1
|
Satbhai KM, Marques ES, Ranjan R, Timme-Laragy AR. Single-cell RNA sequencing reveals tissue-specific transcriptomic changes induced by perfluorooctanesulfonic acid (PFOS) in larval zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137515. [PMID: 39947082 PMCID: PMC12038816 DOI: 10.1016/j.jhazmat.2025.137515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 04/16/2025]
Abstract
Perfluorooctanesulfonic acid (PFOS) elicits adverse effects on numerous organs and developmental processes but the mechanisms underlying these effects are not well understood. Here, we use single-cell RNA-sequencing to assess tissue-specific transcriptomic changes in zebrafish (Danio rerio) larvae exposed to 16 µM PFOS or dimethylsulfoxide (0.01 %) from 3-72 h post fertilization (hpf). Data analysis was multi-pronged and included pseudo-bulk, untargeted clustering, informed pathway queries, and a cluster curated for hepatocyte biomarkers (fabp10a, and apoa2). Overall, 8.63 % (2390/27698) genes were significantly differentially expressed. Results from untargeted analysis revealed 22 distinct clusters that were manually annotated to specific tissues using a weight-of-evidence approach. The clusters with the highest number of significant differentially expressed genes (DEGs) were digestive organs, muscle, and otolith. Additionally, we assessed the distribution of pathway-specific genes known to be involved in PFOS toxicity: the PPAR pathway, β-oxidation of fatty acids, the Nfe2l2 pathway, and epigenetic modifications by DNA methylation, across clusters and identified the blood-related tissue to be the most sensitive. The curated hepatocyte cluster showed 220 significant DEGs and was enriched for the Notch signaling pathway. These findings provide insights into both established and novel sensitive target tissues and molecular mechanisms of developmental toxicity of PFOS.
Collapse
Affiliation(s)
- Kruuttika M Satbhai
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Emily S Marques
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
McAtee D, Abdelmoneim A. A peripheral irritant motor response (PIMR) assay to identify chemical-induced locomotor deficits in larval zebrafish (Danio rerio). Neurotoxicology 2025; 108:344-353. [PMID: 40348092 DOI: 10.1016/j.neuro.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Zebrafish (Danio rerio) behavioral assays provide valuable insights into the effects of environmental chemicals on the developing nervous system, primarily through motor responses triggered by stimuli-induced CNS activation. However, as these responses rely on the locomotor integrity of larval zebrafish, chemical-induced impairments to their locomotor capacity could obscure behavioral observations and confound findings concerning the developmental neurotoxicity of the tested chemicals. This limitation emphasizes the need for supporting assays designed to specifically evaluate the locomotor capacity of larval zebrafish. In the present study, we evaluated the use of peripheral irritant-elicited motor responses as a method to identify chemical-induced locomotor deficits. The motor activity of 120 hours post-fertilization (hpf) zebrafish larvae exposed to different concentrations of two peripheral stimulants-mustard oil and cinnamon oil-was evaluated. Subsequently, we assessed changes to central (visual and acoustic) and peripheral (irritant) motor responses after tricaine-s (MS-222; neurodepressant) and tubocurarine (neuromuscular blocker) exposures. Additional investigations were also carried out to assess the central and peripheral motor activity of larvae after developmental exposures (114 h) to lead (Pb) and cadmium (Cd)-two suggested developmental neurotoxic environmental contaminants. Our observations revealed that exposure to mustard oil (12.5 µM) elicits the strongest motor response. Larvae exposed to MS-222 showed decreases in motor responses to visual and acoustic stimuli, but the same exposure induced limited effects on motor responses elicited by the peripheral irritant. Exposure to tubocurarine depressed all motor responses examined. Finally, both Pb and Cd exposures induced hypoactivation of central motor responses, but only Cd showed a significant depression in the peripheral irritant motor response (PIMR) in both intact and developmentally deformed larvae. This finding suggests that loss of locomotor capacity might be confounding the behavioral observations associated with Cd exposures. This research underscores the utility of this zebrafish-based PIMR assay in elucidating locomotor impairments induced by chemicals, which may obscure the behavioral findings of motor response assays designed to evaluate developmental neurotoxicity.
