1
|
Nandi S, Gresil Q, Lambert BP, Sebastian FL, Settele S, Calaresu I, Estaun-Panzano J, Lovisotto A, Mazzocco C, Flavel BS, Bezard E, Groc L, Zaumseil J, Cognet L. Ultrashort Carbon Nanotubes with Luminescent Color Centers Are Bright NIR-II Nanoemitters. ACS NANO 2025. [PMID: 40378052 DOI: 10.1021/acsnano.5c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
In the fields of bioimaging, photonics, and quantum science, it is equally crucial to combine high brightness with a nanoscale size in short-wave infrared (SWIR) emitters. However, such nanoemitters are currently lacking. Here, we report that when functionalized with luminescent color centers, ultrashort carbon nanotubes with a length much shorter than 100 nm are surprisingly bright in the near-infrared second-biological window (NIR-II) of the SWIR domain. We discuss the origin of this exceptional brightness based on the uncontrollable presence of quenching defects in dispersed carbon nanotubes. We further investigate the nonlinear photoluminescence behavior of color center-functionalized carbon nanotubes in response to varying excitation conditions, spanning from ensemble measurements to single-nanotube experiments. We discuss how this behavior influences the determination of their photoluminescence quantum yields, which can reach values as high as 20% for ultrashort ones detected at the single-nanotube level. Notably, the corresponding NIR-II brightness exceeds that of well-known visible emitters, including quantum dots. After rendering them biocompatible, we demonstrate point-spread function engineering and high-resolution, 3-dimensional single-particle tracking using these bright ultrashort carbon nanotubes allowing nanoscale imaging in the NIR-II window within thick brain tissue.
Collapse
Affiliation(s)
- Somen Nandi
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, 33400 Talence, France
- LP2N, Institut d'Optique Graduate School, CNRS UMR 5298, 33400 Talence, France
| | - Quentin Gresil
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, 33400 Talence, France
- LP2N, Institut d'Optique Graduate School, CNRS UMR 5298, 33400 Talence, France
| | - Benjamin P Lambert
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, 33400 Talence, France
- LP2N, Institut d'Optique Graduate School, CNRS UMR 5298, 33400 Talence, France
| | - Finn L Sebastian
- Institute for Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| | - Simon Settele
- Institute for Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| | - Ivo Calaresu
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, 33076 Bordeaux, France
| | | | - Anna Lovisotto
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Claire Mazzocco
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Laurent Groc
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, 33076 Bordeaux, France
| | - Jana Zaumseil
- Institute for Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| | - Laurent Cognet
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, 33400 Talence, France
- LP2N, Institut d'Optique Graduate School, CNRS UMR 5298, 33400 Talence, France
| |
Collapse
|
2
|
Eller B, Clark CW, Wang Y. Scaling law of quantum confinement in single-walled carbon nanotubes. J Chem Phys 2025; 162:144303. [PMID: 40197866 DOI: 10.1063/5.0245889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
Quantum confinement significantly influences the excited states of sub-10 nm single-walled carbon nanotubes (SWCNTs), crucial for advancements in transistor technology and the development of novel optoelectronic materials, such as fluorescent ultrashort nanotubes (FUNs). However, the length dependence of this effect in ultrashort SWCNTs is not yet fully understood in the context of the SWCNT exciton states. Here, we conduct excited state calculations using time-dependent density functional theory on geometry-optimized models of ultrashort SWCNTs and FUNs, which consist of ultrashort SWCNTs with sp3 defects. Our results reveal a length-dependent scaling law of the E11 exciton energy that can be understood through a geometric, dimensional argument, which departs from the length scaling of a 1D particle-in-a-box. We find that this scaling law applies to ultrashort (6,5) and (6,6) SWCNTs, as well as models of (6,5) FUNs. In contrast, the defect-induced Esp3 transition, which is redshifted from the E11 optical gap transition, shows little dependence on the nanotube length, even in the shortest possible SWCNTs. We attribute this relative lack of length dependence to orbital localization around the quantum defect that is installed near the SWCNT edge. Our results illustrate the complex interplay of defects and quantum confinement effects in ultrashort SWCNTs and provide a foundation for further explorations of these nanoscale phenomena.
