experiments demonstrated that Bmjhe6 responds to a JH analog, increasing its expression after 12-24 h, whereas 20-hydroxyecdysone inhibited it. In addition, Bmjhe6 knockdown using dsBmjhe6 injections accelerated larval development, resulting in increased larval body and silk gland weight. This induced disordered sericin genes (Ser2, Ser3) expression, and key genes in the JH synthesis pathway (BmKr-h1 and BmMet1) were significantly upregulated along with the transcription factors (SGF-1 and Sage). These results indicate that Bmjhe6 plays an important role in silk gland growth and silk protein synthesis by modulating JH signal.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
| | - Jikailang Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
| | - Keli Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (X.Z.); (J.Z.); (K.W.); (H.Y.); (T.C.)
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
18
|
Schmidt T, Puchalla N, Schendzielorz M, Kramell AE. Degumming and characterization of Bombyx mori and non-mulberry silks from Saturniidae silkworms. Sci Rep 2023; 13:19504. [PMID: 37945634 PMCID: PMC10636165 DOI: 10.1038/s41598-023-46474-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
In this study, cocoons and degummed silk samples of Bombyx mori and twenty Saturniidae species of the genera Actias, Attacus, Argema, Antheraea, Caligula, Callosamia, Cricula, Epiphora, Hyalophora, Loepa, Samia and Saturnia are studied to gain an insight into their morphology, chemical composition and physical structure. For this purpose, silk samples are characterized by optical microscopy and FTIR spectroscopy in attenuated total reflection mode (ATR-FTIR spectroscopy). Furthermore, degummed silk samples are analyzed for their amino acid (AA) composition by GC-FID. In the course of method development, various degumming methods are tested using alkalis, citric acid, enzymes and detergents. A mixture of 0.1% sodium carbonate and 2.5% ethylenediamine proves to be an effective agent for degumming Saturniidae and B. mori cocoons. After hydrolysis of the fibroin filaments with 6 N hydrochloric acid and derivatization with propyl chloroformate, fifteen AAs are identified and qualified. This method shows a satisfactory overall analytical performance with an average recovery rate of 95% at the medium concentration level. The chemical composition of the different silks was considered comparatively. Within a genus, the analyses usually show a high degree of similarity in AA composition and the resulting structural indices, whereas differences are found between genera.
Collapse
Affiliation(s)
- Theresa Schmidt
- Department of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Germany
| | - Nils Puchalla
- Department of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Germany
| | - Marcel Schendzielorz
- Department of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Germany
| | - Annemarie E Kramell
- Department of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Germany.
| |
Collapse
|
19
|
Wang R, Wang Y, Song J, Tian C, Jing X, Zhao P, Xia Q. A novel method for silkworm cocoons self-degumming and its effect on silk fibers. J Adv Res 2023; 53:87-98. [PMID: 36572337 PMCID: PMC10658416 DOI: 10.1016/j.jare.2022.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Conventional hot-alkaline cocoon degumming techniques greatly weaken the physicochemical and mechanical properties of silk fibroin fiber, thus affecting the quality of silk fabric. Moreover, it causes massive energy waste and serious environmental pollution. OBJECTIVE This study aims to establish a novel cocoon self-degumming method by genetic modification of silkworm varieties and silk fibers. METHODS The self-degummed cocoon material was generated by specifically overexpressing trypsinogen protein in the sericin layer of silk thread; the effect of cocoon self-degumming method was evaluated by the degumming rate of sericin protein, the cleanliness and equivalent diameter of silk fibroin fiber; the basic characteristics of silk fibroin fiber degummed by cocoon self-degumming method and conventional hot-alkaline degumming technique were determined by electron microscopy, Fourier infrared spectroscopy, X-ray diffraction and tensile tests; the composition and biological activity of degummed sericin protein was respectively analyzed by liquid chromatograph-mass spectrometry and cytological experiments. RESULTS The genetically engineered self-degumming cocoon containing trypsinogen protein was successfully created, and the content of trypsinogen protein in silk was 47.14 ± 0.90 mg/g. The sericin protein in the self-degumming cocoon was removed out in water or 1 mM Tris-HCl buffer (pH = 8.0). Compared to alkaline-degummed silk fibroin, self-degummed silk fibroin had better cleanliness, thicker equivalent diameter, more complete silk structure and better mechanical property. In addition, sericin protein degummed from self-degumming cocoons significantly promoted cell proliferation and caused no obvious cytotoxicity. CONCLUSION Compared to conventional hot-alkaline degumming technique, the cocoon self-degumming method by genetically overexpressing trypsinogen protein in sericin layer of silk thread can self-degummed in a mild degumming condition, and gain silk fiber with better quality and more biologically active sericin protein products. This strategy can not only reduce the environmental impact, but also generate greater economic value, which will accelerate its application in the silk and pharmaceutical industries.
Collapse
Affiliation(s)
- Riyuan Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuancheng Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China; Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, People's Republic of China
| | - Jianxin Song
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Chi Tian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xinyuan Jing
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China; Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, People's Republic of China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, People's Republic of China; Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
20
|
Saad M, El-Samad LM, Gomaa RA, Augustyniak M, Hassan MA. A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. Int J Biol Macromol 2023; 250:126067. [PMID: 37524279 DOI: 10.1016/j.ijbiomac.2023.126067] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Silks are natural polymers that have been widely used for centuries. Silk consists of a filament core protein, termed fibroin, and a glue-like coating substance formed of sericin (SER) proteins. This protein is extracted from the silkworm cocoons (particularly Bombyx mori) and is mainly composed of amino acids like glycine, serine, aspartic acid, and threonine. Silk SER can be obtained using numerous methods, including enzymatic extraction, high-temperature, autoclaving, ethanol precipitation, cross-linking, and utilizing acidic, alkali, or neutral aqueous solutions. Given the versatility and outstanding properties of SER, it is widely fabricated to produce sponges, films, and hydrogels for further use in diverse biomedical applications. Hence, many authors reported that SER benefits cell proliferation, tissue engineering, and skin tissue restoration thanks to its moisturizing features, antioxidant and anti-inflammatory properties, and mitogenic effect on mammalian cells. Remarkably, SER is used in drug delivery depending on its chemical reactivity and pH-responsiveness. These unique features of SER enhance the bioactivity of drugs, facilitating the fabrication of biomedical materials at nano- and microscales, hydrogels, and conjugated molecules. This review thoroughly outlines the extraction techniques, biological properties, and respective biomedical applications of SER.
