1
|
Komatsu M, Funakoshi T, Aki T, Unuma K. Aristolochic acid-induced DNA adduct formation triggers acute DNA damage response in rat kidney proximal tubular cells. Toxicol Lett 2025; 406:1-8. [PMID: 39955082 DOI: 10.1016/j.toxlet.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/19/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Aristolochic acid nephropathy (AAN) is a form of acute kidney injury triggered by the ingestion of aristolochic acid (AA), characterized by significant degeneration and loss of cells in the proximal tubules. Previous reports of AA-induced acute kidney injury have reported that AA-induced cytotoxicity can occur within a short period, up to 24 h; however, there are few reports on the relationship between AA-DNA adduct formation and cytotoxic mechanism during the acute phase. In this study, we aimed to elucidate the toxicological mechanisms in the initial phase of AA exposure by examining the effects of AA on NRK-52E rat proximal tubular cells within 24 h. We detected the formation of AA-DNA adducts as early as 4 h post-exposure, indicating that 50 μM of AA causes DNA damage. The DNA damage response pathway was activated, peaking at 8 h post-exposure. Additionally, we observed an increasing trend of G1 phase cell cycle arrest after 8 h, followed by a significant decline in cell viability at 16 h. These findings suggest that 50 μM of AA induces rapid DNA damage in NRK-52E cells, primarily through the formation of AA-DNA adducts, ultimately leading to G1 phase cell cycle arrest.
Collapse
Affiliation(s)
- Miyu Komatsu
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
2
|
Bagale SS, Deshmukh PU, Lad SB, Sudarsan A, Sudhakar S, Mandal S, Kondabagil K, Pradeepkumar PI. Synthesis of N2- trans-isosafrole-dG-adduct Bearing DNAs and the Bypass Studies with Human TLS Polymerases κ and η. J Org Chem 2024; 89:7680-7691. [PMID: 38739842 DOI: 10.1021/acs.joc.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Safrole is a natural product present in many plants and plant products, including spices and essential oils. During cellular metabolism, it converts to a highly reactive trans-isosafrole (SF) intermediate that reacts with genomic DNA and forms N2-SF-dG and N6-SF-dA DNA adducts, which are detected in the oral tissue of cancer patients with betel quid chewing history. To study the SF-induced carcinogenesis and to probe the role of low fidelity translesion synthesis (TLS) polymerases in bypassing SF adducts, herein, we report the synthesis of N2-SF-dG modified DNAs using phosphoramidite chemistry. The N2-SF-dG modification in the duplex DNA does not affect the thermal stability and retains the B-form of helical conformation, indicating that this adduct may escape the radar of common DNA repair mechanisms. Primer extension studies showed that the N2-SF-dG adduct is bypassed by human TLS polymerases hpolκ and hpolη, which perform error-free replication across this adduct. Furthermore, molecular modeling and dynamics studies revealed that the adduct reorients to pair with the incoming nucleotide, thus allowing the effective bypass. Overall, the results indicate that hpolκ and hpolη do not distinguish the N2-SF-dG adduct, suggesting that they may not be involved in the safrole-induced carcinogenicity.