Collapse
Affiliation(s)
- Benjamin Eller
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Charles W Clark
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
3
|
Sebastian FL, Settele S, Li H, Flavel BS, Zaumseil J. How to recognize clustering of luminescent defects in single-wall carbon nanotubes. NANOSCALE HORIZONS 2024; 9:2286-2294. [PMID: 39380328 PMCID: PMC11462117 DOI: 10.1039/d4nh00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) are a promising material platform for near-infrared in vivo imaging, optical sensing, and single-photon emission at telecommunication wavelengths. The functionalization of SWCNTs with luminescent defects can lead to significantly enhanced photoluminescence (PL) properties due to efficient trapping of highly mobile excitons and red-shifted emission from these trap states. Among the most studied luminescent defect types are oxygen and aryl defects that have largely similar optical properties. So far, no direct comparison between SWCNTs functionalized with oxygen and aryl defects under identical conditions has been performed. Here, we employ a combination of spectroscopic techniques to quantify the number of defects, their distribution along the nanotubes and thus their exciton trapping efficiencies. The different slopes of Raman D/G+ ratios versus calculated defect densities from PL quantum yield measurements indicate substantial dissimilarities between oxygen and aryl defects. Supported by statistical analysis of single-nanotube PL spectra at cryogenic temperatures they reveal clustering of oxygen defects. The clustering of 2-3 oxygen defects, which act as a single exciton trap, occurs irrespective of the functionalization method and thus enables the use of simple equations to determine the density of oxygen defects and defect clusters in SWCNTs based on standard Raman spectroscopy. The presented analytical approach is a versatile and sensitive tool to study defect distribution and clustering in SWCNTs and can be applied to any new functionalization method.
Collapse
Affiliation(s)
- Finn L Sebastian
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Han Li
- Department of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, FI-20520 Turku, Finland
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Wulf V, Bisker G. Integrating Single-Walled Carbon Nanotubes into Supramolecular Assemblies: From Basic Interactions to Emerging Applications. ACS NANO 2024; 18:29380-29393. [PMID: 39428637 PMCID: PMC11526426 DOI: 10.1021/acsnano.4c06843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Integrating single-walled carbon nanotubes (SWCNTs) into supramolecular self-assemblies harnesses the distinctive mechanical, optical, and electronic properties of the nanoparticles alongside the structural and chemical properties of the assemblies. Organic molecules capable of forming supramolecular assemblies through hydrophobic, van der Waals, and π-π interactions have been demonstrated to be particularly effective in dispersing and functionalizing SWCNTs, as these same interactions facilitate the binding to the hydrophobic graphene-like surface of the SWCNTs. This review discusses a variety of self-assembling structures that were shown to integrate SWCNTs, ranging from simple micelles and ring structures to complex DNA origami and three-dimensional hydrogels formed by low-molecular-weight gelators. We explore the integration of SWCNTs into various supramolecular assemblies and highlight emerging applications of these composite materials, such as the mechanical enforcement of self-assembling hydrogels and leveraging the near-infrared (NIR) fluorescence properties of SWCNTs for monitoring the molecular self-assembly process. Notably, the distinctive NIR fluorescence of SWCNTs, which overlaps with the biological transparency window, offers significant opportunities for noninvasive sensing applications within the supramolecular platforms. Future research into a deeper understanding of the interactions between SWCNTs and different supramolecular frameworks will expand the potential applications of SWCNT-integrated supramolecular assemblies in fields like biomedical engineering, electronic devices, and environmental sensing.
Collapse
Affiliation(s)
- Verena Wulf
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Qu H, Han Y, Fortner J, Wu X, Kilina S, Kilin D, Tretiak S, Wang Y. [2 + 2] Cycloaddition Produces Divalent Organic Color-Centers with Reduced Heterogeneity in Single-Walled Carbon Nanotubes. J Am Chem Soc 2024; 146:23582-23590. [PMID: 39101632 DOI: 10.1021/jacs.4c08105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Organic color centers (OCCs), generated by the covalent functionalization of single-walled carbon nanotubes, have been exploited for chemical sensing, bioimaging, and quantum technologies. However, monovalent OCCs can assume at least 6 different bonding configurations on the sp2 carbon lattice of a chiral nanotube, resulting in heterogeneous OCC photoluminescence emissions. Herein, we show that a heat-activated [2 + 2] cycloaddition reaction enables the synthesis of divalent OCCs with a reduced number of atomic bonding configurations. The chemistry occurs by simply mixing enophile molecules (e.g., methylmaleimide, maleic anhydride, and 4-cyclopentene-1,3-dione) with an ethylene glycol suspension of SWCNTs at elevated temperature (70-140 °C). Unlike monovalent OCC chemistries, we observe just three OCC emission peaks that can be assigned to the three possible bonding configurations of the divalent OCCs based on density functional theory calculations. Notably, these OCC photoluminescence peaks can be controlled by temperature to decrease the emission heterogeneity even further. This divalent chemistry provides a scalable way to synthesize OCCs with tightly controlled emissions for emerging applications.
