1
|
Bae E, Beil S, König M, Stolte S, Escher BI, Markiewicz M. Assessing Modes of Toxic Action of Organic Cations in In Vitro Cell-Based Bioassays: the Critical Role of Partitioning to Cells and Medium Components. Chem Res Toxicol 2025; 38:488-502. [PMID: 40036051 PMCID: PMC11921022 DOI: 10.1021/acs.chemrestox.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
High-throughput cell-based bioassays can fulfill the growing need to assess the hazards and modes of toxic action (MOA) of ionic liquids (ILs). Although nominal concentrations (Cnom) are typically used in an in vitro bioassay, freely dissolved concentrations (Cfree) are considered a more accurate dose metric because they account for chemical partitioning processes and are informative about MOA. We determined the Cfree of IL cations in AREc32 and AhR-CALUX assays using both mass balance model (MBM) prediction and experimental quantification. Partition coefficients between membrane lipid-water (Kmw), serum albumin-water (Kalbumin/w), and cell-water (Kcell/w) as well as potential confounding factors (binding to a test plate and micelle formation) were determined to improve the MBM prediction. IL cations showed a higher affinity for both cell lines than that predicted by the MBM based on Kmw and Kalbumin/w. Their affinity for the AhR-CALUX cells was more than 1 order of magnitude higher than for the AREc32, signifying cell line-specific affinity. The MBM with an experimental Kcell/w accurately predicted Cfree. Evaluating cytotoxicity based on Cfree eliminated the leveling off of toxicity observed for hydrophobic IL cations (side chain cutoff), suggesting that Cnom underestimates the effects of compounds with high affinity for the assay medium. Cell membrane concentrations calculated from Cfree using Kmw were compared to the critical membrane burden to identify whether IL cations act as baseline toxicants. The IL cations carrying 16 carbons in the chain in the AREc32 assay and most of the IL cations in the AhR-CALUX assay were classified as excess toxicants. However, since the reasons for the deviation of experimental Kcell/w from MBM prediction remain unexplained, it is uncertain whether the cell membrane concentrations can be well predicted from Kmw used in this study. Therefore, future studies should aim to uncover the underlying causes of differing cell affinities observed across cell lines and model predictions.
Collapse
Affiliation(s)
- Eunhye Bae
- Institute
of Water Chemistry, Dresden University of
Technology, D-01062 Dresden, Germany
| | - Stephan Beil
- Institute
of Water Chemistry, Dresden University of
Technology, D-01062 Dresden, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research-UFZ, D-04318 Leipzig, Germany
| | - Stefan Stolte
- Institute
of Water Chemistry, Dresden University of
Technology, D-01062 Dresden, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research-UFZ, D-04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, D-72076 Tübingen, Germany
| | - Marta Markiewicz
- Institute
of Water Chemistry, Dresden University of
Technology, D-01062 Dresden, Germany
| |
Collapse
|
2
|
Bae E, Beil S, König M, Stolte S, Escher BI, Markiewicz M. The mode of toxic action of ionic liquids: Narrowing down possibilities using high-throughput, in vitro cell-based bioassays. ENVIRONMENT INTERNATIONAL 2024; 193:109089. [PMID: 39500119 DOI: 10.1016/j.envint.2024.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/25/2024]
Abstract
Growing concerns about the environmental impact of ionic liquids (ILs) have spurred research into their (eco)toxic effects, but studies on their mode of toxic action (MOA) still remain limited. However, understanding the MOA and identifying structural features responsible for enhanced toxicity is crucial for characterising the hazard and designing safer alternatives. Therefore, 45 ILs, with systematically varied chemical structures, were tested for cytotoxicity and two specific endpoints in reporter gene assays targeting the Nrf2-ARE mediated oxidative stress response (AREc32) and aryl hydrocarbon receptor activation (AhR-CALUX). While none of the ILs activated the reporter genes, cytotoxicity was high and markedly different between cell lines. Seven and 25 ILs proved more cytotoxic than predicted by baseline toxicity model in the AREc32 and the AhR-CALUX assays, respectively. The length of the side chain and headgroup structures of ILs altered the MOA of ILs. Cellular metabolism of the ILs, investigated by LC-MS/MS, showed side-chain oxidation of the long-chain quaternary ammonium compounds in AhR-CALUX cells and, to a lower extent, in AREc32 cells, however, this transformation could not explain the high cytotoxicity. Effect data for 72 ILs for ten endpoints retrieved from the Tox21 database identified the inhibition of aromatase activity and of mitochondrial membrane potential as potential MOAs. However, in vitro fluorimetric assays for these endpoints demonstrated that effects were activated in a non-specific manner, probably through cytotoxicity. Although many of the ILs tested induced cytotoxicity at concentrations lower than baseline toxicity, the specific MOAs responsible could not be identified. Alternatively, we suggest that the descriptors currently used may fail to define the affinity of ILs for cells. Testing of the affinity of ILs for a diverse range of biomolecules is needed to accurately describe their interactions with cells.
