1
|
Altaweel S, Van Schepdael A, Adams E, Almomen A. The development of a bioanalytical method for the simultaneous analysis of gentamicin and tacrolimus in Rat whole blood using UHPLC-MS/MS. Sci Rep 2025; 15:8761. [PMID: 40082530 PMCID: PMC11906775 DOI: 10.1038/s41598-025-92418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Tacrolimus (TAC) is commonly administered to patients who have undergone organ transplantation to prevent the immune system from rejecting the transplanted organ. Multidrug-resistant bacterial infections are the most frequent complications during the first-month post-transplantation. Old antimicrobial agents such as gentamicin (GEN) are widely used to treat opportunistic nosocomial infections in immunosuppressed TAC patients. Nephrotoxicity is a significant side effect of GEN and TAC, but some studies indicated their concurrent administration. However, there is no information on whether the combination of the two drugs may result in a more significant impairment of kidney function than either drug used separately. To investigate this, both drugs should be monitored in blood. Sample preparation was carried out using protein precipitation, requiring only 50 µL of WB sample with an extraction recovery of not less than 95.2% (GEN) and 93.2% (TAC). Analytes and internal standard (IS) were monitored using mass spectrometry (MS) in positive ion mode by multiple reaction monitoring (MRM). Chromatographic analysis was performed on an Acquity UPLC BEH C18 column (50 mm × 2.1 mm, 1.7 μm), kept at 50 °C and using gradient elution. Mobile phase A contained 2 mmol/L ammonium formate acidified with 0.1% formic acid in water, and mobile phase B was a mixture of 2 mmol/L ammonium formate and 0.1% formic acid in methanol, pumped at a flow rate of 0.25 mL/min. The analysis time was only 6 min. The method was verified according to the European Medicines Agency (EMA) guidelines over a concentration range of 19.5-2500 ng/mL for GEN and 1.95-250 ng/mL for TAC. Determination coefficients for the calibration curves were found to be ≥ 0.999. Within- and between-run precision and accuracy were evaluated for both drugs with relative standard deviations (RSD) ≤ 6.5% and inaccuracy ≤ 6.6%. The proposed method was successfully applied to analyze the WB samples at different time points after the co-administration of GEN and TAC to Wistar rats. In this work, a new bioanalytical UHPLC-MS/MS method was developed and validated for simultaneous quantification of total GEN congeners (C1, C1a, and C2/C2a) and TAC in Wistar rats whole blood (WB). The protein precipitation method has been chosen to extract the drug from the WB sample. The assay method has been successfully used to estimate the concentration of TAC and GEN after co-administration in rats.
Collapse
Affiliation(s)
- Shrooq Altaweel
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, Herestraat 49, O&N2, PB, 923, 3000, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, Herestraat 49, O&N2, PB, 923, 3000, Leuven, Belgium
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, Herestraat 49, O&N2, PB, 923, 3000, Leuven, Belgium.
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Kilianova Z, Cizmarova I, Spaglova M, Piestansky J. Recent Trends in Therapeutic Drug Monitoring of Peptide Antibiotics. J Sep Sci 2024; 47:e202400583. [PMID: 39400453 DOI: 10.1002/jssc.202400583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Antimicrobial peptides take a specific position in the field of antibiotics (ATBs), however, from a large number of available molecules only a few of them were approved and are used in clinics. These therapeutic modalities play a crucial role in the management of diseases caused by multidrug-resistant bacterial pathogens and represent the last-line therapy for bacterial infections. Therefore, there is a demand for a rationale use of such ATBs based on optimization of the dosing strategy to minimize the risk of resistance and ensure the sustainable efficacy of the drug in real clinical practice. Therapeutic drug monitoring, as a measurement of drug concentration in the body fluids or tissues, results in the optimization of the patient´s medication and therapy outcome. This strategy is beneficial and could result in tailored therapy for different types of infection and the prolongation of the use and efficacy of ATBs in hospitals. This review paper provides an actual overview of approved antimicrobial peptides used in clinical practice and covers current trends in their analysis by convenient and advanced methodologies used for their identification and/or quantitation in biological matrices for therapeutic drug monitoring purposes. Special emphasis is given to the methods with perspective clinical outcomes.
