1
|
Heuberger L, Korpidou M, Guinart A, Doellerer D, López DM, Schoenenberger C, Milinkovic D, Lörtscher E, Feringa BL, Palivan CG. Photoreceptor-Like Signal Transduction Between Polymer-Based Protocells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413981. [PMID: 39491508 PMCID: PMC11756044 DOI: 10.1002/adma.202413981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Deciphering inter- and intracellular signaling pathways is pivotal for understanding the intricate communication networks that orchestrate life's dynamics. Communication models involving bottom-up construction of protocells are emerging but often lack specialized compartments sufficiently robust and hierarchically organized to perform spatiotemporally defined signaling. Here, the modular construction of communicating polymer-based protocells designed to mimic the transduction of information in retinal photoreceptors is presented. Microfluidics is used to generate polymeric protocells subcompartmentalized by specialized artificial organelles. In one protocell population, light triggers artificial organelles with membrane-embedded photoresponsive rotary molecular motors to set off a sequence of reactions starting with the release of encapsulated signaling molecules into the lumen. Intercellular communication is mediated by signal transfer across membranes to protocells containing catalytic artificial organelles as subcompartments, whose signal conversion can be modulated by environmental calcium. Signal propagation also requires selective permeability of the diverse compartments. By segregating artificial organelles in distinct protocells, a sequential chain of reactions mediating intercellular communication is created that is further modulated by adding extracellular messengers. This connective behavior offers the potential for a deeper understanding of signaling pathways and faster integration of proto- and living cells, with the unique advantage of controlling each step by bio-relevant signals.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of ChemistryUniversity of BaselBasel4002Switzerland
| | - Maria Korpidou
- Department of ChemistryUniversity of BaselBasel4002Switzerland
| | - Ainoa Guinart
- Faculty of Science and EngineeringStratingh Institute for ChemistryUniversity of GroningenAG Groningen9747The Netherlands
| | - Daniel Doellerer
- Faculty of Science and EngineeringStratingh Institute for ChemistryUniversity of GroningenAG Groningen9747The Netherlands
| | | | | | | | - Emanuel Lörtscher
- IBM Research Europe–ZürichSäumerstrasse 4Rüschlikon8803Switzerland
- NCCR – Molecular Systems EngineeringMattenstrasse 22Basel4002Switzerland
| | - Ben L. Feringa
- Faculty of Science and EngineeringStratingh Institute for ChemistryUniversity of GroningenAG Groningen9747The Netherlands
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselBasel4002Switzerland
- NCCR – Molecular Systems EngineeringMattenstrasse 22Basel4002Switzerland
- Swiss Nanoscience Institute (SNI)University of BaselKlingelbergstrasse 80Basel4056Switzerland
| |
Collapse
|
2
|
Korpidou M, Becker J, Tarvirdipour S, Dinu IA, Becer CR, Palivan CG. Glycooligomer-Functionalized Catalytic Nanocompartments Co-Loaded with Enzymes Support Parallel Reactions and Promote Cell Internalization. Biomacromolecules 2024; 25:4492-4509. [PMID: 38910355 PMCID: PMC11238334 DOI: 10.1021/acs.biomac.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
A major shortcoming associated with the application of enzymes in drug synergism originates from the lack of site-specific, multifunctional nanomedicine. This study introduces catalytic nanocompartments (CNCs) made of a mixture of PDMS-b-PMOXA diblock copolymers, decorated with glycooligomer tethers comprising eight mannose-containing repeating units and coencapsulating two enzymes, providing multifunctionality by their in situ parallel reactions. Beta-glucuronidase (GUS) serves for local reactivation of the drug hymecromone, while glucose oxidase (GOx) induces cell starvation through glucose depletion and generation of the cytotoxic H2O2. The insertion of the pore-forming peptide, melittin, facilitates diffusion of substrates and products through the membranes. Increased cell-specific internalization of the CNCs results in a substantial decrease in HepG2 cell viability after 24 h, attributed to simultaneous production of hymecromone and H2O2. Such parallel enzymatic reactions taking place in nanocompartments pave the way to achieve efficient combinatorial cancer therapy by enabling localized drug production along with reactive oxygen species (ROS) elevation.