Collapse
Affiliation(s)
- Demetrius McAtee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
3
|
Hong MS, Lee JS, Lee MC, Lee JS. Ecotoxicological effects of per- and polyfluoroalkyl substances in aquatic organisms: A review. MARINE POLLUTION BULLETIN 2025; 214:117678. [PMID: 39983440 DOI: 10.1016/j.marpolbul.2025.117678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found throughout the environment due to their chemical stability. Their widespread use in industrial and consumer products has resulted in their frequent detection in aquatic environments, making them contaminants of significant concern. Recent studies focus on the adverse effects of PFAS on aquatic organisms in an effort to elucidate their toxic mechanisms and physiological changes. Here, we comprehensively review the major effects of PFAS on aquatic organisms, including general toxicity, metabolic disruption, and microbiome alterations, and explore how these changes affect biological function and ecosystem balance. In addition to toxic responses in aquatic organisms reported previously, PFAS disrupt metabolic pathways, causing abnormalities in carbohydrate metabolism, lipid homeostasis, and hormonal regulation. They also cause gut microbiome imbalances and reduce the prevalence of beneficial bacteria while promoting pathogen proliferation, which contributes to physiological dysfunction and damages liver and other organ tissues. Experimental evidence emphasizes the multifaceted threats PFAS pose to aquatic health and ecosystem stability and provide a crucial foundation for understanding their long-term impacts from both physiological and ecological perspectives.
Collapse
Affiliation(s)
- Mi-Song Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Abu-Salah A, Cesur M, Anchan A, Ay M, Langley MR, Shah A, Reina-Gonzalez P, Strazdins R, Çakır T, Sarkar S. Comparative Proteomics Highlights that GenX Exposure Leads to Metabolic Defects and Inflammation in Astrocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20525-20539. [PMID: 39499804 PMCID: PMC11580177 DOI: 10.1021/acs.est.4c05472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024]
Abstract
Exposure to PFAS such as GenX (HFPO dimer acid) has become increasingly common due to the replacement of older generation PFAS in manufacturing processes. While neurodegenerative and developmental effects of legacy PFAS exposure have been studied in depth, there is a limited understanding specific to the effects of GenX exposure. To investigate the effects of GenX exposure, we exposed Drosophila melanogaster to GenX and assessed the motor behavior and performed quantitative proteomics of fly brains to identify molecular changes in the brain. Additionally, metabolic network-based analysis using the iDrosophila1 model unveiled a potential link between GenX exposure and neurodegeneration. Since legacy PFAS exposure has been linked to Parkinson's disease (PD), we compared the proteome data sets between GenX-exposed flies and a fly model of PD expressing human α-synuclein. Considering the proteomic data- and network-based analyses that revealed GenX may be regulating GABA-associated pathways and the immune system, we next explored the effects of GenX on astrocytes, as astrocytes in the brain can regulate GABA. An array of assays demonstrated GenX exposure may lead to mitochondrial dysfunction and neuroinflammatory response in astrocytes, possibly linking non-cell autonomous neurodegeneration to the motor deficits associated with GenX exposure.
Collapse
Affiliation(s)
- Abdulla Abu-Salah
- Department
of Environmental Medicine, University of
Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| | - Müberra
Fatma Cesur
- Department
of Bioengineering, Gebze Technical University, Gebze, KOCAELİ 41400, Turkey
| | - Aiesha Anchan
- Department
of Neuroscience, University of Rochester
Medical Center, 575 Elmwood
Avenue, Rochester, New York 14620, United States
| | - Muhammet Ay
- Department
of Environmental Medicine, University of
Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| | - Monica R. Langley
- Department
of Molecular Pharmacology & Experimental Therapeutics, Department
of Neurology, Department of Physical Medicine & Rehabilitation, Mayo Clinic, Gonda Building, 19th Floor, 200 First St. SW, Rochester, Minnesota 55905, United States
| | - Ahmed Shah
- Department
of Environmental Medicine, University of
Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| | - Pablo Reina-Gonzalez
- Department
of Environmental Medicine, University of
Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| | - Rachel Strazdins
- Department
of Environmental Medicine, University of
Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
| | - Tunahan Çakır
- Department
of Bioengineering, Gebze Technical University, Gebze, KOCAELİ 41400, Turkey
| | - Souvarish Sarkar
- Department
of Environmental Medicine, University of
Rochester Medical Center, 575 Elmwood Avenue, Rochester, New York 14620, United States
- Department
of Neuroscience, University of Rochester
Medical Center, 575 Elmwood
Avenue, Rochester, New York 14620, United States
| |
Collapse
|
5
|
Fender CL, Good SP, Garcia-Jaramillo M. An integrated approach to evaluating water contaminants and evaporation in agricultural water distribution systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117277. [PMID: 39515202 PMCID: PMC11608095 DOI: 10.1016/j.ecoenv.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
This study presents an innovative approach for assessing water quality in agricultural irrigation networks, integrating stable isotope analysis, in vivo zebrafish screening, and comprehensive chemical profiling to investigate the occurrence, transformation, and potential toxicity of organic contaminants. Stable isotope analysis was used to measure evaporation as a proxy for water residence time in the canal, while liquid chromatography-high resolution mass spectrometry (LC-HRMS) identified a range of organic compounds in water samples collected from both the irrigation canal and its source river. Results indicated a reduction in contaminant levels in the canal compared to the river, with the most significant evaporation and concentration changes occurring at a holding reservoir, suggesting that managing residence time could help reduce water loss in arid irrigation networks. The data also highlighted how evaporation, particularly during the dry, hot season, influences contaminant dynamics. Hierarchical clustering of LC-HRMS results showed notable differences between the chemical profiles of canal and river samples, indicating that irrigation systems may contribute to the degradation or removal of certain compounds. Over 60 % of detected compounds were naturally derived, with anthropogenic contaminants like pesticides and personal care products further highlighting human impacts. Priority contaminants, including DEET and 2-naphthalene sulfonic acid, likely originated from urban activities upstream. Initial screening using zebrafish embryos showed bioactivity across sites, confirming the presence of contaminants needing further examination. Correlation analysis linked natural compounds to evaporation rates, suggesting that flora and fauna play significant roles in the chemical makeup of canal water. Overall, this approach provides a comprehensive framework for monitoring irrigation water, offering insights into contaminant behavior and supporting the development of standardized methods for assessing chemical fate and ecological risks in agricultural irrigation systems.