Collapse
Affiliation(s)
- Marwa Saad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Rehab A Gomaa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
21
|
Wu J, Lei J, Chen M, Sun Y, Jianwen H, Li S, Gang L, Zhang M, Yixin S, Zhang F, Zhengshi Z, Fan Z. Synthesis and Characterization of Photo-Cross-Linkable Silk Fibroin Methacryloyl Hydrogel for Biomedical Applications. ACS OMEGA 2023; 8:30888-30897. [PMID: 37663496 PMCID: PMC10468767 DOI: 10.1021/acsomega.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Photo-cross-linkable hydrogels have recently gained increased interest in the field of biomedical applications. In this study, silk fibroin was derivatized with methacrylic anhydride (MA) to obtain silk fibroin methacryloyl (SFMA), forming hydrogel under UV light exposure in 1 min. The SFMA sol-gel transition did not involve significant structural change at the early stage. Then, the formation of the irreversible β-sheet was confirmed after 24 h. The resulting SFMA hydrogel showed a homogeneous porous structure with pore sizes ranging from 400 to 700 μm, depending on the content. In addition, these hydrogels demonstrated a lower swelling capacity, higher rheological properties and compressive modulus, and slow degradation behavior at higher content, likely due to the higher degree of cross-linking. An experiment with cells indicated the good cell compatibility of these hydrogels, as revealed by Cell Counting Kit-8 (CCK-8) assays. As a tissue-engineered material, this photo-cross-linkable SFMA is expected to have a wide range of applications in the biomedical field.
Collapse
Affiliation(s)
- Jianhua Wu
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University,
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215004, China
- Department
of Trauma Orthopedics, The Affiliated Hospital
of Guizhou Medical University, Guiyang 550004, China
| | - Jiang Lei
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University,
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215004, China
| | - Ming Chen
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Yusheng Sun
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Hou Jianwen
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University,
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215004, China
| | - Suanao Li
- Medical
College of Soochow University, Soochow University, Suzhou 215123, China
| | - Liu Gang
- Department
of Trauma Orthopedics, The Affiliated Hospital
of Guizhou Medical University, Guiyang 550004, China
| | - Mingyang Zhang
- Medical
College of Soochow University, Soochow University, Suzhou 215123, China
| | - Shen Yixin
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University,
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215004, China
| | - Feng Zhang
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Zhang Zhengshi
- Department
of Spinal Surgery, Traditional Chinese Medicine
Hospital of Kunshan Affiliated to Nanjing TCM University, Kunshan 215300, China
| | - Zhihai Fan
- Department
of Orthopedics, The Second Affiliated Hospital of Soochow University,
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215004, China
| |
Collapse
|
22
|
Zhang Q, Hua X, Sun Y, Lin Z, Cao Y, Zhao P, Xia Q. Dynamic chromatin conformation and accessibility changes mediate the spatial-specific gene regulatory network in Bombyx mori. Int J Biol Macromol 2023; 240:124415. [PMID: 37060980 DOI: 10.1016/j.ijbiomac.2023.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Silk gland genes of Bombyx mori can have strict spatial expression patterns, which impact their functions and silk quality; however, our understanding of their regulation mechanisms is currently insufficient. To address this, the middle silk gland (MSG) and posterior silk gland (PSG) of the silkworm were investigated. Gene ontology annotation showed that spatially specific expressed genes were involved in the formation of H3k9me and chromatin topology. Chromatin conformation data generated by Hi-C showed that the topologically associated domain boundaries around FibL and Sericin1 genes were significantly different between MSG and PSG. Changes in chromatin conformation led to changes in chromatin activity, which significantly affected the expression of nearby genes in silkworm. Chromatin accessibility regions of MSG and PSG were analyzed using FAIRE-seq, and 1006 transcription factor motifs were identified in open chromatin regions. Furthermore, the spatial-specific expression patterns of silk gland genes were mainly associated with homeobox-contained transcription factors, such as POU-M2, which was specifically bound and relatively highly expressed in the MSG. The regulatory network mediated by POU-M2 regulated most of the spatial-specific expressed genes in MSG, such as ADH1. These results can aid in improving silk performance, optimizing silkworm breeding, and improving the gene spatial regulatory model research for insects.
Collapse
Affiliation(s)
- Quan Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaoting Hua
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yueting Sun
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China
| | - Zhongying Lin
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Yang Cao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
23
|
Guo K, Dong Z, Zhang X, Chen Y, Li Y, Jiang W, Qin L, Zhang Y, Guo Z, Xia Q, Zhao P. Analysis of histomorphometric and proteome dynamics inside the silk gland lumen of Bombyx mori revealed the dynamic change of silk protein during the molt stage. Int J Biol Macromol 2023; 236:123926. [PMID: 36889618 DOI: 10.1016/j.ijbiomac.2023.123926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Silkworms spin different silks at different growth stages for specific purposes. The silk spun before the end of each instar is stronger than that at the beginning of each instar and cocoon silk. However, the compositional changes in silk proteins during this process are unknown. Consequently, we performed histomorphological and proteomic analyses of the silk gland to characterize changes from the instar end to the next instar beginning. The silk glands were collected on day 3 of third- and fourth-instar larvae (III-3 and IV-3) and the beginning of fourth-instar larvae (IV-0). Proteomic analysis identified 2961 proteins from all silk glands. Silk proteins P25 and Ser5 were significantly more abundant in III-3 and IV-3 than in IV-0, and many cuticular proteins and protease inhibitors increased significantly in IV-0 compared with III-3 and IV-3. This shift may cause mechanical property differences between the instar end and beginning silk. Using section staining, qPCR, and western blotting, we found for the first time that silk proteins were degraded first and then resynthesized during the molting stage. Furthermore, we revealed that fibroinase mediated the changes of silk proteins during molting. Our results provide insights into the molecular mechanisms of silk proteins dynamic regulation during molting.
Collapse
Affiliation(s)
- Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhaoming Dong
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yuqing Chen
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Yi Li
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Lixia Qin
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yan Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Qingyou Xia
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
24
|
Jia L, Lu W, Hu D, Feng M, Wang A, Wang R, Sun H, Wang P, Xia Q, Ma S. Genetically engineered Blue silkworm capable of synthesizing natural blue pigment. Int J Biol Macromol 2023; 235:123863. [PMID: 36870637 DOI: 10.1016/j.ijbiomac.2023.123863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Synthetic biology is an eco-friendly and sustainable approach for the production of compounds, particularly used when the production processes involve toxic reagents. In this study, we used the silk gland of silkworm to produce indigoidine, a valuable natural blue pigment that cannot be synthesized naturally in animals. We genetically engineered these silkworms by integrating the indigoidine synthetase (idgS) gene from S. lavendulae and the PPTase (Sfp) gene from B. subtilis into the silkworm genome. In the resulting Blue silkworm, indigoidine was detected at a high level in the posterior silk gland (PSG), spanning all developmental stages from larvae to adults, without affecting silkworm growth or development. This synthesized indigoidine was secreted from the silk gland and subsequently stored in the fat body, with only a small fraction being excreted by the Malpighian tubule. Metabolomic analysis revealed that Blue silkworm efficiently synthesized indigoidine by upregulating l-glutamine, the precursor of indigoidine, and succinate, which is related to energy metabolism in the PSG. This study represents the first synthesis of indigoidine in an animal and therefore opens a new avenue for the biosynthesis of natural blue pigments and other valuable small molecules.