Collapse
Affiliation(s)
- Maria Korpidou
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
| | - Jonas Becker
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Shabnam Tarvirdipour
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
| | - Ionel Adrian Dinu
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Cornelia G. Palivan
- Department
of Chemistry, University of Basel, Mattenstrasse 22, Basel 4002, Switzerland
- NCCR
Molecular Systems Engineering, Mattenstrasse 22, Basel 4002, Switzerland
| |
Collapse
|
3
|
Heuberger L, Messmer D, dos Santos EC, Scherrer D, Lörtscher E, Schoenenberger C, Palivan CG. Microfluidic Giant Polymer Vesicles Equipped with Biopores for High-Throughput Screening of Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307103. [PMID: 38158637 PMCID: PMC10953582 DOI: 10.1002/advs.202307103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 01/03/2024]
Abstract
Understanding the mechanisms of antibiotic resistance is critical for the development of new therapeutics. Traditional methods for testing bacteria are often limited in their efficiency and reusability. Single bacterial cells can be studied at high throughput using double emulsions, although the lack of control over the oil shell permeability and limited access to the droplet interior present serious drawbacks. Here, a straightforward strategy for studying bacteria-encapsulating double emulsion-templated giant unilamellar vesicles (GUVs) is introduced. This microfluidic approach serves to simultaneously load bacteria inside synthetic GUVs and to permeabilize their membrane with the pore-forming peptide melittin. This enables antibiotic delivery or the influx of fresh medium into the GUV lumen for highly parallel cultivation and antimicrobial efficacy testing. Polymer-based GUVs proved to be efficient culture and analysis microvessels, as microfluidics allow easy selection and encapsulation of bacteria and rapid modification of culture conditions for antibiotic development. Further, a method for in situ profiling of biofilms within GUVs for high-throughput screening is demonstrated. Conceivably, synthetic GUVs equipped with biopores can serve as a foundation for the high-throughput screening of bacterial colony interactions during biofilm formation and for investigating the effect of antibiotics on biofilms.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
| | - Daniel Messmer
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
| | - Elena C. dos Santos
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
| | - Dominik Scherrer
- IBM Research Europe–ZürichSäumerstrasse 4Rüschlikon8803Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe–ZürichSäumerstrasse 4Rüschlikon8803Switzerland
- NCCR‐Molecular Systems EngineeringMattenstrasse 24a, BPR 1095Basel4058Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22Basel4002Switzerland
- NCCR‐Molecular Systems EngineeringMattenstrasse 24a, BPR 1095Basel4058Switzerland
- Swiss Nanoscience Institute (SNI)University of BaselKlingelbergstrasse 82Basel4056Switzerland
| |
Collapse
|
4
|
Muthwill MS, Bina M, Paracini N, Coats JP, Merget S, Yorulmaz Avsar S, Messmer D, Tiefenbacher K, Palivan CG. Planar Polymer Membranes Accommodate Functional Self-Assembly of Inserted Resorcinarene Nanocapsules. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422470 DOI: 10.1021/acsami.3c18687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Solid-supported polymer membranes (SSPMs) offer great potential in material and life sciences due to their increased mechanical stability and robustness compared to solid-supported lipid membranes. However, there is still a need for expanding the functionality of SSPMs by combining them with synthetic molecular assemblies. In this study, SSPMs served as a flexible matrix for the insertion of resorcinarene monomers and their self-assembly into functional hexameric resorcinarene capsules. Resorcinarene capsules provide a large cavity with affinity specifically for cationic and polyhydroxylated molecules. While the capsules are stable in apolar organic solvents, they disassemble when placed in polar solvents, which limits their application. Here, a solvent-assisted approach was used for copolymer membrane deposition on solid support and simultaneous insertion of the resorcinarene monomers. By investigation of the molecular factors and conditions supporting the codeposition of the copolymer and resorcinarene monomers, a stable hybrid membrane was formed. The hydrophobic domain of the membrane played a crucial role by providing a sufficiently thick and apolar layer, allowing for the self-assembly of the capsules. The capsules were functional inside the membranes by encapsulating cationic guests from the aqueous environment. The amount of resorcinarene capsules in the hybrid membranes was quantified by a combination of quartz-crystal microbalance with dissipation and liquid chromatography-mass spectrometry, while the membrane topography and layer composition were analyzed by atomic force microscopy and neutron reflectometry. Functional resorcinarene capsules inside SSPMs can serve as dynamic sensors and potentially as cross-membrane transporters, thus holding great promise for the development of smart surfaces.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| | - Maryame Bina
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Nicolò Paracini
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - John Peter Coats
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Severin Merget
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Daniel Messmer
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Konrad Tiefenbacher
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|
5
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
6
|
Wagner AM, Kostina NY, Xiao Q, Klein ML, Percec V, Rodriguez-Emmenegger C. Glycan-Driven Formation of Raft-Like Domains with Hierarchical Periodic Nanoarrays on Dendrimersome Synthetic Cells. Biomacromolecules 2024; 25:366-378. [PMID: 38064646 DOI: 10.1021/acs.biomac.3c01027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The accurate spatial segregation into distinct phases within cell membranes coordinates vital biochemical processes and functionalities in living organisms. One of nature's strategies to localize reactivity is the formation of dynamic raft domains. Most raft models rely on liquid-ordered L0 phases in a liquid-disordered Ld phase lacking correlation and remaining static, often necessitating external agents for phase separation. Here, we introduce a synthetic system of bicomponent glycodendrimersomes coassembled from Janus dendrimers and Janus glycodendrimers (JGDs), where lactose-lactose interactions exclusively drive lateral organization. This mechanism results in modulated phases across two length scales, yielding raft-like microdomains featuring nanoarrays at the nanoscale. By varying the density of lactose and molecular architecture of JGDs, the nanoarray type and size, shape, and spacing of the domains were controlled. Our findings offer insight into the potential primordial origins of rudimentary raft domains and highlight the crucial role of glycans within the glycocalyx.
Collapse
Affiliation(s)
- Anna M Wagner
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
| | - Nina Yu Kostina
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Cesar Rodriguez-Emmenegger
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen 52074, Germany
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08028, Spain
| |
Collapse
|
7
|
Gao Y, Gao C, Fan Y, Sun H, Du J. Physically and Chemically Compartmentalized Polymersomes for Programmed Delivery and Biological Applications. Biomacromolecules 2023; 24:5511-5538. [PMID: 37933444 DOI: 10.1021/acs.biomac.3c00826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multicompartment polymersomes (MCPs) refer to polymersomes that not only contain one single compartment, either in the membrane or in the internal cavity, but also mimic the compartmentalized structure of living cells, attracting much attention in programmed delivery and biological applications. The investigation of MCPs may promote the application of soft nanomaterials in biomedicine. This Review seeks to highlight the recent advances of the design principles, synthetic strategies, and biomedical applications of MCPs. The compartmentalization types including chemical, physical, and hybrid compartmentalization are discussed. Subsequently, the design and controlled synthesis of MCPs by the self-assembly of amphiphilic polymers, double emulsification, coprecipitation, microfluidics and particle assembly, etc. are summarized. Furthermore, the diverse applications of MCPs in programmed delivery of various cargoes and biological applications including cancer therapy, antimicrobials, and regulation of blood glucose levels are highlighted. Finally, future perspectives of MCPs from the aspects of controlled synthesis and applications are proposed.