Collapse
Affiliation(s)
- Chloe L Fender
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Stephen P Good
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, USA; Water Resources Graduate Program, Oregon State University, Corvallis, OR, USA
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
6
|
Zhao Y, Wang M, Chu W. Neurotoxicity and intestinal microbiota dysbiosis induced by per- and polyfluoroalkyl substances in crucian carp (Carassius auratus). JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135611. [PMID: 39173387 DOI: 10.1016/j.jhazmat.2024.135611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been called "forever chemicals" due to their inherent chemical stability. Their potential toxic effects on aquatic animals and health risk assessments have not been fully elucidated. In this study, we investigated the toxic effects of PFASs at environmentally relevant concentrations (200 ng/L) on crucian carp (Carassius auratus). The results showed that PFAS reduced the comfort behaviour of crucian carp and was associated with reduced levels of acetylcholinesterase and dopamine in the brain. PFAS exposure also decreased the activities of total superoxide dismutase, catalase and glutathione peroxidase, while increasing the levels of malondialdehyde. PFAS caused over-expression of the pro-inflammatory cytokines TNF-α, IFN-γ and stress-related genes Caspase-3, HSP-70 in the fish brain. Pathological staining showed that PFAS caused multifocal demyelination and perineural vacuolization in brain, intestinal tissue also showed reduced villus length and focal damage. PFASs altered the composition of the gut microbiota of crucian carp, significantly increasing the abundance of potentially pathogenic bacteria and the potential pathogenicity of the microbiota. It is suggested that PFASs may cause varying degrees of tissue damage by destabilising the gut microbiota. These results provide insights for assessing the toxicity of PFAS contaminants at aquatic environmental concentrations.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Minyu Wang
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Chu
- Department of Microbiology and Synthetic Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Pietropoli E, Bardhi A, Simonato V, Zanella M, Iori S, Barbarossa A, Giantin M, Dacasto M, De Liguoro M, Pauletto M. Comparative toxicity assessment of alternative versus legacy PFAS: Implications for two primary trophic levels in freshwater ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135269. [PMID: 39068881 DOI: 10.1016/j.jhazmat.2024.135269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Perfluoroalkyl substances (PFAS) are common environmental pollutants, but their toxicity framework remains elusive. This research focused on ten PFAS, evaluating their impacts on two ecotoxicologically relevant model organisms from distinct trophic levels: the crustacean Daphnia magna and the unicellular green alga Raphidocelis subcapitata. The results showed a greater sensitivity of R. subcapitata compared to D. magna. However, a 10-day follow-up to the 48 h immobilisation test in D. magna showed delayed mortality, underlining the limitations of relying on EC50 s from standard acute toxicity tests. Among the compounds scrutinized, Perfluorodecanoic acid (PFDA) was the most toxic to R. subcapitata, succeeded by Perfluorooctane sulfonate (PFOS), Perfluorobutanoic acid (PFBA), and Perfluorononanoic acid (PFNA), with the latter being the only one to show an algicidal effect. In the same species, assessment of binary mixtures of the compounds that demonstrated high toxicity in the single evaluation revealed either additive or antagonistic interactions. Remarkably, with an EC50 of 31 mg L-1, the short-chain compound PFBA, tested individually, exhibited toxicity levels akin to the notorious long-chain PFOS, and its harm to freshwater ecosystems cannot be ruled out. Despite mounting toxicological evidence and escalating environmental concentrations, PFBA has received little scientific attention and regulatory stewardship. It is strongly advisable that regulators re-evaluate its use to mitigate potential risks to the environmental and human health.