Collapse
Affiliation(s)
- Eunhye Bae
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, D-72076 Tübingen, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany.
| |
Collapse
|
3
|
Ríos-Bonilla K, Aga DS, Lee J, König M, Qin W, Cristobal JR, Atilla-Gokcumen GE, Escher BI. Neurotoxic Effects of Mixtures of Perfluoroalkyl Substances (PFAS) at Environmental and Human Blood Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39259824 PMCID: PMC11428134 DOI: 10.1021/acs.est.4c06017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) may cause various deleterious health effects. Epidemiological studies have demonstrated associations between PFAS exposure and adverse neurodevelopmental outcomes. The cytotoxicity, neurotoxicity, and mitochondrial toxicity of up to 12 PFAS including perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and hexafluoropropylene oxide-dimer acid (HPFO-DA) were tested at concentrations typically observed in the environment (e.g., wastewater, biosolids) and in human blood using high-throughput in vitro assays. The cytotoxicity of all individual PFAS was classified as baseline toxicity, for which prediction models based on partition constants of PFAS between biomembrane lipids and water exist. No inhibition of the mitochondrial membrane potential and activation of oxidative stress response were observed below the cytotoxic concentrations of any PFAS tested. All mixture components and the designed mixtures inhibited the neurite outgrowth in differentiated neuronal cells derived from the SH-SY5Y cell line at concentrations around or below cytotoxicity. All designed mixtures acted according to concentration addition at low effect and concentration levels for cytotoxicity and neurotoxicity. The mixture effects were predictable from the experimental single compounds' concentration-response curves. These findings have important implications for the mixture risk assessment of PFAS.
Collapse
Affiliation(s)
- Karla
M. Ríos-Bonilla
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Diana S. Aga
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Jungeun Lee
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Weiping Qin
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Judith R. Cristobal
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Gunes Ekin Atilla-Gokcumen
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| |
Collapse
|
4
|
Henneberger L, Huchthausen J, Braasch J, König M, Escher BI. In Vitro Metabolism and p53 Activation of Genotoxic Chemicals: Abiotic CYP Enzyme vs Liver Microsomes. Chem Res Toxicol 2024; 37:1364-1373. [PMID: 38900731 PMCID: PMC11337206 DOI: 10.1021/acs.chemrestox.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Chemicals often require metabolic activation to become genotoxic. Established test guidelines recommend the use of the rat liver S9 fraction or microsomes to introduce metabolic competence to in vitro cell-based bioassays, but the use of animal-derived components in cell culture raises ethical concerns and may lead to quality issues and reproducibility problems. The aim of the present study was to compare the metabolic activation of cyclophosphamide (CPA) and benzo[a]pyrene (BaP) by induced rat liver microsomes and an abiotic cytochrome P450 (CYP) enzyme based on a biomimetic porphyrine catalyst. For the detection of genotoxic effects, the chemicals were tested in a reporter gene assay targeting the activation of the cellular tumor protein p53. Both chemicals were metabolized by the abiotic CYP enzyme and the microsomes. CPA showed no activation of p53 and low cytotoxicity without metabolic activation, but strong activation of p53 and increased cytotoxicity upon incubation with liver microsomes or abiotic CYP enzyme. The effect concentration causing a 1.5-fold induction of p53 activation was very similar with both metabolization systems (within a factor of 1.5), indicating that genotoxic metabolites were formed at comparable concentrations. BaP also showed low cytotoxicity and no p53 activation without metabolic activation. The activation of p53 was detected for BaP upon incubation with active and inactive microsomes at similar concentrations, indicating experimental artifacts caused by the microsomes or NADPH. The activation of BaP with the abiotic CYP enzyme increased the cytotoxicity of BaP by a factor of 8, but no activation of p53 was detected. The results indicate that abiotic CYP enzymes may present an alternative to rat liver S9 fraction or microsomes for the metabolic activation of test chemicals, which are completely free of animal-derived components. However, an amendment of existing test guidelines would require testing of more chemicals and genotoxicity end points.