Collapse
Affiliation(s)
| | - Priyanka U Deshmukh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shailesh B Lad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akhil Sudarsan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumyadeep Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Deshmukh PU, Lad SB, Sudarsan A, Sudhakar S, Aggarwal T, Mandal S, Bagale SS, Kondabagil K, Pradeepkumar PI. Human Translesion Synthesis Polymerases polκ and polη Perform Error-Free Replication across N2-dG Methyleugenol and Estragole DNA Adducts. Biochemistry 2023; 62:2391-2406. [PMID: 37486230 DOI: 10.1021/acs.biochem.2c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The secondary metabolites of polypropanoids, methyleugenol (MEG), and estragole (EG), found in many herbs and spices, are commonly used as food flavoring agents and as ingredients in cosmetics. MEG and EG have been reported to cause hepatocarcinogenicity in rodents, human livers, and lung cells. The formation of N2-dG and N6-dA DNA adducts is primarily attributed to the carcinogenicity of these compounds. Therefore, these compounds have been classified as "possible human carcinogens" by the International Agency for Research on Cancer and "reasonably anticipated to be a human carcinogen" by the National Toxicology Program. Herein, we report the synthesis of the N2-MEG-dG and N2-EG-dG modified oligonucleotides to study the mutagenicity of these DNA adducts. Our studies show that N2-MEG-dG and N2-EG-dG could be bypassed by human translesion synthesis (TLS) polymerases hpolκ and hpolη in an error-free manner. The steady-state kinetics of dCTP incorporation by hpolκ across N2-MEG-dG and N2-EG-dG adducts show that the catalytic efficiencies (kcat/Km) were ∼2.5- and ∼4.4-fold higher, respectively, compared to the unmodified dG template. A full-length primer extension assay demonstrates that hpolκ exhibits better catalytic efficiency than hpolη. Molecular modeling and dynamics studies capturing pre-insertion, insertion, and post-insertion steps reveal the structural features associated with the efficient bypass of the N2-MEG-dG adduct by hpolκ and indicate the reorientation of the adduct in the active site allowing the successful insertion of the incoming nucleotide. Together, these results suggest that though hpolκ and hpolη perform error-free TLS across MEG and EG during DNA replication, the observed carcinogenicity of these adducts could be attributed to the involvement of other low fidelity polymerases.
Collapse
Affiliation(s)
- Priyanka U Deshmukh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shailesh B Lad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akhil Sudarsan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tanvi Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumyadeep Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Boldinova EO, Ghodke PP, Sudhakar S, Mishra VK, Manukyan AA, Miropolskaya N, Pradeepkumar PI, Makarova AV. Translesion Synthesis across the N2-Ethyl-deoxyguanosine Adduct by Human PrimPol. ACS Chem Biol 2022; 17:3238-3250. [PMID: 36318733 DOI: 10.1021/acschembio.2c00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Primase-DNA polymerase (PrimPol) is involved in reinitiating DNA synthesis at stalled replication forks. PrimPol also possesses DNA translesion (TLS) activity and bypasses several endogenous nonbulky DNA lesions in vitro. Little is known about the TLS activity of PrimPol across bulky carcinogenic adducts. We analyzed the DNA polymerase activity of human PrimPol on DNA templates with seven N2-dG lesions of different steric bulkiness. In the presence of Mg2+ ions, bulky N2-isobutyl-dG, N2-benzyl-dG, N2-methyl(1-naphthyl)-dG, N2-methyl(9-anthracenyl)-dG, N2-methyl(1-pyrenyl)-dG, and N2-methyl(1,3-dimethoxyanthraquinone)-dG adducts fully blocked PrimPol activity. At the same time, PrimPol incorporated complementary deoxycytidine monophosphate (dCMP) opposite N2-ethyl-dG with moderate efficiency but did not extend DNA beyond the lesion. We also demonstrated that mutation of the Arg288 residue abrogated dCMP incorporation opposite the lesion in the presence of Mn2+ ions. When Mn2+ replaced Mg2+, PrimPol carried out DNA synthesis on all DNA templates with N2-dG adducts in standing start reactions with low efficiency and accuracy, possibly utilizing a lesion "skipping" mechanism. The TLS activity of PrimPol opposite N2-ethyl-dG but not bulkier adducts was stimulated by accessory proteins, polymerase delta-interacting protein 2 (PolDIP2), and replication protein A (RPA). Molecular dynamics studies demonstrated the absence of stable interactions with deoxycytidine triphosphate (dCTP), large reactions, and C1'-C1' distances for the N2-isobutyl-dG and N2-benzyl-dG PrimPol complexes, suggesting that the size of the adduct is a limiting factor for efficient TLS across minor groove adducts by PrimPol.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| | - Pratibha P Ghodke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vipin Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anna A Manukyan