Collapse
Affiliation(s)
- Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yirong Fan
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200072, China
| |
Collapse
|
8
|
Yu X, Jia S, Yu S, Chen Y, Zhang C, Chen H, Dai Y. Recent advances in melittin-based nanoparticles for antitumor treatment: from mechanisms to targeted delivery strategies. J Nanobiotechnology 2023; 21:454. [PMID: 38017537 PMCID: PMC10685715 DOI: 10.1186/s12951-023-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
As a naturally occurring cytolytic peptide, melittin (MLT) not only exhibits a potent direct tumor cell-killing effect but also possesses various immunomodulatory functions. MLT shows minimal chances for developing resistance and has been recognized as a promising broad-spectrum antitumor drug because of this unique dual mechanism of action. However, MLT still displays obvious toxic side effects during treatment, such as nonspecific cytolytic activity, hemolytic toxicity, coagulation disorders, and allergic reactions, seriously hampering its broad clinical applications. With thorough research on antitumor mechanisms and the rapid development of nanotechnology, significant effort has been devoted to shielding against toxicity and achieving tumor-directed drug delivery to improve the therapeutic efficacy of MLT. Herein, we mainly summarize the potential antitumor mechanisms of MLT and recent progress in the targeted delivery strategies for tumor therapy, such as passive targeting, active targeting and stimulus-responsive targeting. Additionally, we also highlight the prospects and challenges of realizing the full potential of MLT in the field of tumor therapy. By exploring the antitumor molecular mechanisms and delivery strategies of MLT, this comprehensive review may inspire new ideas for tumor multimechanism synergistic therapy.
Collapse
Affiliation(s)
- Xiang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China.
| | - Siyu Jia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Shi Yu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yaohui Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Chengwei Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Haidan Chen
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.
| | - Yanfeng Dai
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China.
| |
Collapse
|
9
|
Belluati A, Harley I, Lieberwirth I, Bruns N. An Outer Membrane-Inspired Polymer Coating Protects and Endows Escherichia coli with Novel Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303384. [PMID: 37452438 DOI: 10.1002/smll.202303384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Indexed: 07/18/2023]
Abstract
A bio-inspired membrane made of Pluronic L-121 is produced around Escherichia coli thanks to the simple co-extrusion of bacteria and polymer vesicles. The block copolymer-coated bacteria can withstand various harsh shocks, for example, temperature, pressure, osmolarity, and chemical agents. The polymer membrane also makes the bacteria resistant to enzymatic digestion and enables them to degrade toxic compounds, improving their performance as whole-cell biocatalysts. Moreover, the polymer membrane acts as an anchor layer for the surface modification of the bacteria. Being decorated with α-amylase or lysozyme, the cells are endowed with the ability to digest starch or self-predatory bacteria are created. Thus, without any genetic engineering, the phenotype of encapsulated bacteria is changed as they become sturdier and gain novel metabolic functionalities.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Iain Harley
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ingo Lieberwirth
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Nico Bruns
- Department of Chemistry and Centre for Synthetic Biology, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
10
|
Saunders C, Foote JEJ, Wojciechowski JP, Cammack A, Pedersen SV, Doutch JJ, Barriga HMG, Holme MN, Penders J, Chami M, Najer A, Stevens MM. Revealing Population Heterogeneity in Vesicle-Based Nanomedicines Using Automated, Single Particle Raman Analysis. ACS NANO 2023; 17:11713-11728. [PMID: 37279338 PMCID: PMC10311594 DOI: 10.1021/acsnano.3c02452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
The intrinsic heterogeneity of many nanoformulations is currently challenging to characterize on both the single particle and population level. Therefore, there is great opportunity to develop advanced techniques to describe and understand nanomedicine heterogeneity, which will aid translation to the clinic by informing manufacturing quality control, characterization for regulatory bodies, and connecting nanoformulation properties to clinical outcomes to enable rational design. Here, we present an analytical technique to provide such information, while measuring the nanocarrier and cargo simultaneously with label-free, nondestructive single particle automated Raman trapping analysis (SPARTA). We first synthesized a library of model compounds covering a range of hydrophilicities and providing distinct Raman signals. These compounds were then loaded into model nanovesicles (polymersomes) that can load both hydrophobic and hydrophilic cargo into the membrane or core regions, respectively. Using our analytical framework, we characterized the heterogeneity of the population by correlating the signal per particle from the membrane and cargo. We found that core and membrane loading can be distinguished, and we detected subpopulations of highly loaded particles in certain cases. We then confirmed the suitability of our technique in liposomes, another nanovesicle class, including the commercial formulation Doxil. Our label-free analytical technique precisely determines cargo location alongside loading and release heterogeneity in nanomedicines, which could be instrumental for future quality control, regulatory body protocols, and development of structure-function relationships to bring more nanomedicines to the clinic.