Collapse
Affiliation(s)
- Edoardo Pietropoli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, University of Bologna Alma Mater Studiorum, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - Valentina Simonato
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Martina Zanella
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, University of Bologna Alma Mater Studiorum, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Marco De Liguoro
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Padua, Italy.
| |
Collapse
|
8
|
Wang Q, Ruan Y, Shao Y, Jin L, Xie N, Yan M, Chen L, Schlenk D, Leung KMY, Lam PKS. Stereoselective Bioconcentration and Neurotoxicity of Perfluoroethylcyclohexane Sulfonate in Marine Medaka. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12933-12942. [PMID: 39003765 DOI: 10.1021/acs.est.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Perfluoroethylcyclohexane sulfonate (PFECHS) is an emerging per- and polyfluoroalkyl substance used to replace perfluorooctane sulfonate (PFOS), mainly in aircraft hydraulic fluids. However, previous research indicates the potential neurotoxicity of this replacement chemical. In this study, marine medaka (Oryzias melastigma) was exposed to environmentally relevant concentrations of PFECHS (concentrations: 0, 0.08, 0.26, and 0.91 μg/L) from the embryonic stage for 90 days. After exposure, the brain and eyes of the medaka were collected to investigate the bioconcentration potential of PFECHS stereoisomers and their effects on the nervous systems. The determined bioconcentration factors (BCFs) of PFECHS ranged from 324 ± 97 to 435 ± 89 L/kg and from 454 ± 60 to 576 ± 86 L/kg in the brain and eyes of medaka, respectively. The BCFs of trans-PFECHS were higher than those of cis-PFECHS. PFECHS exposure significantly altered γ-aminobutyric acid (GABA) levels in the medaka brain and disrupted the GABAergic system, as revealed by proteomics, implying that PFECHS can disturb neural signal transduction like PFOS. PFECHS exposure resulted in significant alterations in multiple proteins associated with eye function in medaka. Abnormal locomotion was observed in PFECHS-exposed medaka larvae, which was rescued by adding exogenous GABA, suggesting the involvement of disrupted GABA signaling pathways in PFECHS neurotoxicity.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yetong Shao
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Naiyu Xie
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR 999077, China
| |
Collapse
|
9
|
Rericha Y, St. Mary L, Truong L, McClure R, Martin JK, Leonard SW, Thunga P, Simonich MT, Waters KM, Field JA, Tanguay RL. Diverse PFAS produce unique transcriptomic changes linked to developmental toxicity in zebrafish. FRONTIERS IN TOXICOLOGY 2024; 6:1425537. [PMID: 39104825 PMCID: PMC11298493 DOI: 10.3389/ftox.2024.1425537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a widespread and persistent class of contaminants posing significant environmental and human health concerns. Comprehensive understanding of the modes of action underlying toxicity among structurally diverse PFAS is mostly lacking. To address this need, we recently reported on our application of developing zebrafish to evaluate a large library of PFAS for developmental toxicity. In the present study, we prioritized 15 bioactive PFAS that induced significant morphological effects and performed RNA-sequencing to characterize early transcriptional responses at a single timepoint (48 h post fertilization) after early developmental exposures (8 h post fertilization). Internal concentrations of 5 of the 15 PFAS were measured from pooled whole fish samples across multiple timepoints between 24-120 h post fertilization, and additional temporal transcriptomics at several timepoints (48-96 h post fertilization) were conducted for Nafion byproduct 2. A broad range of differentially expressed gene counts were identified across the PFAS exposures. Most PFAS that elicited robust transcriptomic changes affected biological processes of the brain and nervous system development. While PFAS disrupted unique processes, we also found that similarities in some functional head groups of PFAS were associated with the disruption in expression of similar gene sets. Body burdens after early developmental exposures to select sulfonic acid PFAS, including Nafion byproduct 2, increased from the 24-96 h post fertilization sampling timepoints and were greater than those of sulfonamide PFAS of similar chain lengths. In parallel, the Nafion byproduct 2-induced transcriptional responses increased between 48 and 96 h post fertilization. PFAS characteristics based on toxicity, transcriptomic effects, and modes of action will contribute to further prioritization of PFAS structures for testing and informed hazard assessment.