Collapse
Affiliation(s)
- Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Jacob Fortner
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Sergei Tretiak
- Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Shapturenka P, Barnes BK, Mansfield E, Noor MM, Fagan JA. Universalized and robust length separation of carbon and boron nitride nanotubes with improved polymer depletion-based fractionation. RSC Adv 2024; 14:25490-25506. [PMID: 39206342 PMCID: PMC11353058 DOI: 10.1039/d4ra01883d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Partitioning nanoparticles by shape and dimension is paramount for advancing nanomaterial standardization, fundamental colloidal investigations, and technologies such as biosensing and digital electronics. Length-separation methods for single-walled carbon nanotubes (SWCNTs) have historically incurred trade-offs in precision and mass throughput, and boron nitride nanotubes (BNNTs) are a rapidly emerging material analogue. We extend and detail a polymer precipitation-based method to fractionate populations of either nanotube type at significant mass scale for four distinct nanotube sources of increasing average diameter (0.7 nm to >2 nm). Such separations result in a supernant phase containing shorter nanotubes and a pellet phase containing the longer nanotubes, with the threshold length for depletion decreasing with increasing polymer concentration. Cross-comparison through analytical ultracentrifugation, spectroscopy, and microscopy versus applied polymer concentration show tailorable and precise length fractionation for 100 nm through >1 μm rod lengths, with fractionation also designable to remove non-nanotube impurities. The threshold length of depletion is further found to increase for decreasing nanotube diameter at fixed polymer concentration, a finding consistent with scaling attributable to nanotube radial excluded volume. The capabilities demonstrated herein promise to significantly advance nanotube implementation within the scientific community.
Collapse
Affiliation(s)
- Pavel Shapturenka
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Benjamin K Barnes
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Elisabeth Mansfield
- Applied Chemicals and Materials Division, National Institute of Standards and Technology Boulder CO 80305 USA
| | - Matthew M Noor
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale IL 62901 USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| |
Collapse
|
7
|
Wieland S, El Yumin AA, Settele S, Zaumseil J. Photo-Activated, Solid-State Introduction of Luminescent Oxygen Defects into Semiconducting Single-Walled Carbon Nanotubes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2012-2021. [PMID: 38352856 PMCID: PMC10860128 DOI: 10.1021/acs.jpcc.3c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
Oxygen defects in semiconducting single-walled carbon nanotubes (SWCNTs) are localized disruptions in the carbon lattice caused by the formation of epoxy or ether groups, commonly through wet-chemical reactions. The associated modifications of the electronic structure can result in luminescent states with emission energies below those of pristine SWCNTs in the near-infrared range, which makes them promising candidates for applications in biosensing and as single-photon emitters. Here, we demonstrate the controlled introduction of luminescent oxygen defects into networks of monochiral (6,5) SWCNTs using a solid-state photocatalytic approach. UV irradiation of SWCNTs on the photoreactive surfaces of the transition metal oxides TiOx and ZnOx in the presence of trace amounts of water and oxygen results in the creation of reactive oxygen species that initiate radical reactions with the carbon lattice and the formation of oxygen defects. The created ether-d and epoxide-l defect configurations give rise to two distinct red-shifted emissive features. The chemical and dielectric properties of the photoactive oxides influence the final defect emission properties, with oxygen-functionalized SWCNTs on TiOx substrates being brighter than those on ZnOx or pristine SWCNTs on glass. The photoinduced functionalization of nanotubes is further employed to create lateral patterns of oxygen defects in (6,5) SWCNT networks with micrometer resolution and thus spatially controlled defect emission.
Collapse
Affiliation(s)
- Sonja Wieland
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | - Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
9
|
Zheng X, Zhang Z, Zhou G, Zou M, Zhang F, Hou PX, Shi C, Cheng HM, Wang M, Liu C. Efficient fabrication of single-wall carbon nanotube nanoreactors by defect-induced cutting. NANOSCALE 2023; 15:3931-3939. [PMID: 36723243 DOI: 10.1039/d2nr06696c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-wall carbon nanotubes (SWCNTs) with ultra-thin channels are considered promising nanoreactors for confined catalysis, chemical reactions, and drug delivery. The fabrication of SWCNT nanoreactors by cutting usually suffers from low efficiency and poor controllability. Here we develop a defect-induced gas etching method to efficiently cut SWCNTs and to obtain nanoreactors with ultrasmall confined space. H2 plasma treatment was performed to generate defects in the walls of SWCNTs, then H2O vapor was used as a "knife" to cut SWCNTs at the defect sites, and short cut-SWCNTs with an average length of 175 nm were controllably obtained with a high yield of 75% under optimized conditions. WO3@SWCNT derivatives with different morphologies were synthesized using short cut-SWCNTs as nanoreactors. The radiation resistance of WO3@SWCNT hybrids improved obviously, thus providing a platform for the synthesis of novel SWCNT-based derivatives with fascinating properties.
Collapse
Affiliation(s)
- Xue Zheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
| | - Zichu Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Gang Zhou
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Mengke Zou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Feng Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Chao Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Mingguang Wang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China.