Collapse
Affiliation(s)
- Luise Henneberger
- Helmholtz
Centre for Environmental Research—UFZ, Department of Cell Toxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Julia Huchthausen
- Helmholtz
Centre for Environmental Research—UFZ, Department of Cell Toxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jenny Braasch
- Helmholtz
Centre for Environmental Research—UFZ, Department of Cell Toxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Maria König
- Helmholtz
Centre for Environmental Research—UFZ, Department of Cell Toxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Helmholtz
Centre for Environmental Research—UFZ, Department of Cell Toxicology, Permoserstr. 15, 04318 Leipzig, Germany
- Eberhard
Karls University Tübingen, Environmental
Toxicology, Department of Geosciences, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Huchthausen J, Braasch J, Escher BI, König M, Henneberger L. Effects of Chemicals in Reporter Gene Bioassays with Different Metabolic Activities Compared to Baseline Toxicity. Chem Res Toxicol 2024; 37:744-756. [PMID: 38652132 PMCID: PMC11110108 DOI: 10.1021/acs.chemrestox.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
High-throughput cell-based bioassays are used for chemical screening and risk assessment. Chemical transformation processes caused by abiotic degradation or metabolization can reduce the chemical concentration or, in some cases, lead to the formation of more toxic transformation products. Unaccounted loss processes may falsify the bioassay results. Capturing the formation and effects of transformation products is important for relating the in vitro effects to in vivo. Reporter gene cell lines are believed to have low metabolic activity, but inducibility of cytochrome P450 (CYP) enzymes has been reported. Baseline toxicity is the minimal toxicity a chemical can have and is caused by the incorporation of the chemical into cell membranes. In the present study, we improved an existing baseline toxicity model based on a newly defined critical membrane burden derived from freely dissolved effect concentrations, which are directly related to the membrane concentration. Experimental effect concentrations of 94 chemicals in three bioassays (AREc32, ARE-bla and GR-bla) were compared with baseline toxicity by calculating the toxic ratio (TR). CYP activities of all cell lines were determined by using fluorescence-based assays. Only ARE-bla showed a low basal CYP activity and inducibility and AREc32 showed a low inducibility. Overall cytotoxicity was similar in all three assays despite the different metabolic activities indicating that chemical metabolism is not relevant for the cytotoxicity of the tested chemicals in these assays. Up to 28 chemicals showed specific cytotoxicity with TR > 10 in the bioassays, but baseline toxicity could explain the effects of the majority of the remaining chemicals. Seven chemicals showed TR < 0.1 indicating inaccurate physicochemical properties or experimental artifacts like chemical precipitation, volatilization, degradation, or other loss processes during the in vitro bioassay. The new baseline model can be used not only to identify specific cytotoxicity mechanisms but also to identify potential problems in the experimental performance or evaluation of the bioassay and thus improve the quality of the bioassay data.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jenny Braasch
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, 72076 Tübingen, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
6
|
Lee J, König M, Braun G, Escher BI. Water Quality Monitoring with the Multiplexed Assay MitoOxTox for Mitochondrial Toxicity, Oxidative Stress Response, and Cytotoxicity in AREc32 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5716-5726. [PMID: 38503264 PMCID: PMC10993414 DOI: 10.1021/acs.est.3c09844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Mitochondria play a key role in the energy production of cells, but their function can be disturbed by environmental toxicants. We developed a cell-based mitochondrial toxicity assay for environmental chemicals and their mixtures extracted from water samples. The reporter gene cell line AREc32, which is frequently used to quantify the cytotoxicity and oxidative stress response of water samples, was multiplexed with an endpoint of mitochondrial toxicity. The disruption of the mitochondrial membrane potential (MMP) was quantified by high-content imaging and compared to measured cytotoxicity, predicted baseline toxicity, and activation of the oxidative stress response. Mitochondrial complex I inhibitors showed highly specific effects on the MMP, with minor effects on cell viability. Uncouplers showed a wide distribution of specificity on the MMP, often accompanied by specific cytotoxicity (enhanced over baseline toxicity). Mitochondrial toxicity and the oxidative stress response were not directly associated. The multiplexed assay was applied to water samples ranging from wastewater treatment plant (WWTP) influent and effluent and surface water to drinking and bottled water from various European countries. Specific effects on MMP were observed for the WWTP influent and effluent. This new MitoOxTox assay is an important complement for existing in vitro test batteries for water quality testing and has potential for applications in human biomonitoring.