Collapse
Affiliation(s)
- Zuzana Kilianova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Miroslava Spaglova
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Dalla Zuanna P, Curci D, Lucafò M, Addobbati R, Fabretto A, Stocco G. Preanalytical Stability of 13 Antibiotics in Biological Samples: A Crucial Factor for Therapeutic Drug Monitoring. Antibiotics (Basel) 2024; 13:675. [PMID: 39061358 PMCID: PMC11274111 DOI: 10.3390/antibiotics13070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The stability of antibiotic preanalytical samples is a critical factor in therapeutic drug monitoring (TDM), a practice of undoubted importance for the proper therapeutic use of antibiotics, especially in complex management patients, such as pediatrics. This review aims to analyze the data in the literature regarding the preanalytical stability of some of the antibiotics for which TDM is most frequently requested. The literature regarding the preanalytical stability of amikacin, ampicillin, cefepime, ceftazidime, ciprofloxacin, daptomycin, gentamicin, levofloxacin, linezolid, meropenem, piperacillin, teicoplanin, and vancomycin in plasma, serum, whole blood, and dried blood/plasma spot samples was analyzed. Various storage temperatures (room temperature, 4 °C, -20 °C, and -80 °C) and various storage times (from 1 h up to 12 months) as well as subjecting to multiple freeze-thaw cycles were considered. The collected data showed that the non-beta-lactam antibiotics analyzed were generally stable under the normal storage conditions used in analytical laboratories. Beta-lactam antibiotics have more pronounced instability, particularly meropenem, piperacillin, cefepime, and ceftazidime. For this class of antibiotics, we suggest that storage at room temperature should be limited to a maximum of 4 h, storage at 2-8 °C should be limited to a maximum of 24 h, and storage at -20 °C should be limited to a maximum of 7 days; while, for longer storage, freezing at -80 °C is suggested.
Collapse
Affiliation(s)
- Paolo Dalla Zuanna
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Debora Curci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (D.C.); (R.A.); (A.F.)
| | - Marianna Lucafò
- Department of Life Science, University of Trieste, 34127 Trieste, Italy;
| | - Riccardo Addobbati
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (D.C.); (R.A.); (A.F.)
| | - Antonella Fabretto
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (D.C.); (R.A.); (A.F.)
| | - Gabriele Stocco
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy; (D.C.); (R.A.); (A.F.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
4
|
Liu S, Zhao C, Shu R, Dou L, Luo X, Luo L, Sun J, Wang Y, Ji Y, Wang J. Fortified Dual-Spectral Overlap with Enhanced Colorimetric/Fluorescence Dual-Response Immunochromatography for On-Site Bimodal-Type Gentamicin Monitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38624165 DOI: 10.1021/acs.jafc.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Immunochromatography (ICA) remains untapped toward enhanced sensitivity and applicability for fulfilling the nuts and bolts of on-site food safety surveillance. Herein, we report a fortified dual-spectral overlap with enhanced colorimetric/fluorescence dual-response ICA for on-site bimodal-type gentamicin (Gen) monitoring by employing polydopamine (PDA)-coated AuNPs (APDA) simultaneously serving as a colorimetric reporter and a fluorescence quencher. Availing of the enhanced colorimetric response that originated from the PDA layer, the resultant APDA exhibits less required antibody and immunoprobes in a single immunoassay, which facilitates improved antibody utilization efficiency and immuno-recognition in APDA-ICA. Further integrated with the advantageous features of fortified excitation and emission dual-spectral overlap for the Arg/ATT-AuNCs, this APDA-ICA with a "turn on/off" pattern achieves the visual limits of detection of 1.0 and 0.5 ng mL-1 for colorimetric and fluorescence patterns (25- and 50-fold lower than standard AuNPs-ICA). Moreover, the excellent self-calibration and satisfactory recovery of 79.03-118.04% were shown in the on-site visual colorimetric-fluorescence analysis for Gen in real environmental media (including real river water, an urban aquaculture water body, an aquatic product, and an animal byproduct). This work provides the feasibility of exploiting fortified dual-spectral overlap with an enhanced colorimetric/fluorescence dual response for safeguarding food safety and public health.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Leina Dou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Deng W, Wang D, Dai P, Hong Y, Xiong J, Duan L, Lu R, Wan J, Du H, Hammock BD, Yang W. Development of a sensitive direct competitive chemiluminescent enzyme immunoassay for gentamicin based on the construction of a specific single-chain variable fragment-alkaline phosphatase fusion protein. Microchem J 2024; 197:109706. [PMID: 38283367 PMCID: PMC10810264 DOI: 10.1016/j.microc.2023.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A sensitive chemiluminescent enzyme immunoassay (CLEIA) was established for the determination of gentamicin (GEN) residue levels in animal tissue. This assay is based on a fusion protein of single-chain variable fragment (scFv) and alkaline phosphatase (AP). Initially, VL and VH derived from anti-gentamicin monoclonal antibody were linked by a short peptide to construct a scFv. Subsequently, the constructed scFv sequence was accessed into the pLIP6/GN vector, and a soluble scFv-AP fusion protein was generated. The scFv-AP fusion protein was used to develop a direct competitive CLEIA (dcCLEIA) for the determination of gentamicin. In the dcCLEIA, the half inhibitory concentration (IC50) and limit of detection (LOD) were 1.073 ng/mL and 0.380 ng/mL, respectively. The average recoveries of gentamicin spiked in animal tissue samples ranged from 78% to 96%. These results showed a strong correlation with ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The above results suggest that the anti-GEN scFv-AP fusion protein is suitable for detecting gentamicin residues in edible animal tissues.