Collapse
Affiliation(s)
- Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Dan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Min Feng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Aoming Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Ruolin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hao Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Pan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| |
Collapse
|
25
|
Lu W, Ma S, Sun L, Zhang T, Wang X, Feng M, Wang A, Shi R, Jia L, Xia Q. Combined CRISPR toolkits reveal the domestication landscape and function of the ultra-long and highly repetitive silk genes. Acta Biomater 2023; 158:190-202. [PMID: 36603730 DOI: 10.1016/j.actbio.2022.12.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Highly repetitive sequences play a major structural and function role in the genome. In the present study, we developed Cas9-assisted cloning and SMRT sequencing of long repetitive sequences (CACS) to sequence and manipulate highly repetitive genes from eukaryotic genomes. CACS combined Cas9-mediated cleavage of a target segment from an intact genome, Gibson assembly cloning, and PacBio SMRT sequencing. Applying CACS, we directly cloned and sequenced the complete sequences of fibroin heavy chain (FibH) genes from 17 domesticated (Bombyx mori) and 7 wild (Bombyx mandarina) silkworms. Our analysis revealed the unique fine structure organization, genetic variations, and domestication dynamics of FibH. We also demonstrated that the length of the repetitive regions determined the mechanical properties of silk fiber, which was further confirmed by Cas9 editing of FibH. CACS is a simple, robust, and efficient approach, providing affordable accessibility to highly repetitive regions of a genome. STATEMENT OF SIGNIFICANCE: Silkworm silk is the earliest and most widely used animal fiber, and its excellent performance mainly depends on the fibroin heavy chain (FibH) protein. The FibH gene is the main breakthrough in understanding the formation mechanism and improvement of silk fiber. In the study, we developed a CACS method for characterizing the fine structure and domestication landscape of 24 silkworm FibH genes. We used CRISPR/Cas9 to edit the repetitive sequence of FibH genes, revealing the relationship between FibH genes and mechanical properties of silkworm silk. Our study is helpful in modifying silk genes to manipulate other valuable highly repetitive sequences, and provides insight for silkworm breeding.
Collapse
Affiliation(s)
- Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Le Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Xiaogang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Min Feng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Aoming Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400715, China.
| |
Collapse
|
26
|
Lu W, Zhang T, Zhang Q, Zhang N, Jia L, Ma S, Xia Q. FibH Gene Complete Sequences (FibHome) Revealed Silkworm Pedigree. INSECTS 2023; 14:244. [PMID: 36975929 PMCID: PMC10055898 DOI: 10.3390/insects14030244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The highly repetitive and variable fibroin heavy chain (FibH) gene can be used as a silkworm identification; however, only a few complete FibH sequences are known. In this study, we extracted and examined 264 FibH gene complete sequences (FibHome) from a high-resolution silkworm pan-genome. The average FibH lengths of the wild silkworm, local, and improved strains were 19,698 bp, 16,427 bp, and 15,795 bp, respectively. All FibH sequences had a conserved 5' and 3' terminal non-repetitive (5' and 3' TNR, 99.74% and 99.99% identity, respectively) sequence and a variable repetitive core (RC). The RCs differed greatly, but they all shared the same motif. During domestication or breeding, the FibH gene mutated with hexanucleotide (GGTGCT) as the core unit. Numerous variations existed that were not unique to wild and domesticated silkworms. However, the transcriptional factor binding sites, such as fibroin modulator-binding protein, were highly conserved and had 100% identity in the FibH gene's intron and upstream sequences. The local and improved strains with the same FibH gene were divided into four families using this gene as a marker. Family I contained a maximum of 62 strains with the optional FibH (Opti-FibH, 15,960 bp) gene. This study provides new insights into FibH variations and silkworm breeding.
Collapse
Affiliation(s)
- Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Quan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Na Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Integrative Science Center of Gerplasm Greation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| |
Collapse
|
27
|
Cao J, Zheng HS, Zhang R, Xu YP, Pan H, Li S, Liu C, Cheng TC. Dimmed gene knockout shortens larval growth and reduces silk yield in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2023; 32:26-35. [PMID: 36082617 DOI: 10.1111/imb.12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The bHLH domain transcription factor, Bombyx mori-derived dimmed (Bmdimm), is directly regulated by the JH-BmMet/BmSRC-BmKr-h1 pathway and plays a key role in regulating the expression of FibH, which codes the main component of silk protein. However, the other roles of Bmdimm in silk protein synthesis remain unclear. Here, we established a Bmdimm knockout (KO) line containing a 7-bp deletion via CRISPR/Cas9 system, which led to the absence of the bHLH domain. The expression level of silk protein genes and silk yield decreased significantly in the Bmdimm KO line. Moreover, knocking out Bmdimm led to shortened larval stages and significant weight loss in larvae and adults. Bmdimm was found to be highly expressed in the silk gland, but it was also expressed in the fat body. The expression level of Bmkr-h1 in the fat body was significantly downregulated in the Bmdimm KO line. Exogenous JHA treatment upregulated Bmkr-h1 and rescued the phenotype of larval growth in the Bmdimm KO line. In conclusion, knocking out Bmdimm led to a shortened larval stage via the inhibition of Bmkr-h1 expression, then reduced silk yield. These findings help to elucidate the regulatory mechanism of fibroin synthesis and larval development in silkworms.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Hong-Sheng Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ran Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yong-Ping Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Huan Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Shan Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ting-Cai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Peng Z, Hu W, Li X, Zhao P, Xia Q. Bending–Spinning Produces Silkworm and Spider Silk with Enhanced Mechanical Properties. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhangchuan Peng
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Wenbo Hu
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Xinning Li
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology Southwest University, Chongqing400716, China
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology Southwest University, Chongqing400716, China
- Biological Science Research Center Southwest University, Chongqing400716, China
| |
Collapse
|
29
|
Lin M, Hu Y, An H, Guo T, Gao Y, Peng K, Zhao M, Zhang X, Zhou H. Silk fibroin-based biomaterials for disc tissue engineering. Biomater Sci 2023; 11:749-776. [PMID: 36537344 DOI: 10.1039/d2bm01343f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is the major cause of disability worldwide, and intervertebral disc degeneration (IVDD) is one of the most important causes of low back pain. Currently, there is no method to treat IVDD that can reverse or regenerate intervertebral disc (IVD) tissue, but the recent development of disc tissue engineering (DTE) offers a new means of addressing these disadvantages. Among numerous biomaterials for tissue engineering, silk fibroin (SF) is widely used due to its easy availability and excellent physical/chemical properties. SF is usually used in combination with other materials to construct biological scaffolds or bioactive substance delivery systems, or it can be used alone. The present article first briefly outlines the anatomical and physiological features of IVD, the associated etiology and current treatment modalities of IVDD, and the current status of DTE. Then, it highlights the characteristics of SF biomaterials and their latest research advances in DTE and discusses the prospects and challenges in the application of SF in DTE, with a view to facilitating the clinical process of developing interventions related to IVD-derived low back pain caused by IVDD.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Haiying An
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Kaichen Peng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Meiling Zhao
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China.