Collapse
Affiliation(s)
- Catherine Saunders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - James E. J. Foote
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jonathan P. Wojciechowski
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ana Cammack
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Simon V. Pedersen
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - James J. Doutch
- ISIS
Neutron and Muon Source, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot OX11 ODE, United Kingdom
| | - Hanna M. G. Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Margaret N. Holme
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jelle Penders
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mohamed Chami
- BioEM
Lab, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Adrian Najer
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
11
|
Nandi S, Nair KS, Bajaj H. Bacterial Outer-Membrane-Mimicking Giant Unilamellar Vesicle Model for Detecting Antimicrobial Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5891-5900. [PMID: 37036429 DOI: 10.1021/acs.langmuir.3c00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The construction of bacterial outer membrane models with native lipids like lipopolysaccharide (LPS) is a barrier to understanding antimicrobial permeability at the membrane interface. Here, we engineer bacterial outer membrane (OM)-mimicking giant unilamellar vesicles (GUVs) by constituting LPS under different pH conditions and assembled GUVs with controlled dimensions. We quantify the LPS reconstituted in GUV membranes and reveal their arrangement in the leaflets of the vesicles. Importantly, we demonstrate the applications of OM vesicles by exploring antimicrobial permeability activity across membranes. Model peptides, melittin and magainin-2, are examined where both peptides exhibit lower membrane activity in OM vesicles than vesicles devoid of LPS. Our findings reveal the mode of action of antimicrobial peptides in bacterial-membrane-mimicking models. Notably, the critical peptide concentration required to elicit activity on model membranes correlates with the cell inhibitory concentrations that revalidate our models closely mimic bacterial membranes. In conclusion, we provide an OM-mimicking model capable of quantifying antimicrobial permeability across membranes.
Collapse
Affiliation(s)
- Samir Nandi
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
12
|
Maffeis V, Hürlimann D, Krywko-Cendrowska A, Schoenenberger CA, Housecroft CE, Palivan CG. A DNA-Micropatterned Surface for Propagating Biomolecular Signals by Positional on-off Assembly of Catalytic Nanocompartments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202818. [PMID: 35869606 DOI: 10.1002/smll.202202818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Signal transduction is pivotal for the transfer of information between and within living cells. The composition and spatial organization of specified compartments are key to propagating soluble signals. Here, a high-throughput platform mimicking multistep signal transduction which is based on a geometrically defined array of immobilized catalytic nanocompartments (CNCs) that consist of distinct polymeric nanoassemblies encapsulating enzymes and DNA or enzymes alone is presented. The dual role of single entities or tandem CNCs in providing confined but communicating spaces for complex metabolic reactions and in protecting encapsulated compounds from denaturation is explored. To support a controlled spatial organization of CNCs, CNCs are patterned by means of DNA hybridization to a microprinted glass surface. Specifically, CNC-functionalized DNA microarrays are produced where individual reaction compartments are kept in close proximity by a distinct geometrical arrangement to promote effective communication. Besides a remarkable versatility and robustness, the most prominent feature of this platform is the reversibility of DNA-mediated CNC-anchoring which renders it reusable. Micropatterns of polymer-based nanocompartment assemblies offer an ideal scaffold for the development of the next generation responsive and communicative soft-matter analytical devices for applications in catalysis and medicine.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Agata Krywko-Cendrowska
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| |
Collapse
|
13
|
Daniluk K, Lange A, Pruchniewski M, Małolepszy A, Sawosz E, Jaworski S. Delivery of Melittin as a Lytic Agent via Graphene Nanoparticles as Carriers to Breast Cancer Cells. J Funct Biomater 2022; 13:278. [PMID: 36547538 PMCID: PMC9787603 DOI: 10.3390/jfb13040278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Melittin, as an agent to lyse biological membranes, may be a promising therapeutic agent in the treatment of cancer. However, because of its nonspecific actions, there is a need to use a delivery method. The conducted research determined whether carbon nanoparticles, such as graphene and graphene oxide, could be carriers for melittin to breast cancer cells. The studies included the analysis of intracellular pH, the potential of cell membranes, the type of cellular transport, and the expression of receptor proteins. By measuring the particle size, zeta potential, and FT-IT analysis, we found that the investigated nanoparticles are connected by electrostatic interactions. The level of melittin encapsulation with graphene was 86%, while with graphene oxide it was 78%. A decrease in pHi was observed for all cell lines after administration of melittin and its complex with graphene. The decrease in membrane polarization was demonstrated for all lines treated with melittin and its complex with graphene and after exposure to the complex of melittin with graphene oxide for the MDA-MB-231 and HFFF2 lines. The results showed that the investigated melittin complexes and the melittin itself act differently on different cell lines (MDA-MB-231 and MCF-7). It has been shown that in MDA-MD-231 cells, melittin in a complex with graphene is transported to cells via caveolin-dependent endocytosis. On the other hand, the melittin-graphene oxide complex can reach breast cancer cells through various types of transport. Other differences in protein expression changes were also observed for tumor lines after exposure to melittin and complexes.