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| | - Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| | | | - Alena V Makarova
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Kurchatov sq. 2, Moscow 123182, Russia
| |
Collapse
|
5
|
Wilson KA, Jeong YER, Wetmore SD. Multiscale computational investigations of the translesion synthesis bypass of tobacco-derived DNA adducts: critical insights that complement experimental biochemical studies. Phys Chem Chem Phys 2022; 24:10667-10683. [PMID: 35502640 DOI: 10.1039/d2cp00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Among the numerous agents that damage DNA, tobacco products remain one of the most lethal and result in the most diverse set of DNA lesions. This perspective aims to provide an overview of computational work conducted to complement experimental biochemical studies on the mutagenicity of adducts derived from the most potent tobacco carcinogen, namely 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosaminoketone or NNK). Lesions ranging from the smallest methylated thymine derivatives to the larger, flexible pyridyloxobutyl (POB) guanine adducts are considered. Insights are obtained from density functional theory (DFT) calculations and molecular dynamics (MD) simulations into the damaged nucleobase and nucleoside structures, the accommodation of the lesions in the active site of key human polymerases, the intrinsic base pairing potentials of the adducts, and dNTP incorporation opposite the lesions. Overall, the computational data provide atomic level information that can rationalize the differential mutagenic properties of tobacco-derived lesions and uncover important insights into the impact of adduct size, nucleobase, position, and chemical composition of the bulky moiety.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
6
|
Negi I, Mahmi AS, Seelam Prabhakar P, Sharma P. Molecular Dynamics Simulations of the Aptamer Domain of Guanidinium Ion Binding Riboswitch ykkC-III: Structural Insights into the Discrimination of Cognate and Alternate Ligands. J Chem Inf Model 2021; 61:5243-5255. [PMID: 34609872 DOI: 10.1021/acs.jcim.1c01022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Guanidinium ion is a toxic cellular metabolite. The ykkC-III riboswitch, an mRNA stretch, regulates the gene expression by undergoing a conformational change in response to the binding of a free guanidinium ion and thereby plays a potentially important role in alleviating guanidinium toxicity in cells. An experimental crystal structure of the guanidinium-bound aptamer domain of the riboswitch from Thermobifida Fusca revealed the overall RNA architecture and mapped the specific noncovalent interactions that stabilize the ligand within the binding pocket aptamer. However, details of how the aptamer domain discriminates the cognate ligand from its closest structurally analogous physiological metabolites (arginine and urea), and how the binding of cognate ligand arrays information from the aptamer domain to the expression platform for regulating the gene expression, are not well understood. To fill this void, we perform a cumulative of 2 μs all-atom explicit-solvent molecular dynamics (MD) simulations on the full aptamer domain, augmented with quantum-chemical calculations on the ligand-binding pocket, to compare the structural and dynamical details of the guanidinium-bound state with the arginine or urea bound states, as well as the unbound (open) state. Analysis of the ligand-binding pocket reveals that due to unfavorable interactions with the binding-pocket residues, urea cannot bind the aptamer domain and thereby cannot alter the gene expression. Although interaction of the guanidyl moiety of arginine within the binding pocket is either comparable or stronger than the guanidinium ion, additional non-native hydrogen-bonding networks, as well as differences in the dynamical details of the arginine-bound state, explain why arginine cannot transmit the information from the aptamer domain to the expression platform. Based on our simulations, we propose a mechanism of how the aptamer domain communicates with the expression platform. Overall, our work provides interesting insights into the ligand recognition by a specific class of riboswitches and may hopefully inspire future studies to further understand the gene regulation by riboswitches.