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
30
|
Ectopic expression of sericin enables efficient production of ancient silk with structural changes in silkworm. Nat Commun 2022; 13:6295. [PMID: 36273007 PMCID: PMC9588020 DOI: 10.1038/s41467-022-34128-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Bombyx mori silk is a super-long natural protein fiber with a unique structure and excellent performance. Innovative silk structures with high performance are in great demand, thus resulting in an industrial bottleneck. Herein, the outer layer sericin SER3 is ectopically expressed in the posterior silk gland (PSG) in silkworms via a piggyBac-mediated transgenic approach, then secreted into the inner fibroin layer, thus generating a fiber with sericin microsomes dispersed in fibroin fibrils. The water-soluble SER3 protein secreted by PSG causes P25's detachment from the fibroin unit of the Fib-H/Fib-L/P25 polymer, and accumulation between the fibroin layer and the sericin layer. Consequently, the water solubility and stability of the fibroin-colloid in the silk glandular cavity, and the crystallinity increase, and the mechanical properties of cocoon fibers, moisture absorption and moisture liberation of the silk also improve. Meanwhile, the mutant overcomes the problems of low survival and abnormal silk gland development, thus enabling higher production efficiency of cocoon silk. In summary, we describe a silk gland transgenic target protein selection strategy to alter the silk fiber structure and to innovate its properties. This work provides an efficient and green method to produce silk fibers with new functions.
Collapse
|
31
|
Shi R, Ye D, Ma K, Tian W, Zhao Y, Guo H, Shao Z, Guan J, Ritchie RO. Understanding the Interfacial Adhesion between Natural Silk and Polycaprolactone for Fabrication of Continuous Silk Biocomposites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46932-46944. [PMID: 36194850 DOI: 10.1021/acsami.2c11045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The poor interfacial adhesion between silk fiber and polyester species remains a critical problem for the optimal mechanical performance of silk-reinforced polyester composites. Here, we investigated in quantitative terms the interfacial properties between natural silk fibers and polycaprolactone (PCL) at nano-, micro-, and macroscales and fabricated continuous silk-PCL composite filaments by melt extrusion and drawing processing of PCL melt at 100, 120, and 140 °C. Bombyx mori (Bm) silk, Antheraea pernyi (Ap) silk, and polyamide6 (PA6) fiber were compared to the composite with PCL. The Ap silk exhibited the highest surface energy, the best wettability, and the largest interfacial shear strength (IFSS) with PCL. The silk-PCL composite from the 120 °C melt processing displayed the highest tensile modulus, implying an optimal temperature for interfacial adhesion. The Raman imaging technique revealed in detail the nature of the physical fusion of the interface phase in these silk- and polyamide-reinforced PCL composites. This work is intended to lay a foundation for the design and processing of robust composites from continuous silk fibers and bioresorbable polyesters for potential structural biomaterials.
Collapse
Affiliation(s)
- Ruya Shi
- School of Materials Science and Engineering, Beihang University, Beijing100083, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing100083, P. R. China
| | - Dongdong Ye
- School of Textile Materials and Engineering, Wuyi University, Jiangmen529020, P. R. China
| | - Ke Ma
- School of Materials Science and Engineering, Beihang University, Beijing100083, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing100083, P. R. China
| | - Wenhan Tian
- School of Materials Science and Engineering, Beihang University, Beijing100083, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing100083, P. R. China
| | - Yan Zhao
- School of Materials Science and Engineering, Beihang University, Beijing100083, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing100083, P. R. China
| | - Hongbo Guo
- School of Materials Science and Engineering, Beihang University, Beijing100083, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing100083, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai200433, P. R. China
| | - Juan Guan
- School of Materials Science and Engineering, Beihang University, Beijing100083, P. R. China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing100083, P. R. China
| | - Robert O Ritchie
- Department of Materials Science & Engineering, University of California, Berkeley, California94720, United States
| |
Collapse
|
32
|
Guo K, Zhang X, Zhao D, Qin L, Jiang W, Hu W, Liu X, Xia Q, Dong Z, Zhao P. Identification and characterization of sericin5 reveals non-cocoon silk sericin components with high β-sheet content and adhesive strength. Acta Biomater 2022; 150:96-110. [PMID: 35902035 DOI: 10.1016/j.actbio.2022.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/01/2022]
Abstract
Sericins are glue proteins on the surface of silk fibers. Four sericins have been characterized in silkworm, namely sericin1 (Ser1), sericin2 (Ser2), sericin3 (Ser3), and sericin4 (Ser4). In this study, we report a novel sericin, sericin5 (Ser5), which exists only in non-cocoon silk. We describe the sequence, exon-intron structure, and translation products of Ser5 in Bombyx mori. The Ser5 gene is approximately 22-kb long and comprises 16 exons. Ser5 protein has a size of 260 kDa, as determined by SDS-PAGE, western blot, and LC-MS/MS. Immunofluorescence analysis revealed that Ser5 co-localizes with Ser1 in the sericin layer. The expression pattern of Ser5 was detected at the transcriptional and translational levels. We systematically analyzed and compared the amino acid composition, repeat regions, and hydrophilicity of silkworm sericins. Morphological observations showed that non-cocoon silk had more sericin than cocoon silk. Circular dichroism spectra revealed that non-cocoon silk sericin contained more β-sheet structures than cocoon silk sericin. In addition, we found that the hydrophilicity and adhesive strength of native sericin increases gradually from the inner layer to the outer layer. This research enhances our understanding of various sericins from cocoon silk and non-cocoon silk with regard to their expression patterns, hydrophilicity, secondary structure and adhesive performances. STATEMENT OF SIGNIFICANCE: : Sericin is a natural biomaterial with diverse biological properties, which has long been used as tissue engineering and biomedical applications. However, the composition and distribution of sericins in different kinds of silk are still uncertain, and the properties difference between sericins have not yet been reported. Our study makes a significant contribution to the literature as it identifies the sequence, composition, hydrophilicity and adhesive property of sericins. Moreover, it provides key insights into the structure-function and function-distribution relationships associated with sericins. We believe that this study will arouse the interest to the readership of your journal as it identifies the new complete sequence of sericin and revealed the composition and properties of sericin, thus highlighting their future potentials applications in both the biomaterial and technical fields.