Collapse
Affiliation(s)
- Jungeun Lee
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Maria König
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Georg Braun
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University, Schnarrenbergstr.
94-96, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Huchthausen J, Escher BI, Grasse N, König M, Beil S, Henneberger L. Reactivity of Acrylamides Causes Cytotoxicity and Activates Oxidative Stress Response. Chem Res Toxicol 2023; 36:1374-1385. [PMID: 37531411 PMCID: PMC10445285 DOI: 10.1021/acs.chemrestox.3c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 08/04/2023]
Abstract
Acrylamides are widely used industrial chemicals that cause adverse effects in humans or animals, such as carcinogenicity or neurotoxicity. The excess toxicity of these reactive electrophilic chemicals is especially interesting, as it is mostly triggered by covalent reactions with biological nucleophiles, such as DNA bases, proteins, or peptides. The cytotoxicity and activation of oxidative stress response of 10 (meth)acrylamides measured in three reporter gene cell lines occurred at similar concentrations. Most acrylamides exhibited high excess toxicity, while methacrylamides acted as baseline toxicants. The (meth)acrylamides showed no reactivity toward the hard biological nucleophile 2-deoxyguanosine (2DG) within 24 h, and only acrylamides reacted with the soft nucleophile glutathione (GSH). Second-order degradation rate constants (kGSH) were measured for all acrylamides with N,N'-methylenebis(acrylamide) (NMBA) showing the highest kGSH (134.800 M-1 h-1) and N,N-diethylacrylamide (NDA) the lowest kGSH (2.574 M-1 h-1). Liquid chromatography coupled to high-resolution mass spectrometry was used to confirm the GSH conjugates of the acrylamides with a double conjugate formed for NMBA. The differences in reactivity between acrylamides and methacrylamides could be explained by the charge density of the carbon atoms because the electron-donating inductive effect of the methyl group of the methacrylamides lowered their electrophilicity and thus their reactivity. The differences in reactivity within the group of acrylamides could be explained by the energy of the lowest unoccupied molecular orbital and steric hindrance. Cytotoxicity and activation of oxidative stress response were linearly correlated with the second-order reaction rate constants of the acrylamides with GSH. The reaction of the acrylamides with GSH is hence not only a detoxification mechanism but also leads to disturbances of the redox balance, making the cells more vulnerable to reactive oxygen species. The reactivity of acrylamides explained the oxidative stress response and cytotoxicity in the cells, and the lack of reactivity of the methacrylamides led to baseline toxicity.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Department
of Geosciences, Eberhard Karls University
Tübingen, Environmental Toxicology, 72076 Tübingen, Germany
| | - Nico Grasse
- Department
of Analytical Chemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stephan Beil
- Institute
of Water Chemistry, Technische Universität
Dresden, 01069 Dresden, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
8
|
Reichstein IS, König M, Wojtysiak N, Escher BI, Henneberger L, Behnisch P, Besselink H, Thalmann B, Colas J, Hörchner S, Hollert H, Schiwy A. Replacing animal-derived components in in vitro test guidelines OECD 455 and 487. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161454. [PMID: 36638987 DOI: 10.1016/j.scitotenv.2023.161454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The evaluation of single substances or environmental samples for their genotoxic or estrogenic potential is highly relevant for human- and environment-related risk assessment. To examine the effects on a mechanism-specific level, standardized cell-based in vitro methods are widely applied. However, these methods include animal-derived components like fetal bovine serum (FBS) or rat-derived liver homogenate fractions (S9-mixes), which are a source of variability, reduced assay reproducibility and ethical concerns. In our study, we evaluated the adaptation of the cell-based in vitro OECD test guidelines TG 487 (assessment of genotoxicity) and TG 455 (detection of estrogenic activity) to an animal-component-free methodology. Firstly, the human cell lines A549 (for OECD TG 487), ERα-CALUX® and GeneBLAzer™ ERα-UAS-bla GripTite™ (for OECD TG 455) were investigated for growth in a chemically defined medium without the addition of FBS. Secondly, the biotechnological S9-mix ewoS9R was implemented in comparison to the induced rat liver S9 to simulate in vivo metabolism capacities in both OECD test guidelines. As a model compound, Benzo[a]pyrene was used due to its increased genotoxicity and endocrine activity after metabolization. The metabolization of Benzo[a]Pyrene by S9-mixes was examined via chemical analysis. All cell lines (A549, ERα-CALUX® and GeneBLAzer™ Erα-UAS-bla GripTite™) were successfully cultivated in chemically defined media without FBS. The micronucleus assay could not be conducted in chemically defined medium due to formation of cell clusters. The methods for endocrine activity assessment could be conducted in chemically defined media or reduced FBS content, but with decreased assay sensitivity. The biotechnological ewoS9R showed potential to replace rat liver S9 in the micronucleus in FBS-medium with A549 cells and in the ERα-CALUX® assay in FBS- and chemically defined medium. Our study showed promising steps towards an animal-component free toxicity testing. After further improvements, the new methodology could lead to more reproducible and reliable results for risk assessment.