Collapse
Affiliation(s)
- Yvonne Rericha
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Lindsey St. Mary
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Lisa Truong
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Ryan McClure
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - J. Kainalu Martin
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Scott W. Leonard
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Preethi Thunga
- Biological Sciences Department, College of Sciences, North Carolina State University, Raleigh, NC, United States
| | - Michael T. Simonich
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Katrina M. Waters
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Jennifer A. Field
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Robyn L. Tanguay
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
10
|
Gutsfeld S, Wehmas L, Omoyeni I, Schweiger N, Leuthold D, Michaelis P, Howey XM, Gaballah S, Herold N, Vogs C, Wood C, Bertotto L, Wu GM, Klüver N, Busch W, Scholz S, Schor J, Tal T. Investigation of Peroxisome Proliferator-Activated Receptor Genes as Requirements for Visual Startle Response Hyperactivity in Larval Zebrafish Exposed to Structurally Similar Per- and Polyfluoroalkyl Substances (PFAS). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:77007. [PMID: 39046251 PMCID: PMC11268134 DOI: 10.1289/ehp13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl Substances (PFAS) are synthetic chemicals widely detected in humans and the environment. Exposure to perfluorooctanesulfonic acid (PFOS) or perfluorohexanesulfonic acid (PFHxS) was previously shown to cause dark-phase hyperactivity in larval zebrafish. OBJECTIVES The objective of this study was to elucidate the mechanism by which PFOS or PFHxS exposure caused hyperactivity in larval zebrafish. METHODS Swimming behavior was assessed in 5-d postfertilization (dpf) larvae following developmental (1-4 dpf) or acute (5 dpf) exposure to 0.43 - 7.86 μ M PFOS, 7.87 - 120 μ M PFHxS, or 0.4% dimethyl sulfoxide (DMSO). After developmental exposure and chemical washout at 4 dpf, behavior was also assessed at 5-8 dpf. RNA sequencing was used to identify differences in global gene expression to perform transcriptomic benchmark concentration-response (BMC T ) modeling, and predict upstream regulators in PFOS- or PFHxS-exposed larvae. CRISPR/Cas9-based gene editing was used to knockdown peroxisome proliferator-activated receptors (ppars) pparaa/ab, pparda/db, or pparg at day 0. Knockdown crispants were exposed to 7.86 μ M PFOS or 0.4% DMSO from 1-4 dpf and behavior was assessed at 5 dpf. Coexposure with the ppard antagonist GSK3787 and PFOS was also performed. RESULTS Transient dark-phase hyperactivity occurred following developmental or acute exposure to PFOS or PFHxS, relative to the DMSO control. In contrast, visual startle response (VSR) hyperactivity only occurred following developmental exposure and was irreversible up to 8 dpf. Similar global transcriptomic profiles, BMC T estimates, and enriched functions were observed in PFOS- and PFHxS-exposed larvae, and ppars were identified as putative upstream regulators. Knockdown of pparda/db, but not pparaa/ab or pparg, blunted PFOS-dependent VSR hyperactivity to control levels. This finding was confirmed via antagonism of ppard in PFOS-exposed larvae. DISCUSSION This work identifies a novel adverse outcome pathway for VSR hyperactivity in larval zebrafish. We demonstrate that developmental, but not acute, exposure to PFOS triggered persistent VSR hyperactivity that required ppard function. https://doi.org/10.1289/EHP13667.
Collapse
Affiliation(s)
- Sebastian Gutsfeld
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Leah Wehmas
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Ifeoluwa Omoyeni
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Nicole Schweiger
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - David Leuthold
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Paul Michaelis
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Xia Meng Howey
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shaza Gaballah
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Nadia Herold
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Carolina Vogs
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Wood
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Luísa Bertotto
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Gi-Mick Wu
- Research and Development Institute for the Agri-Environment, Quebec, Quebec, Canada
| | - Nils Klüver
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Wibke Busch
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Jana Schor
- Department of Computational Biology and Chemistry, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Tamara Tal
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
- Medical Faculty, University Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
di Domenico K, Lacchetti I, Cafiero G, Mancini A, Carere M, Mancini L. Reviewing the use of zebrafish for the detection of neurotoxicity induced by chemical mixtures through the analysis of behaviour. CHEMOSPHERE 2024; 359:142246. [PMID: 38710414 DOI: 10.1016/j.chemosphere.2024.142246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The knowledge and assessment of mixtures of chemical pollutants in the aquatic environment is a complex issue that is often challenging to address. In this review, we focused on the use of zebrafish (Danio rerio), a vertebrate widely used in biomedical research, as a model for detecting the effects of chemical mixtures with a focus on behaviour. Our aim was to summarize the current status of the ecotoxicological research in this sector. Specifically, we limited our research to the period between January 2012 and September 2023, including only those works aimed at detecting neurotoxicity through behavioural endpoints, utilizing zebrafish at one or more developmental stages, from egg to adult. Additionally, we gathered the findings for every group of chemicals involved and summarised data from all the works we included. At the end of the screening process 101 papers were considered eligible for inclusion. Results show a growing interest in zebrafish at all life stages for this kind of research in the last decade. Also, a wide variety of different assays, involving different senses, was used in the works we surveyed, with exposures ranging from acute to chronic. In conclusion, the results of this study show the versatility of zebrafish as a model for the detection of mixture toxicity although, for what concerns behavioural analysis, the lack of standardisation of methods and endpoints might still be limiting.