Collapse
Affiliation(s)
- Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Lixia Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Wenchao Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xiao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China.
| |
Collapse
|
33
|
Combined analysis of silk synthesis and hemolymph amino acid metabolism reveal key roles for glycine in increasing silkworm silk yields. Int J Biol Macromol 2022; 209:1760-1770. [PMID: 35490768 DOI: 10.1016/j.ijbiomac.2022.04.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
Rearing silkworms (Bombyx mori) using formula feed has revolutionized traditional mulberry feed strategies. However, low silk production efficiencies persist and have caused bottlenecks, hindering the industrial application of formula feed sericulture. Here, we investigated the effects of formula feed amino acid composition on silk yields. We showed that imbalanced amino acids reduced DNA proliferation, decreased Fib-H, Fib-L, and P25 gene expression, and caused mild autophagy in the posterior silk gland, reducing cocoon shell weight and ratio. When compared with mulberry leaves, Gly, Ala, Ser, and Tyr percentages of total amino acids in formula feed were decreased by 5.26%, while Glu and Arg percentages increased by 9.56%. These changes increased uric acid and several amino acids levels in the hemolymph of silkworms on formula feed. Further analyses showed that Gly and Thr (important synthetic Gly sources) increased silk yields, with Gly increasing amino acid conversion efficiencies to silk protein, and reducing urea levels in hemolymph. Also, Gly promoted endomitotic DNA synthesis in silk gland cells via phosphoinositide 3-kinase (PI3K)/Akt/target of rapamycin (TOR) signaling. In this study, we highlighted the important role of Gly in regulating silk yields in silkworms.
Collapse
|
34
|
Chitin and cuticle proteins form the cuticular layer in the spinning duct of silkworm. Acta Biomater 2022; 145:260-271. [PMID: 35364319 DOI: 10.1016/j.actbio.2022.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 12/28/2022]
Abstract
Chitin is found in the exoskeleton and peritrophic matrix of arthropods, but recent studies have also identified chitin in the spinning duct of silk-spinning arthropods. Here, we report the presence and function of chitin and cuticle proteins ASSCP1 and ASSCP2 in the spinning duct of silkworm. We show that chitin and these proteins are co-located in the cuticular layer of the spinning duct. Ultrastructural analysis indicates that the cuticular layer has a multilayer structure by layered stacking of the chitin laminae. After knocking down ASSCP1 and ASSCP2, the fine structure of this layer was disrupted, which had negative impacts on the mechanical properties of silk. This work clarifies the function of chitin in the spinning duct of silkworm. Chitin and cuticle proteins are the main components of the cuticular layer, providing the shearing stress during silk fibrillogenesis and regulating the final mechanical properties of silk. STATEMENT OF SIGNIFICANCE: Recent studies have identified chitin in the spinning duct of silk-spinning arthropods. However, the role of chitin in this specific organ remains unclear. This study reports that chitin and cuticle proteins form the cuticular layer, a unique structure of the spinning duct of silkworm. This layer with a precise laminate structure gives the spinning duct flexible properties, provides shearing forces for silk fibrillogenesis, and contributes to silk final mechanical properties. Our work clarifies the component, ultrastructure, and biological significance of the silkworm cuticular layer, describes the specific process of silk fiber formation, and proposes new molecular targets (chitin and cuticle proteins) for the improvement of animal silks.
Collapse
|
35
|
de Palaminy L, Daher C, Moulherat C. Development of a non-destructive methodology using ATR-FTIR and chemometrics to discriminate wild silk species in heritage collections. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120788. [PMID: 34990920 DOI: 10.1016/j.saa.2021.120788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
This paper aims to develop a non-destructive methodology applicable to heritage artifacts in order to discriminate between different species of wild silks. Wild silks are less known than domestic silk from Bombyx mori, but they are numerous and have been used in textile weaving for thousands of years. Archaeological artifacts, museum artifacts, and ethnographic collections deserve to be better documented regarding wild silks. The developed methodology is based on Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) coupled with chemometric analyses such as Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). Discriminant statistical analysis has enabled within a corpus of wild silks, including cocoons from the collections of the musée du quai Branly-Jacques Chirac (Paris, France), to differentiate cocoons of the species Borocera madagascariensis (Lasiocampidae) from samples belonging to the Saturniidae family. These very encouraging results are promising for future studies involving more species and more diverse artifacts.
Collapse
Affiliation(s)
- Louise de Palaminy
- Musée du quai Branly-Jacques Chirac, 222 rue de l'Université, 75007 Paris, France.
| | - Céline Daher
- Musée du quai Branly-Jacques Chirac, 222 rue de l'Université, 75007 Paris, France
| | - Christophe Moulherat
- Musée du quai Branly-Jacques Chirac, 222 rue de l'Université, 75007 Paris, France
| |
Collapse
|
36
|
Proteomic characterization of the fibroin-based silk fibers produced by weaver ant Camponotus textor. J Proteomics 2022; 261:104579. [DOI: 10.1016/j.jprot.2022.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
|
37
|
Qu J, Feng P, Zhu Q, Ren Y, Li B. Study on the Effect of Stretching on the Strength of Natural Silk Based on Different Feeding Methods. ACS Biomater Sci Eng 2021; 8:100-108. [PMID: 34918508 DOI: 10.1021/acsbiomaterials.1c01256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Silk is an important biological protein fiber, which has been widely developed and used in textile and biomedical fields due to its excellent mechanical properties and good biocompatibility. Strength is an important indicator that determines the value and use of silk. Although investigations have been made on the mechanical properties of silkworm silks and their dependence relationship with the microstructures, the variation of silk strength formed in the process of silkworm spinning has not been reported. By feeding the same strain of silkworms with mulberry leaves, mulberry leaves + artificial feed, and artificial feed, silks with three filament sizes were obtained, respectively. The tensile test results showed that the strength and filament size of silk are inversely proportional. The structure and fibrosis process of different-strength silks were analyzed. The results showed that, compared with ordinary silk, the β-sheet and crystallinity content of high-strength silk is higher, indicating that its fibrosis process is more sufficient. We proposed that the stretched degree of silk protein determines its structure and properties. During the spinning process of individual silkworms, the secretion of silk protein is not stable, which will cause changes in the stretched degree. The measurement results of the intraindividual stretched degree and strength verified that the degree of stretch determines the strength of the silk. This study not only provides a deeper understanding of the properties of silk protein but also is of interest for the design and development of advanced biomimetic silk materials.