Collapse
Affiliation(s)
- Inska S Reichstein
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Niklas Wojtysiak
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany; Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | | | | | | | - Julien Colas
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah Hörchner
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer IME, Schmallenberg, Germany.
| | - Andreas Schiwy
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer IME, Schmallenberg, Germany.
| |
Collapse
|
9
|
Dimitrijevic D, Fabian E, Nicol B, Funk-Weyer D, Landsiedel R. Toward Realistic Dosimetry In Vitro: Determining Effective Concentrations of Test Substances in Cell Culture and Their Prediction by an In Silico Mass Balance Model. Chem Res Toxicol 2022; 35:1962-1973. [PMID: 36264934 PMCID: PMC9682521 DOI: 10.1021/acs.chemrestox.2c00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nominal concentrations (CNom) in cell culture media are routinely used to define concentration-effect relationships in the in vitro toxicology. The actual concentration in the medium (CMedium) can be affected by adsorption processes, evaporation, or degradation of chemicals. Therefore, we measured the total and free concentration of 12 chemicals, covering a wide range of lipophilicity (log KOW -0.07-6.84), in the culture medium (CMedium) and cells (CCell) after incubation with Balb/c 3T3 cells for up to 48 h. Measured values were compared to predictions using an as yet unpublished in silico mass balance model that combined relevant equations from similar models published by others. The total CMedium for all chemicals except tamoxifen (TAM) were similar to the CNom. This was attributed to the cellular uptake of TAM and accumulation into lysosomes. The free (i.e., unbound) CMedium for the low/no protein binding chemicals were similar to the CNom, whereas values of all moderately to highly protein-bound chemicals were less than 30% of the CNom. Of the 12 chemicals, the two most hydrophilic chemicals, acetaminophen (APAP) and caffeine (CAF), were the only ones for which the CCell was the same as the CNom. The CCell for all other chemicals tended to increase over time and were all 2- to 274-fold higher than CNom. Measurements of CCytosol, using a digitonin method to release cytosol, compared well with CCell (using a freeze-thaw method) for four chemicals (CAF, APAP, FLU, and KET), indicating that both methods could be used. The mass balance model predicted the total CMedium within 30% of the measured values for 11 chemicals. The free CMedium of all 12 chemicals were predicted within 3-fold of the measured values. There was a poorer prediction of CCell values, with a median overprediction of 3- to 4-fold. In conclusion, while the number of chemicals in the study is limited, it demonstrates the large differences between CNom and total and free CMedium and CCell, which were also relatively well predicted by the mass balance model.