Collapse
Affiliation(s)
- Kevin di Domenico
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Ines Lacchetti
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giulia Cafiero
- Environmental Risk Assessment, Wageningen Environmental Research, Wageningen, the Netherlands
| | - Aurora Mancini
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Mario Carere
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Laura Mancini
- Ecohealth Unit, Environment and Health Department, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
12
|
Morales-Grahl E, Hilz EN, Gore AC. Regrettable Substitutes and the Brain: What Animal Models and Human Studies Tell Us about the Neurodevelopmental Effects of Bisphenol, Per- and Polyfluoroalkyl Substances, and Phthalate Replacements. Int J Mol Sci 2024; 25:6887. [PMID: 38999997 PMCID: PMC11241431 DOI: 10.3390/ijms25136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.
Collapse
Affiliation(s)
| | | | - Andrea C. Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; (E.M.-G.); (E.N.H.)
| |
Collapse
|
13
|
Marin M, Annunziato KM, Tompach MC, Liang W, Zahn SM, Li S, Doherty J, Lee J, Clark JM, Park Y, Timme-Laragy AR. Maternal PFOS exposure affects offspring development in Nrf2-dependent and independent ways in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106923. [PMID: 38669778 PMCID: PMC11177596 DOI: 10.1016/j.aquatox.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a ubiquitous legacy environmental contaminant detected broadly in human samples and water supplies. PFOS can cross the placenta and has been detected in cord blood and breastmilk samples, underscoring the importance of understanding the impacts of maternal PFOS exposure during early development. This study aimed to investigate the effects of a preconception exposure to PFOS on developmental endpoints in offspring, as well as examine the role of the transcription factor Nuclear factor erythroid-2-related factor (Nrf2a) in mediating these effects. This transcription factor regulates the expression of several genes that protect cells against oxidative stress including during embryonic development. Adult female zebrafish were exposed to 0.02, 0.08 or 0.14 mg/L PFOS for 1 week (duration of one cycle of oocyte maturation) and then paired with unexposed males from Nrf2a mutant or wildtype strains. Embryos were collected for two weeks or until completion of 5 breeding events. PFOS was maternally transferred to offspring independent of genotype throughout all breeding events in a dose-dependent manner, ranging from 2.77 to 23.72 ng/embryo in Nrf2a wildtype and 2.40 to 15.80 ng/embryo in Nrf2a mutants. Although embryo viability at collection was not impacted by maternal PFOS exposure, developmental effects related to nutrient uptake, growth and pancreatic β-cell morphology were observed and differed based on genotype. Triglyceride levels were increased in Nrf2a wildtype eggs from the highest PFOS group. In Nrf2a wildtype larvae there was a decrease in yolk sac uptake while in Nrf2a mutants there was an increase. Additionally, there was a significant decrease in pancreatic β-cell (islet) area in wildtype larvae from the 0.14 mg/L PFOS accompanied by an increase in the prevalence of abnormal islet morphologies compared to controls. Abnormal morphology was also observed in the 0.02 and 0.08 mg/L PFOS groups. Interestingly, in Nrf2a mutants there was a significant increase in the pancreatic β-cell area in the 0.02 and 0.08 mg/L PFOS groups and no changes in the prevalence of abnormal islet morphologies. These results suggest that the regulation of processes like nutrient consumption, growth and pancreatic β-cell development are at least partially modulated by the presence of a functional Nrf2a transcriptomic response. Overall, preconception exposure to environmental pollutants, such as PFOS, may impact the maturing oocyte and cause subtle changes that can ultimately impact offspring health and development.