Collapse
Affiliation(s)
- Karolina Daniluk
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Michał Pruchniewski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-654 Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
14
|
Groeer S, Garni M, Samanta A, Walther A. Insertion of 3D DNA Origami Nanopores into Block Copolymer Vesicles. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saskia Groeer
- A3BMS Lab – Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Martina Garni
- Chemistry Department University of Basel BPR 1096, Postfach 3350 Mattenstrasse 24a 4002 Basel Switzerland
| | - Avik Samanta
- A3BMS Lab – Active, Adaptive and Autonomous Bioinspired Materials Department of Chemistry University of Mainz 55128 Mainz Germany
| | - Andreas Walther
- Cluster of Excellence livMatS @ FIT 79110 Freiburg Germany
- A3BMS Lab – Active, Adaptive and Autonomous Bioinspired Materials Department of Chemistry University of Mainz 55128 Mainz Germany
| |
Collapse
|
15
|
Heuberger L, Korpidou M, Eggenberger OM, Kyropoulou M, Palivan CG. Current Perspectives on Synthetic Compartments for Biomedical Applications. Int J Mol Sci 2022; 23:5718. [PMID: 35628527 PMCID: PMC9145047 DOI: 10.3390/ijms23105718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Nano- and micrometer-sized compartments composed of synthetic polymers are designed to mimic spatial and temporal divisions found in nature. Self-assembly of polymers into compartments such as polymersomes, giant unilamellar vesicles (GUVs), layer-by-layer (LbL) capsules, capsosomes, or polyion complex vesicles (PICsomes) allows for the separation of defined environments from the exterior. These compartments can be further engineered through the incorporation of (bio)molecules within the lumen or into the membrane, while the membrane can be decorated with functional moieties to produce catalytic compartments with defined structures and functions. Nanometer-sized compartments are used for imaging, theranostic, and therapeutic applications as a more mechanically stable alternative to liposomes, and through the encapsulation of catalytic molecules, i.e., enzymes, catalytic compartments can localize and act in vivo. On the micrometer scale, such biohybrid systems are used to encapsulate model proteins and form multicompartmentalized structures through the combination of multiple compartments, reaching closer to the creation of artificial organelles and cells. Significant progress in therapeutic applications and modeling strategies has been achieved through both the creation of polymers with tailored properties and functionalizations and novel techniques for their assembly.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Maria Korpidou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Olivia M. Eggenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Myrto Kyropoulou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|
16
|
Korpidou M, Maffeis V, Dinu IA, Schoenenberger CA, Meier WP, Palivan CG. Inverting glucuronidation of hymecromone in situ by catalytic nanocompartments. J Mater Chem B 2022; 10:3916-3926. [PMID: 35485215 DOI: 10.1039/d2tb00243d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glucuronidation is a metabolic pathway that inactivates many drugs including hymecromone. Adverse effects of glucuronide metabolites include a reduction of half-life circulation times and rapid elimination from the body. Herein, we developed synthetic catalytic nanocompartments able to cleave the glucuronide moiety from the metabolized form of hymecromone in order to convert it to the active drug. By shielding enzymes from their surroundings, catalytic nanocompartments favor prolonged activity and lower immunogenicity as key aspects to improve the therapeutic solution. The catalytic nanocompartments (CNCs) consist of self-assembled poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) diblock copolymer polymersomes encapsulating β-glucuronidase. Insertion of melittin in the synthetic membrane of these polymersomes provided pores for the diffusion of the hydrophilic hymecromone-glucuronide conjugate to the compartment inside where the encapsulated β-glucuronidase catalyzed its conversion to hymecromone. Our system successfully produced hymecromone from its glucuronide conjugate in both phosphate buffered solution and cell culture medium. CNCs were non-cytotoxic when incubated with HepG2 cells. After being taken up by cells, CNCs produced the drug in situ over 24 hours. Such catalytic platforms, which locally revert a drug metabolite into its active form, open new avenues in the design of therapeutics that aim at prolonging the residence time of a drug.
Collapse
Affiliation(s)
- Maria Korpidou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland.
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| |
Collapse
|
17
|
Maffeis V, Belluati A, Craciun I, Wu D, Novak S, Schoenenberger CA, Palivan CG. Clustering of catalytic nanocompartments for enhancing an extracellular non-native cascade reaction. Chem Sci 2021; 12:12274-12285. [PMID: 34603657 PMCID: PMC8480338 DOI: 10.1039/d1sc04267j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 01/10/2023] Open
Abstract
Compartmentalization is fundamental in nature, where the spatial segregation of biochemical reactions within and between cells ensures optimal conditions for the regulation of cascade reactions. While the distance between compartments or their interaction are essential parameters supporting the efficiency of bio-reactions, so far they have not been exploited to regulate cascade reactions between bioinspired catalytic nanocompartments. Here, we generate individual catalytic nanocompartments (CNCs) by encapsulating within polymersomes or attaching to their surface enzymes involved in a cascade reaction and then, tether the polymersomes together into clusters. By conjugating complementary DNA strands to the polymersomes' surface, DNA hybridization drove the clusterization process of enzyme-loaded polymersomes and controlled the distance between the respective catalytic nanocompartments. Owing to the close proximity of CNCs within clusters and the overall stability of the cluster architecture, the cascade reaction between spatially segregated enzymes was significantly more efficient than when the catalytic nanocompartments were not linked together by DNA duplexes. Additionally, residual DNA single strands that were not engaged in clustering, allowed for an interaction of the clusters with the cell surface as evidenced by A549 cells, where clusters decorating the surface endowed the cells with a non-native enzymatic cascade. The self-organization into clusters of catalytic nanocompartments confining different enzymes of a cascade reaction allows for a distance control of the reaction spaces which opens new avenues for highly efficient applications in domains such as catalysis or nanomedicine.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland .,NCCR-Molecular Systems Engineering BPR 1095, Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Andrea Belluati
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Dalin Wu
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Samantha Novak
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland .,NCCR-Molecular Systems Engineering BPR 1095, Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland .,NCCR-Molecular Systems Engineering BPR 1095, Mattenstrasse 24a CH-4058 Basel Switzerland
| |
Collapse
|
18
|
Wehr R, Dos Santos EC, Muthwill MS, Chimisso V, Gaitzsch J, Meier W. Fully amorphous atactic and isotactic block copolymers and their self-assembly into nano- and microscopic vesicles. Polym Chem 2021; 12:5377-5389. [PMID: 34603516 PMCID: PMC8477912 DOI: 10.1039/d1py00952d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/05/2021] [Indexed: 11/30/2022]
Abstract
The introduction of chirality into aqueous self-assemblies by employing isotactic block copolymers (BCPs) is an emerging field of interest as it promises special membrane properties of polymersomes not accessible by atactic BCPs. However, isotactic BCPs typically exhibit crystalline behaviour, inducing high membrane stiffness and limiting their applicability in systems involving membrane proteins or sensitive cargo. In this study, an isotactic yet fully amorphous BCP is introduced which overcomes these limitations. Three BCPs composed of poly(butylene oxide)-block-poly(glycidol) (PBO-b-PG), differing solely in their tacticities (R/S, R and S), were synthesised and characterised regarding their structural, optical and thermal properties. Their self-assembly into homogenous phases of nanoscopic polymersomes (referred to as small unilamellar vesicles, SUVs) was analysed, revealing stability differences between SUVs composed of the different BCPs. Additionally, microscopic giant unilamellar vesicles (GUVs) were prepared by double emulsion microfluidics. Only the atactic BCP formed GUVs which were stable over several hours, whereas GUVs composed of isotactic BCPs ruptured within several minutes after formation. The ability of atactic PBO-b-PG to form microreactors was elucidated by reconstituting the membrane protein OmpF in the GUV membrane by microfluidics and performing an enzyme reaction inside its lumen. The system presented here serves as platform to design versatile vesicles with flexible membranes composed of atactic or isotactic BCPs. Hence, they allow for the introduction of chirality into nano- or microreactors which is a yet unstudied field and could enable special biotechonological applications.