Collapse
Affiliation(s)
- Dunja Dimitrijevic
- Free
University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Königin-Luise-Straße
2−4, 14195Berlin, Germany
| | - Eric Fabian
- BASF
SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67056Ludwigshafen am Rhein, Germany
| | - Beate Nicol
- Safety
& Environmental Assurance Centre, Unilever
U.K., Sharnbrook, MK44 ILQBedford, United Kingdom
| | - Dorothee Funk-Weyer
- BASF
SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67056Ludwigshafen am Rhein, Germany
| | - Robert Landsiedel
- Free
University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Königin-Luise-Straße
2−4, 14195Berlin, Germany,BASF
SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67056Ludwigshafen am Rhein, Germany,. Fax: +49 621 60-58134
| |
Collapse
|
10
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
11
|
Bloch S, Arnot JA, Kramer NI, Armitage JM, Verner MA. Dynamic Mass Balance Modeling for Chemical Distribution Over Time in In Vitro Systems With Repeated Dosing. FRONTIERS IN TOXICOLOGY 2022; 4:911128. [PMID: 36071822 PMCID: PMC9441784 DOI: 10.3389/ftox.2022.911128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
As toxicologists and risk assessors move away from animal testing and more toward using in vitro models and biological modeling, it is necessary to produce tools to quantify the chemical distribution within the in vitro environment prior to extrapolating in vitro concentrations to human equivalent doses. Although models predicting chemical distribution in vitro have been developed, very little has been done for repeated dosing scenarios, which are common in prolonged experiments where the medium needs to be refreshed. Failure to account for repeated dosing may lead to inaccurate estimations of exposure and introduce bias into subsequent in vitro to in vivo extrapolations. Our objectives were to develop a dynamic mass balance model for repeated dosing in in vitro systems; to evaluate model accuracy against experimental data; and to perform illustrative simulations to assess the impact of repeated doses on predicted cellular concentrations. A novel dynamic in vitro partitioning mass balance model (IV-MBM DP v1.0) was created based on the well-established fugacity approach. We parameterized and applied the dynamic mass balance model to single dose and repeat dosing scenarios, and evaluated the predicted medium and cellular concentrations against available empirical data. We also simulated repeated dosing scenarios for organic chemicals with a range of partitioning properties and compared the in vitro distributions over time. In single dose scenarios, for which only medium concentrations were available, simulated concentrations predicted measured concentrations with coefficients of determination (R2) of 0.85–0.89, mean absolute error within a factor of two and model bias of nearly one. Repeat dose scenario simulations displayed model bias <2 within the cell lysate, and ∼1.5-3 in the medium. The concordance between simulated and available experimental data supports the predictive capacity of the IV-MBM DP v1.0 tool, but further evaluation as empirical data becomes available is warranted, especially for cellular concentrations.
Collapse
Affiliation(s)
- Sherri Bloch
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche en Santé Publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Jon A. Arnot
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON, Canada
- ARC Arnot Consulting and Research, Inc., Toronto, ON, Canada
| | - Nynke I. Kramer
- Division of Toxicology, Wageningen University, Wageningen, Netherlands
| | | | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche en Santé Publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
- *Correspondence: Marc-André Verner,
| |
Collapse
|
12
|
Tentscher PR, Escher BI, Schlichting R, König M, Bramaz N, Schirmer K, von Gunten U. Toxic effects of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. WATER RESEARCH 2021; 202:117415. [PMID: 34348209 DOI: 10.1016/j.watres.2021.117415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Substituted para-benzoquinones and hydroquinones are ubiquitous transformation products that arise during oxidative water treatment of phenolic precursors, for example through ozonation or chlorination. The benzoquinone structural motive is associated with mutagenicity and carcinogenicity, and also with induction of the oxidative stress response through the Nrf2 pathway. For either endpoint, toxicological data for differently substituted compounds are scarce. In this study, oxidative stress response, as indicated by the AREc32 in vitro bioassay, was induced by differently substituted para-benzoquinones, but also by the corresponding hydroquinones. Bioassays that indicate defense against genotoxicity (p53RE-bla) and DNA repair activity (UmuC) were not activated by these compounds. Stability tests conducted under incubation conditions, but in the absence of cell lines, showed that tested para-benzoquinones reacted rapidly with constituents of the incubation medium. Compounds were abated already in phosphate buffer, but even faster in biological media, with reactions attributed to amino- and thiol-groups of peptides, proteins, and free amino acids. The products of these reactions were often the corresponding substituted hydroquinones. Conversely, differently substituted hydroquinones were quantitatively oxidized to p-benzoquinones over the course of the incubation. The observed induction of the oxidative stress response was attributed to hydroquinones that are presumably oxidized to benzoquinones inside the cells. Despite the instability of the tested compounds in the incubation medium, the AREc32 in vitro bioassay could be used as an unspecific sum parameter to detect para-benzoquinones and hydroquinones in oxidatively treated waters.