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
10
|
Nandi S, Caicedo K, Cognet L. When Super-Resolution Localization Microscopy Meets Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12091433. [PMID: 35564142 PMCID: PMC9105540 DOI: 10.3390/nano12091433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
We recently assisted in a revolution in the realm of fluorescence microscopy triggered by the advent of super-resolution techniques that surpass the classic diffraction limit barrier. By providing optical images with nanometer resolution in the far field, super-resolution microscopy (SRM) is currently accelerating our understanding of the molecular organization of bio-specimens, bridging the gap between cellular observations and molecular structural knowledge, which was previously only accessible using electron microscopy. SRM mainly finds its roots in progress made in the control and manipulation of the optical properties of (single) fluorescent molecules. The flourishing development of novel fluorescent nanostructures has recently opened the possibility of associating super-resolution imaging strategies with nanomaterials’ design and applications. In this review article, we discuss some of the recent developments in the field of super-resolution imaging explicitly based on the use of nanomaterials. As an archetypal class of fluorescent nanomaterial, we mainly focus on single-walled carbon nanotubes (SWCNTs), which are photoluminescent emitters at near-infrared (NIR) wavelengths bearing great interest for biological imaging and for information optical transmission. Whether for fundamental applications in nanomaterial science or in biology, we show how super-resolution techniques can be applied to create nanoscale images “in”, “of” and “with” SWCNTs.
Collapse
Affiliation(s)
- Somen Nandi
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
| | - Karen Caicedo
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
| | - Laurent Cognet
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
- Correspondence:
| |
Collapse
|
11
|
Mann FA, Galonska P, Herrmann N, Kruss S. Quantum defects as versatile anchors for carbon nanotube functionalization. Nat Protoc 2022; 17:727-747. [PMID: 35110739 DOI: 10.1038/s41596-021-00663-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
Single-wall carbon nanotubes (SWCNTs) are used in diverse applications that require chemical tailoring of the SWCNT surface, including optical sensing, imaging, targeted drug delivery and single-photon generation. SWCNTs have been noncovalently modified with (bio)polymers to preserve their intrinsic near-infrared fluorescence. However, demanding applications (e.g., requiring stability in biological fluids) would benefit from a stable covalent linkage between the SWCNT and the functional unit (e.g., antibody, fluorophore, drug). Here we present how to use diazonium salt chemistry to introduce sp3 quantum defects in the SWCNT carbon lattice to serve as handles for conjugation while preserving near-infrared fluorescence. In this protocol, we describe the straightforward, stable (covalent), highly versatile and scalable functionalization of SWCNTs with biomolecules such as peptides and proteins to yield near-infrared fluorescent SWCNT bioconjugates. We provide a step-by-step procedure covering SWCNT dispersion, quantum defect incorporation, bioconjugation, in situ peptide synthesis on SWCNTs, and characterization, which can be completed in 5-7 d.
Collapse
Affiliation(s)
- Florian A Mann
- Physical Chemistry II, Ruhr-Universität Bochum, Bochum, Germany.,Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | | | - Niklas Herrmann
- Institute of Physical Chemistry, Göttingen University, Göttingen, Germany
| | - Sebastian Kruss
- Physical Chemistry II, Ruhr-Universität Bochum, Bochum, Germany. .,Institute of Physical Chemistry, Göttingen University, Göttingen, Germany. .,Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, Germany.
| |
Collapse
|
12
|
Huang Z, Powell LR, Wu X, Kim M, Qu H, Wang P, Fortner JL, Xu B, Ng AL, Wang Y. Photolithographic Patterning of Organic Color-Centers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906517. [PMID: 32080923 DOI: 10.1002/adma.201906517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Organic color-centers (OCCs) have emerged as promising single-photon emitters for solid-state quantum technologies, chemically specific sensing, and near-infrared bioimaging. However, these quantum light sources are currently synthesized in bulk solution, lacking the spatial control required for on-chip integration. The ability to pattern OCCs on solid substrates with high spatial precision and molecularly defined structure is essential to interface electronics and advance their quantum applications. Herein, a lithographic generation of OCCs on solid-state semiconducting single-walled carbon nanotube films at spatially defined locations is presented. By using light-driven diazoether chemistry, it is possible to directly pattern p-nitroaryl OCCs, which demonstrate chemically specific spectral signatures at programmed positions as confirmed by Raman mapping and hyperspectral photoluminescence imaging. This light-driven technique enables the fabrication of OCC arrays on solid films that fluoresce in the shortwave infrared and presents an important step toward the direct writing of quantum emitters and other functionalities at the molecular level.
Collapse
Affiliation(s)
- Zhongjie Huang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Lyndsey R Powell
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Jacob L Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Beibei Xu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Allen L Ng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
- Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|