Collapse
Affiliation(s)
- Riccardo Wehr
- University of Basel, Department of Chemistry Mattenstrasse 24a BPR 1096 4058 Basel Switzerland
| | - Elena C Dos Santos
- University of Basel, Department of Chemistry Mattenstrasse 24a BPR 1096 4058 Basel Switzerland
| | - Moritz S Muthwill
- University of Basel, Department of Chemistry Mattenstrasse 24a BPR 1096 4058 Basel Switzerland
| | - Vittoria Chimisso
- University of Basel, Department of Chemistry Mattenstrasse 24a BPR 1096 4058 Basel Switzerland
| | - Jens Gaitzsch
- University of Basel, Department of Chemistry Mattenstrasse 24a BPR 1096 4058 Basel Switzerland
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Strasse 6 01069 Dresden Germany
| | - Wolfgang Meier
- University of Basel, Department of Chemistry Mattenstrasse 24a BPR 1096 4058 Basel Switzerland
| |
Collapse
|
19
|
Di Leone S, Vallapurackal J, Yorulmaz Avsar S, Kyropolou M, Ward TR, Palivan CG, Meier W. Expanding the Potential of the Solvent-Assisted Method to Create Bio-Interfaces from Amphiphilic Block Copolymers. Biomacromolecules 2021; 22:3005-3016. [PMID: 34105950 DOI: 10.1021/acs.biomac.1c00424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artificial membranes, as materials with biomimetic properties, can be applied in various fields, such as drug screening or bio-sensing. The solvent-assisted method (SA) represents a straightforward method to prepare lipid solid-supported membranes. It overcomes the main limitations of established membrane preparation methods, such as Langmuir-Blodgett (LB) or vesicle fusion. However, it has not yet been applied to create artificial membranes based on amphiphilic block copolymers, despite their enhanced mechanical stability compared to lipid-based membranes and bio-compatible properties. Here, we applied the SA method on different amphiphilic di- and triblock poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) copolymers and optimized the conditions to prepare artificial membranes on a solid support. The real-time membrane formation, the morphology, and the mechanical properties have been evaluated by a combination of atomic force microscopy and quartz crystal microbalance. Then, selected biomolecules including complementary DNA strands and an artificial deallylase metalloenzyme (ADAse) were incorporated into these membranes relying on the biotin-streptavidin technology. DNA strands served to establish the capability of these synthetic membranes to interact with biomolecules by preserving their correct conformation. The catalytic activity of the ADAse following its membrane anchoring induced the functionality of the biomimetic platform. Polymer membranes on solid support as prepared by the SA method open new opportunities for the creation of artificial membranes with tailored biomimetic properties and functionality.
Collapse
Affiliation(s)
- Stefano Di Leone
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland.,School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland (FHNW), Grundenstrasse 40, 4132 Muttenz, Switzerland
| | - Jaicy Vallapurackal
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Myrto Kyropolou
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Thomas R Ward
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Wolfgang Meier
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
20
|
Kyropoulou M, Yorulmaz Avsar S, Schoenenberger CA, Palivan CG, Meier WP. From spherical compartments to polymer films: exploiting vesicle fusion to generate solid supported thin polymer membranes. NANOSCALE 2021; 13:6944-6952. [PMID: 33885496 DOI: 10.1039/d1nr01122g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solid supported polymer membranes as scaffold for the insertion of functional biomolecules provide the basis for mimicking natural membranes. They also provide the means for unraveling biomolecule-membrane interactions and engineering platforms for biosensing. Vesicle fusion is an established procedure to obtain solid supported lipid bilayers but the more robust polymer vesicles tend to resist fusion and planar membranes rarely form. Here, we build on vesicle fusion to develop a refined and efficient way to produce solid supported membranes based on poly(dimethylsiloxane)-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA) amphiphilic triblock copolymers. We first create thiol-bearing polymer vesicles (polymersomes) and anchor them on a gold substrate. An osmotic shock then provokes polymersome rupture and drives planar film formation. Prerequisite for a uniform amphiphilic planar membrane is the proper combination of immobilized polymersomes and osmotic shock conditions. Thus, we explored the impact of the hydrophobic PDMS block length of the polymersome on the formation and the characteristics of the resulting solid supported polymer assemblies by quarz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). When the PDMS block is short enough, attached polymersomes restructure in response to osmotic shock, resulting in a uniform planar membrane. Our approach to rapidly form planar polymer membranes by vesicle fusion brings many advantages to the development of synthetic planar membranes for bio-sensing and biotechnological applications.