Collapse
Affiliation(s)
- Peter R Tentscher
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland; Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Beate I Escher
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany; Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Maria König
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Nadine Bramaz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland; Department of Environmental Systems Science, ETH Zürich, Zürich CH-8092, Switzerland; Civil and Environmental Engineering (ENAC), School of Architecture, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland; Civil and Environmental Engineering (ENAC), School of Architecture, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|
13
|
Qu W, Crizer DM, DeVito MJ, Waidyanatha S, Xia M, Houck K, Ferguson SS. Exploration of xenobiotic metabolism within cell lines used for Tox21 chemical screening. Toxicol In Vitro 2021; 73:105109. [PMID: 33609632 PMCID: PMC10838150 DOI: 10.1016/j.tiv.2021.105109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
The Tox21 Program has investigated thousands of chemicals with high-throughput screening assays using cell-based assays to link thousands of chemicals to individual molecular targets/pathways. However, these systems have been widely criticized for their suspected lack of 'metabolic competence' to bioactivate or detoxify chemical exposures. In this study, 9 cell line backgrounds used in Tox21 assays (i.e., HepG2, HEK293, Hela, HCT116, ME180, CHO-K1, GH3.TRE-Luc, C3H10T1/2 and MCF7) were evaluated via metabolite formation rates, along with metabolic clearance and metabolite profiling for HepG2, HEK293, and MCF-7aroERE, in comparison to pooled donor (50) suspensions of primary human hepatocytes (PHHs). Using prototype clinical drug substrates for CYP1A2, CYP2B6, and CYP3A4/5, extremely low-to-undetectable CYP450 metabolism was observed (24 h), and consistent with their purported 'lack' of metabolic competence. However, for Phase II metabolizing enzymes and metabolic clearance, surprisingly proficient metabolism was observed for bisphenol AF, bisphenol S, and 7-hydroxycoumarin. Here, comparatively low glucuronidation relative to sulfation was observed in contrast to equivalent levels in PHHs. Overall, while a lack of CYP450 metabolism was confirmed in this benchmarking effort, Tox21 cell lines were not 'incompetent' for xenobiotic metabolism, and displayed surprisingly high proficiency for sulfation that rivaled PHHs. These findings have implications for the interpretation of Tox21 assay data, and establish a framework for evaluating of 'metabolic competence' with in vitro models.
Collapse
Affiliation(s)
- Wei Qu
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David M Crizer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Michael J DeVito
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Keith Houck
- National Center for Computational Toxicology, US EPA, Research Triangle Park, NC, USA
| | - Stephen S Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
14
|
Houck KA, Simha A, Bone A, Doering JA, Vliet SMF, LaLone C, Medvedev A, Makarov S. Evaluation of a multiplexed, multispecies nuclear receptor assay for chemical hazard assessment. Toxicol In Vitro 2021; 72:105016. [PMID: 33049310 PMCID: PMC11267479 DOI: 10.1016/j.tiv.2020.105016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
Sensitivity to potential endocrine disrupting chemicals in the environment varies across species and is influenced by sequence conservation of their nuclear receptor targets. Here, we evaluated a multiplexed, in vitro assay testing receptors relevant to endocrine and metabolic disruption from five species. The TRANS-FACTORIAL™ system of human nuclear receptors was modified to include additional species: mouse (Mus musculus), frog (Xenopus laevis), zebrafish (Danio rerio), chicken (Gallus gallus), and turtle (Chrysemys picta). Receptors regulating endocrine function and xenobiotic recognition were included, specifically: ERα, ERβ, AR, TRα, TRβ, PPARγ and PXR. The assay, ECOTOX-FACTORIAL™, was evaluated with 191 chemicals enriched with known receptor ligands. Hierarchical clustering of potency values demonstrated strong coherence of receptor families. Interspecies comparisons of responses within a receptor family showed moderate to high concordance for potencies under 50 μM. PPARγ showed high concordance between mammalian species, 89%, but only 63% between mammalian and zebrafish. For chemicals with potencies below 1 μM, concordances were 89-100% for all receptors except PXR. Concordance showed a strong positive relationship to ligand-binding domain sequence similarity and critical amino acid residues obtained by the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool. In combination with SeqAPASS, ECOTOX-FACTORIAL may provide efficient screening of important receptors to identify species of high priority for effects monitoring.