Collapse
Affiliation(s)
- Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China.,Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
38
|
Wang X, Tan X, Liu Q, Li Y, Li X, Dong Z, Dong H, Xia Q, Zhao P. Fiber Formation and Mechanical Properties of Bombyx mori Silk Are Regulated by Vacuolar-Type ATPase. ACS Biomater Sci Eng 2021; 7:5532-5540. [PMID: 34753284 DOI: 10.1021/acsbiomaterials.1c01230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of silk fiber formation in silkworms, Bombyx mori, is of particular scientific interest because it is closely related to the mechanical properties of silk fibers. However, there are still substantial knowledge gaps in understanding the details of this mechanism. Studies have found a pH gradient in the silk gland of silkworms. A vacuolar-type ATPase (V-ATPase) is thought to be involved in establishing this pH gradient. Although it is reported that the pH gradient plays a role in silk fibrillogenesis, the direct relationship between V-ATPase and silk mechanical properties is unclear. Thus, this study aims to clarify this relationship. We found that V-ATPase is highly and stably expressed in the anterior silk gland (ASG) and maintains the pH gradient and the fine structure of ASG. Inhibition of V-ATPase activity increased the β-sheet content and crystallinity of silk fibers. Tensile testing showed that the mechanical properties of silk fibers improved after inhibiting V-ATPase activity. All the data suggest that V-ATPase is a key factor in regulating silk fibrillogenesis and is related to the final mechanical properties of the silk fibers. V-ATPase is a potential target for silk mechanical property improvement.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xiaoyin Tan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingsong Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xinning Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Haonan Dong
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| |
Collapse
|
39
|
Asakura T, Ibe Y, Jono T, Matsuda H, Kuwabara N, Naito A. Structural investigations of polyurethane and
silk‐polyurethane
composite fiber studied by
13
C
solid‐state
NMR
spectroscopy. J Appl Polym Sci 2021. [DOI: 10.1002/app.51178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| | - Yusuke Ibe
- Polyurethane Research Laboratory Tosoh Corporation Yokkaichi Mie Japan
| | - Takaki Jono
- Polyurethane Research Laboratory Tosoh Corporation Yokkaichi Mie Japan
| | - Hironori Matsuda
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| | - Nobuo Kuwabara
- Gunma Sericultural Technology Center Maebashi Gunma Japan
| | - Akira Naito
- Department of Biotechnology Tokyo University of Agriculture and Technology Koganei Tokyo Japan
| |
Collapse
|
40
|
Gupta P, Mandal BB. Silk biomaterials for vascular tissue engineering applications. Acta Biomater 2021; 134:79-106. [PMID: 34384912 DOI: 10.1016/j.actbio.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Vascular tissue engineering is a rapidly growing field of regenerative medicine, which strives to find innovative solutions for vascular reconstruction. Considering the limited success of synthetic grafts, research impetus in the field is now shifted towards finding biologically active vascular substitutes bestowing in situ growth potential. In this regard, silk biomaterials have shown remarkable potential owing to their favorable inherent biological and mechanical properties. This review provides a comprehensive overview of the progressive development of silk-based small diameter (<6 mm) tissue-engineered vascular grafts (TEVGs), emphasizing their pre-clinical implications. Herein, we first discuss the molecular structure of various mulberry and non-mulberry silkworm silk and identify their favorable properties at the onset of vascular regeneration. The emergence of various state-of-the-art fabrication methodologies for the advancement of silk TEVGs is rationally appraised in terms of their in vivo performance considering the following parameters: ease of handling, long-term patency, resistance to acute thrombosis, stenosis and aneurysm formation, immune reaction, neo-tissue formation, and overall remodeling. Finally, we provide an update on the pre-clinical status of silk-based TEVGs, followed by current challenges and future prospects. STATEMENT OF SIGNIFICANCE: Limited availability of healthy autologous blood vessels to replace their diseased counterpart is concerning and demands other artificial substitutes. Currently available synthetic grafts are not suitable for small diameter blood vessels owing to frequent blockage. Tissue-engineered biological grafts tend to integrate well with the native tissue via remodeling and have lately witnessed remarkable success. Silk fibroin is a natural biomaterial, which has long been used as medical sutures. This review aims to identify several favorable properties of silk enabling vascular regeneration. Furthermore, various methodologies to fabricate tubular grafts are discussed and highlight their performance in animal models. An overview of our understanding to rationally improve the biological activity fostering the clinical success of silk-based grafts is finally discussed.
Collapse
|
41
|
Lu W, Lan X, Zhang T, Sun H, Ma S, Xia Q. Precise Characterization of Bombyx mori Fibroin Heavy Chain Gene Using Cpf1-Based Enrichment and Oxford Nanopore Technologies. INSECTS 2021; 12:insects12090832. [PMID: 34564273 PMCID: PMC8467315 DOI: 10.3390/insects12090832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Bombyx mori (B. mori), an important economic insect, is famous for its silk. B. mori silk is mainly composed of silk fibroin coated with sericin. Among them, the silk fibroin heavy chain protein has the highest content and the largest molecular weight, which is encoded by the silk fibroin heavy chain (FibH) gene. At present, apart from the complete sequence of the FibH of the B. mori strain p50T, there are no other reports regarding this protein. This is mainly because the special structure formed by the GC-rich repetitive sequence in FibH hinders the amplification of polymerase and the application of Sanger sequencing. Here, the FibH sequence of Dazao, which has 99.98% similarity to that of p50T, was obtained by means of CEO. As far as we know, this is the first complete FibH sequence of the Chinese B. mori strain. Additionally, the methylated CG sites in the FibH repeat unit were identified. Abstract To study the evolution of gene function and a species, it is essential to characterize the tandem repetitive sequences distributed across the genome. Cas9-based enrichment combined with nanopore sequencing is an important technique for targeting repetitive sequences. Cpf1 has low molecular weight, low off-target efficiency, and the same editing efficiency as Cas9. There are numerous studies on enrichment sequencing using Cas9 combined with nanopore, while there are only a few studies on the enrichment sequencing of long and highly repetitive genes using Cpf1. We developed Cpf1-based enrichment combined with ONT sequencing (CEO) to characterize the B. mori FibH gene, which is composed of many repeat units with a long and GC-rich sequence up to 17 kb and is not easily amplified by means of a polymerase chain reaction (PCR). CEO has four steps: the dephosphorylation of genomic DNA, the Cpf1 targeted cleavage of FibH, adapter ligation, and ONT sequencing. Using CEO, we determined the fine structure of B. moriFibH, which is 16,845 bp long and includes 12 repetitive domains separated by amorphous regions. Except for the difference of three bases in the intron from the reference gene, the other sequences are identical. Surprisingly, many methylated CG sites were found and distributed unevenly on the FibH repeat unit. The CEO we established is an available means to depict highly repetitive genes, but also a supplement to the enrichment method based on Cas9.
Collapse
Affiliation(s)
- Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.L.); (X.L.); (T.Z.); (H.S.)
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400715, China
| | - Xinhui Lan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.L.); (X.L.); (T.Z.); (H.S.)
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.L.); (X.L.); (T.Z.); (H.S.)
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400715, China
| | - Hao Sun
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.L.); (X.L.); (T.Z.); (H.S.)
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400715, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.L.); (X.L.); (T.Z.); (H.S.)
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400715, China
- Correspondence: (S.M.); (Q.X.)
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; (W.L.); (X.L.); (T.Z.); (H.S.)