Collapse
Affiliation(s)
- Marjorie Marin
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Kate M Annunziato
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Madeline C Tompach
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Wenle Liang
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sarah M Zahn
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jeffery Doherty
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Jonghwa Lee
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - John M Clark
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
14
|
Hamed M, Vats A, Lim IE, Sapkota B, Abdelmoneim A. Effects of developmental exposure to individual and combined PFAS on development and behavioral stress responses in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123912. [PMID: 38570156 DOI: 10.1016/j.envpol.2024.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread use and persistence in the environment. Laboratory and epidemiological studies investigating these compounds have signaled their neurotoxic and endocrine-disrupting propensities, prompting further research into their effects on behavioral stress responses and their potential role as risk factors for stress-related disorders such as anxiety and depression. This study elucidates the ramifications of early developmental exposures to individual and combined PFAS on the development and behavioral stress responses of larval zebrafish (Danio rerio), an established model in toxicological research. Wild-type zebrafish embryos were enzymatically dechorionated and exposed to PFOS, PFOA, PFHxS, and PFHxA between 6 and 120 h post-fertilization (hpf). We targeted environmentally relevant concentrations stemming from the USEPA 2016 Hazard Advisory Limit (HAL, 0.07 μg/L) and folds higher (0.35, 0.7, 1.75, and 3.5 μg/L). Evaluations at 120 hpf encompassed mortality, overall development, developmental defects, and larval activity both at baseline stress levels and following exposure to acute stressors (acoustic and visual). Larval exposure to PFOA, PFOS, or PFHxS (0.07 μg/L or higher) elicited significant increases in mortality rates, which capped at 23.1%. Exposure to individual chemicals resulted in limited effects on overall development but increased the prevalence of developmental defects in the body axis, swim bladder, pigmentation, and eyes, as well as the prevalence of yolk sac and pericardial edemas. Larval activity at baseline stress levels and following exposure to acute stimuli was significantly altered. Combined exposure to all four chemicals intensified the breadth of developmental and behavioral alterations, suggesting possible additive or synergistic effects. Our findings shed light on the developmental and neurobehavioral disturbances associated with developmental exposure to PFAS at environmentally relevant concentrations, the added risks of combined exposures to these chemicals, and their possible role as environmental risk factors for stress-related disorders.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ajn Vats
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ignitius Ezekiel Lim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Biplov Sapkota
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
15
|
Kreychman M, Ivantsova E, Lu A, Bisesi JH, Martyniuk CJ. A comparative review of the toxicity mechanisms of perfluorohexanoic acid (PFHxA) and perfluorohexanesulphonic acid (PFHxS) in fish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109874. [PMID: 38423199 DOI: 10.1016/j.cbpc.2024.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Industrial and consumer goods contain diverse perfluoroalkyl substances (PFAS). These substances, like perfluorohexanoic acid (PFHxA) and perfluorohexanesulphonic acid (PFHxS), are under increased scrutiny due to their potential toxicity to aquatic organisms. However, our understanding of their biological impacts and mechanisms of action remains limited. The objectives of this review were to compare data for levels of PFHxA and PFHxS in aquatic environments and fish tissues, as well as toxicity mechanisms related to morphological, endocrine, metabolic, and behavioral endpoints. A computational assessment was also performed to identify putative mechanisms of toxicity and to characterize exposure biomarkers. Studies have shown that both PFHxA and PFHxS residues are present in diverse marine and freshwater fish tissues, suggesting the importance of monitoring these PFAS in aquatic organisms. In fish tissues, these chemicals have been reported to be as high as 37.5 ng/g for PFHxA and 1290 ng/g for PFHxS, but their persistence in aquatic environments and degradation in tissues requires further study. In terms of mechanisms of toxicity, both oxidative stress and endocrine disruption have been reported. Based on evidence for endocrine disruption, we modeled interactions of estrogen and androgen receptors of several fish species with PFHxA and PFHxS. Molecular docking revealed that PFHxS has a stronger affinity for interacting with the estrogen and androgen receptors of fish compared to PFHxA and that estrogen and androgen receptors of fathead minnow, zebrafish, Atlantic salmon, and largemouth bass show comparable binding affinities for each chemical except for salmon Esr2b, which was predicted to have lower affinity for PFHxA relative to Esr2a. While mechanistic data are lacking in fish in general for these chemicals, a computational approach revealed that PFHxA can perturb the endocrine system, nervous system, and is linked to changes in kidney and liver weight. Proteins associated with PFHxA and PFHxS exposures in fish include those related to lipid and glucose regulation, reproductive proteins like KISS metastasis suppressor, and proteins associated with the immune system (specifically RAG1, RAG2), all of which are potential biomarkers of exposure. Taken together, we synthesize current knowledge regarding the environmental fate and ecotoxicology of PFHxA/PFHxS in fish species.