Collapse
Affiliation(s)
- Indu Negi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Amanpreet Singh Mahmi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Preethi Seelam Prabhakar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
7
|
Bhutani P, Murray MT, Sommer CW, Wilson KA, Wetmore SD. Structural Rationalization for the Nonmutagenic and Mutagenic Bypass of the Tobacco-Derived O4-4-(3-Pyridyl)-4-oxobut-1-yl-thymine Lesion by Human Polymerase η: A Multiscale Computational Study. Chem Res Toxicol 2021; 34:1619-1629. [PMID: 33856186 DOI: 10.1021/acs.chemrestox.1c00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tobacco-derived pyridyloxobutyl (POB) DNA adducts are unique due to the large size and flexibility of the alkyl chain connecting the pyridyl ring to the nucleobase. Recent experimental work suggests that the O4-4-(3-pyridyl)-4-oxobut-1-yl-T (O4-POB-T) lesion can undergo both nonmutagenic (dATP) and mutagenic (dGTP) insertion by the translesion synthesis (TLS) polymerase (pol) η in human cells. Interestingly, the mutagenic rate for O4-POB-T replication is reduced compared to that for the smaller O4-methylthymine (O4-Me-T) lesion, and O4-POB-T yields a different mutagenic profile than the O2-POB-T variant (dTTP insertion). The present work uses a combination of density functional theory calculations and molecular dynamics simulations to probe the impact of the size and flexibility of O4-POB-T on pol η replication outcomes. Due to changes in the Watson-Crick binding face upon damage of canonical T, O4-POB-T does not form favorable hydrogen-bonding interactions with A. Nevertheless, dATP is positioned for insertion in the pol η active site by a water chain to the template strand, which suggests a pol η replication pathway similar to that for abasic sites. Although a favorable O4-POB-T:G mispair forms in the pol η active site and DNA duplexes, the inherent dynamical nature of O4-POB-T periodically disrupts interstrand hydrogen bonding that would otherwise facilitate dGTP insertion and stabilize damaged DNA duplexes. In addition to explaining the origin of the experimentally reported pol η outcomes associated with O4-POB-T replication, comparison to structural data for the O4-Me-T and O2-POB-T adducts highlights an emerging common pathway for the nonmutagenic replication of thymine alkylated lesions by pol η, yet underscores the broader impacts of bulky moiety size, flexibility, and position on the associated mutagenic outcomes.
Collapse
Affiliation(s)
- Priya Bhutani
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Makay T Murray
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Craig W Sommer
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Katie A Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
8
|
Feng W, Ying WZ, Li X, Curtis LM, Sanders PW. Renoprotective effect of Stat1 deletion in murine aristolochic acid nephropathy. Am J Physiol Renal Physiol 2021; 320:F87-F96. [PMID: 33283645 PMCID: PMC7847048 DOI: 10.1152/ajprenal.00401.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/14/2023] Open
Abstract
Injured tubule epithelium stimulates a profibrotic milieu that accelerates loss of function in chronic kidney disease (CKD). This study tested the role of signal transducer and activator of transcription 1 (STAT1) in the progressive loss of kidney function in aristolochic acid (AA) nephropathy, a model of CKD. Mean serum creatinine concentration increased in wild-type (WT) littermates treated with AA, whereas Stat1-/- mice were protected. Focal increases in the apical expression of kidney injury molecule (KIM)-1 were observed in the proximal tubules of WT mice with AA treatment but were absent in Stat1-/- mice in the treatment group as well as in both control groups. A composite injury score, an indicator of proximal tubule injury, was reduced in Stat1-/- mice treated with AA. Increased expression of integrin-β6 and phosphorylated Smad2/3 in proximal tubules as well as interstitial collagen and fibronectin were observed in WT mice following AA treatment but were all decreased in AA-treated Stat1-/- mice. The data indicated that STAT1 activation facilitated the development of progressive kidney injury and interstitial fibrosis in AA nephropathy.
Collapse
Affiliation(s)
- Wenguang Feng
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xingsheng Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lisa M Curtis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|