- Chongqing Key Laboratory of Sericulture Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400715, China
- Correspondence: (S.M.); (Q.X.)
| |
Collapse
|
42
|
Cui WZ, Qiu JF, Dai TM, Chen Z, Li JL, Liu K, Wang YJ, Sima YH, Xu SQ. Circadian Clock Gene Period Contributes to Diapause via GABAeric-Diapause Hormone Pathway in Bombyx mori. BIOLOGY 2021; 10:biology10090842. [PMID: 34571719 PMCID: PMC8469157 DOI: 10.3390/biology10090842] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Diapause is a developmental transition in insects based on seasonal adaptation to adversity; it is regulated by a circadian clock system and the endocrine system. However, the molecular node and its mechanism underlying the effects of these systems are still unclear. Here, a mutant of Bombyx mori with the circadian clock gene Period (Per) knocked out was constructed, which dramatically changed the classic diapause-destined pathway. Per-knockout silkworms powerfully attenuated, but could not completely block, the predetermined effects of temperature and photoperiod on diapause determination, and this effect depended on the diapause hormone (DH) pathway. The impaired transcription-translation feedback loop of the circadian clock system lacking the Per gene caused direct up-regulation of the expression of GRD, a receptor of γ-aminobutyric acid (GABA), by changing expression level of Cycle. The synthesis of GABA in the tissue complex of brain-suboesophageal ganglion then increased and restricted the decomposition, which continuously promoted the GABAergic signal to play a role, and finally inhibiting (delaying) the release of DH to the hemolymph, and reducing the diapause-inducing effect of DH. The results provided an example to explain the regulatory mechanism of the circadian clock on endocrine hormones in the silkworm.
Collapse
Affiliation(s)
- Wen-Zhao Cui
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Tai-Ming Dai
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Zhuo Chen
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Jiang-Lan Li
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Kai Liu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yu-Jun Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China;
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-65880185
| |
Collapse
|
43
|
Comparison of Silks from Pseudoips prasinana and Bombyx mori Shows Molecular Convergence in Fibroin Heavy Chains but Large Differences in Other Silk Components. Int J Mol Sci 2021; 22:ijms22158246. [PMID: 34361011 PMCID: PMC8347419 DOI: 10.3390/ijms22158246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Many lepidopteran larvae produce silk feeding shelters and cocoons to protect themselves and the developing pupa. As caterpillars evolved, the quality of the silk, shape of the cocoon, and techniques in forming and leaving the cocoon underwent a number of changes. The silk of Pseudoips prasinana has previously been studied using X-ray analysis and classified in the same category as that of Bombyx mori, suggesting that silks of both species have similar properties despite their considerable phylogenetic distance. In the present study, we examined P. prasinana silk using 'omics' technology, including silk gland RNA sequencing (RNA-seq) and a mass spectrometry-based proteomic analysis of cocoon proteins. We found that although the central repetitive amino acid sequences encoding crystalline domains of fibroin heavy chain molecules are almost identical in both species, the resulting fibers exhibit quite different mechanical properties. Our results suggest that these differences are most probably due to the higher content of fibrohexamerin and fibrohexamerin-like molecules in P. prasinana silk. Furthermore, we show that whilst P. prasinana cocoons are predominantly made of silk similar to that of other Lepidoptera, they also contain a second, minor silk type, which is present only at the escape valve.
Collapse
|
44
|
Li F, Wang X, Chen L, Li Z, Zhang T, Wang T. Efficient development of silk fibroin membranes on liquid surface for potential use in biomedical materials. Int J Biol Macromol 2021; 182:237-243. [PMID: 33836192 DOI: 10.1016/j.ijbiomac.2021.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/22/2021] [Accepted: 04/03/2021] [Indexed: 01/11/2023]
Abstract
Silk fibroin (SF) protein is versatile for the application of biomaterials due to its excellent mechanical properties, biocompatibility and biodegradability. However, the efficient way to fabricate SF membranes with special structure is still challenging. Here, we develop an efficient and simple way to create SF membranes on the liquid (i.e. subphase) surface. It is essential to prepare highly concentrated SF solution with low surface tension by dissolving the degummed SF powders in 6% (w/v) LiBr/methanol solution by one step. 95 wt% polyethylene glycol (PEG) 200 and 30 wt% (NH4)2SO4 are the subphases, on which the SF solution spreads quickly, generating nonporous and microporous SF membranes (SFM-1 and SFM-2), respectively. PEG 200 causes more ordered molecular packing (β-sheets) in SFM-1. While Fast diffusion and denaturation of SF on (NH4)2SO4 solution lead to the formation of microporous, water-unstable membrane SFM-2. Both membranes have good transparency, hydrophilicty, and mechanical properties. To fabricate antibacterial biomaterials, we design a composite membrane by SFM-1 and SFM-2 sandwiching a layer of hydroxypropyl trimethylammonium chloride chitosan (HACC) to provide antibacterial functions. The sandwich membrane has good cell viability and antibacterial properties, showing potential use for biomedical materials.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Lei Chen
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China; SKL of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Zhi Li
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Tonghua Zhang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Tao Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
45
|
Tufan Y, Öztatlı H, Garipcan B, Ercan B. Development of electrically conductive porous silk fibroin/carbon nanofiber scaffolds. Biomed Mater 2021; 16:025027. [PMID: 33091884 DOI: 10.1088/1748-605x/abc3db] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tissue engineering applications typically require three-dimensional scaffolds which provide the requisite surface area for cellular functions, while allowing transport of nutrients, waste and oxygen to and from the surrounding tissues. Scaffolds need to ensure sufficient mechanical properties to provide mechanically stable frameworks under physiologically relevant stress levels. Meanwhile, electrically conductive platforms are also desirable for the regeneration of specific tissues, where electrical impulses are transmitted throughout the tissue for proper physiological functioning. Towards this goal, carbon nanofibers (CNFs) were incorporated into silk fibroin (SF) scaffolds whose pore size and porosity were controlled during a salt leaching process. In our methodology, CNFs were dispersed in SF due to the hydrogen bond-forming ability of hexafluoro-2-propanol, a fluoroalcohol used as a solvent for SF. Results showed enhanced electrical conductivity and mechanical properties upon the incorporation of CNFs into the SF scaffolds, while the metabolic activities of cells cultured on SF/CNF nanocomposite scaffolds were significantly improved by optimizing the CNF content, porosity and pore size range of the scaffolds. Specifically, SF/CNF nanocomposite scaffolds with electrical conductivities as high as 0.023 S cm-1, tangent modulus values of 260 ± 30 kPa, a porosity as high as 78% and a pore size of 376 ± 53 µm were fabricated for the first time in the literature. Furthermore, an increase of about 34% in the wettability of SF was achieved by the incorporation of 10% CNF, which provided enhanced fibroblast spreading on scaffold surfaces.
Collapse
Affiliation(s)
- Yiğithan Tufan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | | | | | | |
Collapse
|
46
|
Zhao S, Ye X, Wu M, Ruan J, Wang X, Tang X, Zhong B. Recombinant Silk Proteins with Additional Polyalanine Have Excellent Mechanical Properties. Int J Mol Sci 2021; 22:ijms22041513. [PMID: 33546270 PMCID: PMC7913374 DOI: 10.3390/ijms22041513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
This paper explores the structures of exogenous protein molecules that can effectively improve the mechanical properties of silkworm silk. Several transgenic vectors fused with the silkworm fibroin light chain and type 3 repeats in different multiples of the ampullate dragline silk protein 1 (MaSp1) from black widow spider with different lengths of the polyalanine motifs were constructed for this study. Transgenic silkworms were successfully obtained by piggyBac-mediated microinjection. Molecular detection showed that foreign proteins were successfully secreted and contained within the cocoon shells. According to the prediction of PONDR® VSL2 and PONDR® VL-XT, the type 3 repeats and the polyalanine motif of the MaSp1 protein were amorphous. The results of FTIR analysis showed that the content of β-sheets in the silk of transgenic silkworms engineered with transgenic vectors with additional polyalanine was significantly higher than that of wild-type silkworm silk. Additionally, silk with a higher β-sheet content had better fracture strength and Young’s modulus. The mechanical properties of silk with longer chains of exogenous proteins were improved. In general, our results provide theoretical guidance and technical support for the large-scale production of excellent bionic silk.