Collapse
Affiliation(s)
- Weijie Deng
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Wang
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Peng Dai
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianhua Xiong
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Luying Duan
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ruimin Lu
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianchun Wan
- Technology Center of Nanchang Customs District, Nanchang 330038, China
| | - Huaying Du
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| | - Wuying Yang
- Key Laboratory of Agricultural Products Processing and Quality Control of Nanchang City/College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| |
Collapse
|
6
|
Dai P, Zhang Y, Hong Y, Xiong J, Du H, Duan L, Wang D, Wang Y, Deng W, Hammock BD, Yang W. Production of high affinity monoclonal antibody and development of indirect competitive chemiluminescence enzyme immunoassay for gentamicin residue in animal tissues. Food Chem 2023; 400:134067. [DOI: 10.1016/j.foodchem.2022.134067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/17/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
|
7
|
Chen Q, Zhou H, Chen R, Chen X, Wu Z, Liu Y, He L. Determination of trace vancomycin in edible animal tissues and assessment of matrix effects. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Zhou H, Chen Q, Song X, He L, Liu R. Surface molecularly imprinted solid-phase extraction for the determination of vancomycin in plasma samples using HPLC-MS/MS. ANAL SCI 2022; 38:1171-1179. [PMID: 35841522 DOI: 10.1007/s44211-022-00143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Vancomycin is a glycopeptide antibiotic used to treat infections caused by Gram-positive bacteria. Due to the narrow therapeutic index of vancomycin, it is necessary to develop a sensitive and reliable analytical method to monitor the drug concentration in plasma. A novel method based on surface molecularly imprinted solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for the determination of vancomycin in plasma sample was developed. The plasma sample was cleaned up through the solid-phase extraction process before the analysis. The calibration standard of vancomycin in plasma ranged between 1 and 100 ng/mL, and the correlation coefficient (r) was 0.9993. The average recoveries were from 94.3 to 104.0%, and the precision was less than 10.5%. The limit of detection and limit of quantification were 0.5 ng/mL and 1 ng/mL, respectively. The method validated was successfully used for the detection of vancomycin in mice after oral administration.
Collapse
Affiliation(s)
- Hao Zhou
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Pearl River Fisheries Research Institute, Chinese Academic of Fishery Science, Guangzhou, 510380, China
| | - Qianqian Chen
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuqin Song
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Limin He
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rong Liu
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Mohamed AR. Utility of Silver-nanoparticles for Nano-fluorimetric Determination of Vancomycin Hydrochloride in Pharmaceutical Formulation and Biological Fluids: Greenness Assessment. J Fluoresc 2022; 32:1899-1912. [PMID: 35751750 PMCID: PMC9402737 DOI: 10.1007/s10895-022-02942-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 10/25/2022]
Abstract
Vancomycin hydrochloride (VANH) is a glycopeptide antibiotic commonly employed in the prophylaxis and therapy of various gram-positive bacterial life-threatening infections. Due to the narrow therapeutic window of VANH, its serum levels should be well-monitored to avoid its toxicity and to optimize its therapy. Herein, an innovative silver-nanoparticles enhanced fluorescence technique was designed for VANH rapid analysis in its pharmaceutical formulation and biological fluids. This technique is based on reinforcement of VANH fluorescence intensity with silver-nanoparticles that were synthesized by a redox reaction between VANH and silver nitrate in NaOH alkaline medium using polyvinylpyrrolidone as a stabilizer. The produced silver-nanoparticles were characterized by using UV-visible spectroscopy where they have an intense absorption maximum at 415 nm and transmission electron microscope (TEM) micrograph where they are spherical in shape with smooth surface morphology and size of 10.74 ± 2.44 nm. The fluorescence intensity was measured at 394 nm after excitation at 259 nm. Under optimum conditions, a good linear relationship was accomplished between the VANH concentration and the fluorescence intensity in a range of (1-36) ng/mL with a limit of detection of 0.29 ng/mL. Greenness assessment was performed using two assessment tools namely; eco-scale scoring and green analytical procedure index revealing excellent greenness of the proposed technique. The proposed technique was validated according to the International Conference on Harmonisation (ICH) recommendations and statistically compared with the reported HPLC method revealing no significant difference concerning accuracy and precision at p = 0.05. The proposed technique depended primarily on water as a cheap and eco-friendly solvent.
Collapse
Affiliation(s)
- Ahmed R. Mohamed
- grid.442695.80000 0004 6073 9704Analytical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829 Egypt
| |
Collapse
|