Collapse
Affiliation(s)
- Myrto Kyropoulou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
21
|
Li X, Zhao X, Lv R, Hao L, Huo F, Yao X. Polymeric Nanoreactors as Emerging Nanoplatforms for Cancer Precise Nanomedicine. Macromol Biosci 2021; 21:e2000424. [PMID: 33811465 DOI: 10.1002/mabi.202000424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Indexed: 12/20/2022]
Abstract
How to precisely detect and effectively cure cancer which is defined as precise nanomedicine has drawn great attention worldwide. Polymeric nanoreactors which can in situ catalyze inert species into activated ones, can greatly increase imaging quality and enhance therapeutic effects along with decreased background interference and reduced serious side effects. After a brief introduction, the design and preparation of polymeric nanoreactors are discussed from the following aspects, that is, solvent-switch, pH-tuning, film rehydration, hard template, electrostatic interaction, and polymerization-induced self-assembly (PISA). Subsequently, the biomedical applications of these nanoreactors in the fields of cancer imaging, cancer therapy, and cancer theranostics are highlighted. The last but not least, conclusions and future perspectives about polymeric nanoreactors are given. It is believed that polymeric nanoreactors can bring a great opportunity for future fabrication and clinical translation of precise nanomedicine.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiaopeng Zhao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Runkai Lv
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Linhui Hao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Fengwei Huo
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xikuang Yao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
22
|
Daubian D, Fillion A, Gaitzsch J, Meier W. One-Pot Synthesis of an Amphiphilic ABC Triblock Copolymer PEO- b-PEHOx- b-PEtOz and Its Self-Assembly into Nanoscopic Asymmetric Polymersomes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Davy Daubian
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Alexandra Fillion
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Jens Gaitzsch
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Wolfgang Meier
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
23
|
Dos Santos EC, Belluati A, Necula D, Scherrer D, Meyer CE, Wehr RP, Lörtscher E, Palivan CG, Meier W. Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cell-Sized Compartments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004804. [PMID: 33107187 DOI: 10.1002/adma.202004804] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Indexed: 05/16/2023]
Abstract
Cells rely upon producing enzymes at precise rates and stoichiometry for maximizing functionalities. The reasons for this optimal control are unknown, primarily because of the interconnectivity of the enzymatic cascade effects within multi-step pathways. Here, an elegant strategy for studying such behavior, by controlling segregation/combination of enzymes/metabolites in synthetic cell-sized compartments, while preserving vital cellular elements is presented. Therefore, compartments shaped into polymer GUVs are developed, producing via high-precision double-emulsion microfluidics that enable: i) tight control over the absolute and relative enzymatic contents inside the GUVs, reaching nearly 100% encapsulation and co-encapsulation efficiencies, and ii) functional reconstitution of biopores and membrane proteins in the GUVs polymeric membrane, thus supporting in situ reactions. GUVs equipped with biopores/membrane proteins and loaded with one or more enzymes are arranged in a variety of combinations that allow the study of a three-step cascade in multiple topologies. Due to the spatiotemporal control provided, optimum conditions for decreasing the accumulation of inhibitors are unveiled, and benefited from reactive intermediates to maximize the overall cascade efficiency in compartments. The non-system-specific feature of the novel strategy makes this system an ideal candidate for the development of new synthetic routes as well as for screening natural and more complex pathways.
Collapse
Affiliation(s)
- Elena C Dos Santos
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Dominik Scherrer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
- IBM Research Europe, Saeumerstrasse 4, 8803, Rueschlikon, Switzerland
| | - Claire E Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Riccardo P Wehr
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe, Saeumerstrasse 4, 8803, Rueschlikon, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| |
Collapse
|
24
|
Belluati A, Craciun I, Palivan CG. Bioactive Catalytic Nanocompartments Integrated into Cell Physiology and Their Amplification of a Native Signaling Cascade. ACS NANO 2020; 14:12101-12112. [PMID: 32869973 DOI: 10.1021/acsnano.0c05574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioactive nanomaterials have the potential to overcome the limitations of classical pharmacological approaches by taking advantage of native pathways to influence cell behavior, interacting with them and eliciting responses. Herein, we propose a cascade system mediated by two catalytic nanocompartments (CNC) with biological activity. Activated by nitric oxide (NO) produced by inducible nitric oxidase synthase (iNOS), soluble guanylyl cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), a second messenger that modulates a broad range of physiological functions. As alterations in cGMP signaling are implicated in a multitude of pathologies, its signaling cascade represents a viable target for therapeutic intervention. Following along this line, we encapsulated iNOS and sGC in two separate polymeric compartments that function in unison to produce NO and cGMP. Their action was tested in vitro by monitoring the derived changes in cytoplasmic calcium concentrations of HeLa and differentiated C2C12 myocytes, where the produced second messenger influenced the cellular homeostasis.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
25
|
Wang L, Song S, van Hest J, Abdelmohsen LKEA, Huang X, Sánchez S. Biomimicry of Cellular Motility and Communication Based on Synthetic Soft-Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907680. [PMID: 32250035 DOI: 10.1002/smll.201907680] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Cells, sophisticated membrane-bound units that contain the fundamental molecules of life, provide a precious library for inspiration and motivation for both society and academia. Scientists from various disciplines have made great endeavors toward the understanding of the cellular evolution by engineering artificial counterparts (protocells) that mimic or initiate structural or functional cellular aspects. In this regard, several works have discussed possible building blocks, designs, functions, or dynamics that can be applied to achieve this goal. Although great progress has been made, fundamental-yet complex-behaviors such as cellular communication, responsiveness to environmental cues, and motility remain a challenge, yet to be resolved. Herein, recent efforts toward utilizing soft systems for cellular mimicry are summarized-following the main outline of cellular evolution, from basic compartmentalization, and biological reactions for energy production, to motility and communicative behaviors between artificial cell communities or between artificial and natural cell communities. Finally, the current challenges and future perspectives in the field are discussed, hoping to inspire more future research and to help the further advancement of this field.