Collapse
|
47
|
Davis S, Roldo M, Blunn G, Tozzi G, Roncada T. Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2021; 9:603408. [PMID: 33585430 PMCID: PMC7873466 DOI: 10.3389/fbioe.2021.603408] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage is a highly specialised connective tissue of diarthrodial joints which provides a smooth, lubricated surface for joint articulation and plays a crucial role in the transmission of loads. In vivo cartilage is subjected to mechanical stimuli that are essential for cartilage development and the maintenance of a chondrocytic phenotype. Cartilage damage caused by traumatic injuries, ageing, or degradative diseases leads to impaired loading resistance and progressive degeneration of both the articular cartilage and the underlying subchondral bone. Since the tissue has limited self-repairing capacity due its avascular nature, restoration of its mechanical properties is still a major challenge. Tissue engineering techniques have the potential to heal osteochondral defects using a combination of stem cells, growth factors, and biomaterials that could produce a biomechanically functional tissue, representative of native hyaline cartilage. However, current clinical approaches fail to repair full-thickness defects that include the underlying subchondral bone. Moreover, when tested in vivo, current tissue-engineered grafts show limited capacity to regenerate the damaged tissue due to poor integration with host cartilage and the failure to retain structural integrity after insertion, resulting in reduced mechanical function. The aim of this review is to examine the optimal characteristics of osteochondral scaffolds. Additionally, an overview on the latest biomaterials potentially able to replicate the natural mechanical environment of articular cartilage and their role in maintaining mechanical cues to drive chondrogenesis will be detailed, as well as the overall mechanical performance of grafts engineered using different technologies.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
48
|
Qin D, Wang G, Dong Z, Xia Q, Zhao P. Comparative Fecal Metabolomes of Silkworms Being Fed Mulberry Leaf and Artificial Diet. INSECTS 2020; 11:E851. [PMID: 33266201 PMCID: PMC7759890 DOI: 10.3390/insects11120851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023]
Abstract
Metabonomics accurately monitors the precise metabolic responses to various dietary patterns. Metabolic profiling allows simultaneous measurement of various fecal metabolites whose concentrations may be affected by food intake. In this study, we analyzed the fecal metabolomes of silkworm (Bombyx mori) larvae reared on fresh mulberry leaves and artificial diets. 57 differentially expressed metabolites were identified by gas chromatography-mass spectrometry. Of these, 39 were up-regulated and 18 were downregulated in the mulberry leaf meal group. Most of the amino acids, carbohydrates and lipids associated with physical development and silk protein biosynthesis were enriched in silkworms reared on mulberry leaves. In contrast, the urea, citric acid, D-pinitol, D-(+)-cellobiose and N-acetyl glucosamine levels were relatively higher in the silkworm feeding on the artificial diets. The findings of this study help clarify the association between diet and metabolic profiling.
Collapse
Affiliation(s)
- DaoYuan Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - GenHong Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - ZhaoMing Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - QingYou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
49
|
Guo K, Zhang X, Dong Z, Ni Y, Chen Y, Zhang Y, Li H, Xia Q, Zhao P. Ultrafine and High-Strength Silk Fibers Secreted by Bimolter Silkworms. Polymers (Basel) 2020; 12:E2537. [PMID: 33143336 PMCID: PMC7693878 DOI: 10.3390/polym12112537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
Ultrafine fibers are widely employed because of their lightness, softness, and warmth retention. Although silkworm silk is one of the most applied natural silks, it is coarse and difficult to transform into ultrafine fibers. Thus, to obtain ultrafine high-performance silk fibers, we employed anti-juvenile hormones in this study to induce bimolter silkworms. We found that the bimolter cocoons were composed of densely packed thin fibers and small apertures, wherein the silk diameter was 54.9% less than that of trimolter silk. Further analysis revealed that the bimolter silk was cleaner and lighter than the control silk. In addition, it was stronger (739 MPa versus 497 MPa) and more stiffness (i.e., a higher Young's modulus) than the trimolter silk. FTIR and X-ray diffraction results revealed that the excellent mechanical properties of bimolter silk can be attributed to the higher β-sheet content and crystallinity. Chitin staining of the anterior silk gland suggested that the lumen is narrower in bimolters, which may lead to the formation of greater numbers of β-sheet structures in the silk. Therefore, this study reveals the relationship between the structures and mechanical properties of bimolter silk and provides a valuable reference for producing high-strength and ultrafine silk fibers.
Collapse
Affiliation(s)
- Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Zhaoming Dong
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Yuhui Ni
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
| | - Yuqing Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
| | - Yan Zhang
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Haoyun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Qingyou Xia
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| |
Collapse
|
50
|
Characterization of Bone Marrow and Wharton's Jelly Mesenchymal Stromal Cells Response on Multilayer Braided Silk and Silk/PLCL Scaffolds for Ligament Tissue Engineering. Polymers (Basel) 2020; 12:polym12092163. [PMID: 32971891 PMCID: PMC7569883 DOI: 10.3390/polym12092163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022] Open
Abstract
(1) Background: A suitable scaffold with adapted mechanical and biological properties for ligament tissue engineering is still missing. (2) Methods: Different scaffold configurations were characterized in terms of morphology and a mechanical response, and their interactions with two types of stem cells (Wharton's jelly mesenchymal stromal cells (WJ-MSCs) and bone marrow mesenchymal stromal cells (BM-MSCs)) were assessed. The scaffold configurations consisted of multilayer braids with various number of silk layers (n = 1, 2, 3), and a novel composite scaffold made of a layer of copoly(lactic acid-co-(e-caprolactone)) (PLCL) embedded between two layers of silk. (3) Results: The insertion of a PLCL layer resulted in a higher porosity and better mechanical behavior compared with pure silk scaffold. The metabolic activities of both WJ-MSCs and BM-MSCs increased from day 1 to day 7 except for the three-layer silk scaffold (S3), probably due to its lower porosity. Collagen I (Col I), collagen III (Col III) and tenascin-c (TNC) were expressed by both MSCs on all scaffolds, and expression of Col I was higher than Col III and TNC. (4) Conclusions: the silk/PLCL composite scaffolds constituted the most suitable tested configuration to support MSCs migration, proliferation and tissue synthesis towards ligament tissue engineering.
Collapse
|