Collapse
Affiliation(s)
- Keith A Houck
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Anita Simha
- ORAU, Contractor to U.S. Environmental Protection Agency through the National Student Services Contract, United States
| | - Audrey Bone
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jon A Doering
- National Research Council, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Sara M F Vliet
- Office of Research and Development, Center for Computational Toxicology and Ecology, Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Duluth, MN 55804, USA
| | - Carlie LaLone
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, United States of America
| | - Alex Medvedev
- Attagene, Inc., 7030 Kit Creek Rd, Morrisville, NC 27560, United States of America
| | - Sergei Makarov
- Attagene, Inc., 7030 Kit Creek Rd, Morrisville, NC 27560, United States of America
| |
Collapse
|
15
|
Henneberger L, Huchthausen J, Wojtysiak N, Escher BI. Quantitative In Vitro-to- In Vivo Extrapolation: Nominal versus Freely Dissolved Concentration. Chem Res Toxicol 2021; 34:1175-1182. [PMID: 33759508 DOI: 10.1021/acs.chemrestox.1c00037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Discussions are ongoing on which dose metric should be used for quantitative in vitro-to-in vivo extrapolation (QIVIVE) of in vitro bioassay data. The nominal concentration of the test chemicals is most commonly used and easily accessible, while the concentration freely dissolved in the assay medium is considered to better reflect the bioavailable concentration but is tedious to measure. The aim of this study was to elucidate how much QIVIVE results will differ when using either nominal or freely dissolved concentrations. QIVIVEnom and QIVIVEfree ratios, that is, the ratios of plasma concentrations divided by in vitro effect concentrations, were calculated for 10 pharmaceuticals using previously published nominal and freely dissolved effect concentrations for the activation of the peroxisome proliferator-activated receptor gamma (PPARγ) and the activation of oxidative stress response. The QIVIVEnom ratios were higher than QIVIVEfree ratios by up to a factor of 60. The risk of in vivo effects was classified as being high or low for four chemicals using the QIVIVEnom and for three chemicals using QIVIVEfree ratios. Unambiguous classification was possible for nine chemicals by combining the QIVIVEnom or QIVIVEfree ratios with the respective specificity ratios (SRnom or SRfree) of the in vitro effect data, which helps to identify whether the specific effect was influenced by cytotoxicity. QIVIVEfree models should be preferred as they account for differences in bioavailability between in vitro and in vivo, but QIVIVEnom may still be useful for screening the effects of large numbers of chemicals because it is generally more conservative. The use of SR of the in vitro effect data as a second classification factor is recommended for QIVIVEnom and QIVIVEfree models because a clearer picture can be obtained with respect to the likelihood that a biological effect will occur and that it is not caused by nonspecific cytotoxicity.
Collapse
Affiliation(s)
- Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Julia Huchthausen
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Niklas Wojtysiak
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.,Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Escher BI, Neale PA. Effect-Based Trigger Values for Mixtures of Chemicals in Surface Water Detected with In Vitro Bioassays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:487-499. [PMID: 33252775 DOI: 10.1002/etc.4944] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 05/12/2023]
Abstract
Effect-based trigger (EBT) values for in vitro bioassays are important for surface water quality monitoring because they define the threshold between acceptable and poor water quality. They have been derived for highly specific bioassays, such as hormone-receptor activation in reporter gene bioassays, by reading across from existing chemical guideline values. This read-across method is not easily applicable to bioassays indicative of adaptive stress responses, which are triggered by many different chemicals, and activation of nuclear receptors for xenobiotic metabolism, to which many chemicals bind with rather low specificity. We propose an alternative approach to define the EBT from the distribution of specificity ratios of all active chemicals. The specificity ratio is the ratio between the predicted baseline toxicity of a chemical in a given bioassay and its measured specific endpoint. Unlike many previous read-across methods to derive EBTs, the proposed method accounts for mixture effects and includes all chemicals, not only high-potency chemicals. The EBTs were derived from a cytotoxicity EBT that was defined as equivalent to 1% of cytotoxicity in a native surface water sample. The cytotoxicity EBT was scaled by the median of the log-normal distribution of specificity ratios to derive the EBT for effects specific for each bioassay. We illustrate the new approach using the example of the AREc32 assay, indicative of the oxidative stress response, and 2 nuclear receptor assays targeting the peroxisome proliferator-activated receptor gamma and the arylhydrocarbon receptor. The EBTs were less conservative than previously proposed but were able to differentiate untreated and insufficiently treated wastewater from wastewater treatment plant effluent with secondary or tertiary treatment and surface water. Environ Toxicol Chem 2021;40:487-499. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
17
|
Huchthausen J, Mühlenbrink M, König M, Escher BI, Henneberger L. Experimental Exposure Assessment of Ionizable Organic Chemicals in In Vitro Cell-Based Bioassays. Chem Res Toxicol 2020; 33:1845-1854. [DOI: 10.1021/acs.chemrestox.0c00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Julia Huchthausen
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marie Mühlenbrink
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|