Collapse
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, China
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Shidong Song
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Jan van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluis Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
26
|
The chemistry of cross-linked polymeric vesicles and their functionalization towards biocatalytic nanoreactors. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04681-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractSelf-assembly of amphiphilic block copolymers into polymersomes continues to be a hot topic in modern research on biomimetics. Their well-known and valued mechanical strength can be increased even further if they are cross-linked. These additional bonds prevent a collapse or disassembly of the polymersomes and open the way towards smart nanoreactors. A variety of chemistries have been applied to obtain the desired cross-linked polymersomes, and therefore, the chemical approaches performed over time will be highlighted in this mini-review. Due to the large number of studies, a selected set of photo-cross-linked and pH-sensitive polymersomes will be specifically highlighted. This system has proven to be a very potent candidate for the formation of nanoreactors and drug delivery systems, and even for the formation of functional multicompartment cell mimics.
Collapse
|
27
|
Zartner L, Muthwill MS, Dinu IA, Schoenenberger CA, Palivan CG. The rise of bio-inspired polymer compartments responding to pathology-related signals. J Mater Chem B 2020; 8:6252-6270. [PMID: 32452509 DOI: 10.1039/d0tb00475h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-organized nano- and microscale polymer compartments such as polymersomes, giant unilamellar vesicles (GUVs), polyion complex vesicles (PICsomes) and layer-by-layer (LbL) capsules have increasing potential in many sensing applications. Besides modifying the physicochemical properties of the corresponding polymer building blocks, the versatility of these compartments can be markedly expanded by biomolecules that endow the nanomaterials with specific molecular and cellular functions. In this review, we focus on polymer-based compartments that preserve their structure, and highlight the key role they play in the field of medical diagnostics: first, the self-assembling abilities that result in preferred architectures are presented for a broad range of polymers. In the following, we describe different strategies for sensing disease-related signals (pH-change, reductive conditions, and presence of ions or biomolecules) by polymer compartments that exhibit stimuli-responsiveness. In particular, we distinguish between the stimulus-sensitivity contributed by the polymer itself or by additional compounds embedded in the compartments in different sensing systems. We then address necessary properties of sensing polymeric compartments, such as the enhancement of their stability and biocompatibility, or the targeting ability, that open up new perspectives for diagnostic applications.
Collapse
Affiliation(s)
- Luisa Zartner
- Chemistry Department, University of Basel, Mattenstr. 24a, BPR1096, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
28
|
Abstract
In nature, various specific reactions only occur in spatially controlled environments. Cell compartment and subcompartments act as the support required to preserve the bio-specificity and functionality of the biological content, by affording absolute segregation. Inspired by this natural perfect behavior, bottom-up approaches are on focus to develop artificial cell-like structures, crucial for understanding relevant bioprocesses and interactions or to produce tailored solutions in the field of therapeutics and diagnostics. In this review, we discuss the benefits of constructing polymer-based single and multicompartments (capsules and giant unilamellar vesicles (GUVs)), equipped with biomolecules as to mimic cells. In this respect, we outline key examples of how such structures have been designed from scratch, namely, starting from the application-oriented selection and synthesis of the amphiphilic block copolymer. We then present the state-of-the-art techniques for assembling the supramolecular structure while permitting the encapsulation of active compounds and the incorporation of peptides/membrane proteins, essential to support in situ reactions, e.g., to replicate intracellular signaling cascades. Finally, we briefly discuss important features that these compartments offer and how they could be applied to engineer the next generation of microreactors, therapeutic solutions, and cell models.
Collapse
|
29
|
Di Leone S, Avsar SY, Belluati A, Wehr R, Palivan CG, Meier W. Polymer–Lipid Hybrid Membranes as a Model Platform to Drive Membrane–Cytochrome c Interaction and Peroxidase-like Activity. J Phys Chem B 2020; 124:4454-4465. [DOI: 10.1021/acs.jpcb.0c02727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Stefano Di Leone
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland (FHNW), Grundenstrasse 40, 4132 Muttenz, Switzerland
| | - Saziye Yorulmaz Avsar
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Andrea Belluati
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Riccardo Wehr
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Wolfgang Meier
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
30
|
Meyer CE, Abram SL, Craciun I, Palivan CG. Biomolecule–polymer hybrid compartments: combining the best of both worlds. Phys Chem Chem Phys 2020; 22:11197-11218. [DOI: 10.1039/d0cp00693a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in bio/polymer hybrid compartments in the quest to obtain artificial cells, biosensors and catalytic compartments.
Collapse
Affiliation(s)
| | | | - Ioana Craciun
- Department of Chemistry
- University of Basel
- Basel
- Switzerland
| | | |
Collapse
|