Collapse
Affiliation(s)
- Mark Kreychman
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Austin Lu
- Blind Brook High School, Rye Brook, NY 10573, USA
| | - Joseph H Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, USA.
| |
Collapse
|
16
|
Zhang Y, Meng J, Zhou Y, Song N, Zhao Y, Hong M, Yu J, Cao L, Dou Y, Kong D. Transport and health risk of legacy and emerging per-and polyfluoroalkyl substances in the water cycle in an urban area, China: Polyfluoroalkyl phosphate esters are of concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171010. [PMID: 38369148 DOI: 10.1016/j.scitotenv.2024.171010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) are a group of emerging alternatives to the legacy per- and polyfluoroalkyl substances (PFAS). To better understand the transport and risk of PAPs in the water cycle, 21 PFAS including 4 PAPs and 17 perfluoroalkyl acids were investigated in multiple waterbodies in an urban area, China. PFAS concentrations ranged from 85.8 to 206 ng/L, among which PAPs concentrations ranged from 35.0 to 71.8 ng/L, in river and lake water with major substances of perfluorooctanoic acid (PFOA), 6:2 fluorotelomer phosphate (6:2 monoPAP), and 8:2 fluorotelomer phosphate (8:2 monoPAP). As transport pathways, municipal wastewater and precipitation were investigated for PFAS mass loading estimation, and PAPs transported via precipitation more than municipal wastewater discharge. Concentrations of PFAS in tap water and raw source water were compared, and PAPs cannot be removed by drinking water treatment. In tap water, PFAS concentrations ranged from 132 to 271 ng/L and among them PAPs concentrations ranged from 41.6 to 61.9 ng/L. Human exposure and health risk to PFAS via drinking water were assessed, and relatively stronger health risks were induced from PFOS, PAPs, and PFOA. The environmental contamination and health risk of PAPs are of concern, and management implications regarding their sources, exposure, and hazards were raised.
Collapse
Affiliation(s)
- Yueqing Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ninghui Song
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Yaxin Zhao
- College of Hydrology and Water Resources, Hohai University, Nanjing 211100, China
| | - Minghui Hong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Jia Yu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Li Cao
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Yezhi Dou
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Deyang Kong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China.
| |
Collapse
|
17
|
Zhang Y, Zhou Y, Dong R, Song N, Hong M, Li J, Yu J, Kong D. Emerging and legacy per- and polyfluoroalkyl substances (PFAS) in fluorochemical wastewater along full-scale treatment processes: Source, fate, and ecological risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133270. [PMID: 38113743 DOI: 10.1016/j.jhazmat.2023.133270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The increasing applications of emerging per- and polyfluoroalkyl substances (PFAS) have raised global concern. However, the release of emerging PFAS from the fluorochemical industry remains unclear. Herein, the occurrence of 48 emerging and legacy PFAS in wastewater from 10 fluorochemical manufacturers and mass flows of PFAS in a centralized wastewater treatment plant were investigated. Their distribution and ecological risk in neighboring riverine water were also evaluated. In wastewater from fluorochemical manufacturers, PFAS concentrations were in the range of 14,700-5200,000 ng/L and 2 H,2 H-perfluorooctanoic acid (6:2 FTCA), perfluorooctanoic acid (PFOA), N-ethyl perfluorooctane sulfonamide (N-EtFOSA), and 1 H,1 H,2 H,2 H-perfluorodecanesulfonate (8:2 FTS) were the major PFAS detected. Several PFAS displayed increased mass flows after wastewater treatment, especially PFOA and 6:2 FTCA. The mass flows of PFAS increased from - 20% to 233% after the activated sludge system but decreased by only 0-13% after the activated carbon filtration. In riverine water, PFAS concentrations were in the range of 5900-39,100 ng/L and 6:2 FTCA, 1 H,1 H,2 H,2 H-perfluorodecyl phosphate monoester (8:2 monoPAP), 1 H,1 H,2 H,2 H-perfluorooctyl phosphate monoester (6:2 monoPAP), PFOA, and perfluorohexanoic acid (PFHxA) were the major PFAS detected. PFOA and 6:2 FTCA exhibited comparable hazard quotients for ecological risk. Current wastewater treatment processes cannot fully remove various PFAS discharged by fluorochemical manufacturers, and further investigations on their risk are needed for better chemical management.
Collapse
Affiliation(s)
- Yueqing Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruochen Dong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ninghui Song
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Minghui Hong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Juying Li
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jia Yu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Deyang Kong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
18
|
Albers J, Mylroie J, Kimble A, Steward C, Chapman K, Wilbanks M, Perkins E, Garcia-Reyero N. Per- and Polyfluoroalkyl Substances: Impacts on Morphology, Behavior and Lipid Levels in Zebrafish Embryos. TOXICS 2024; 12:192. [PMID: 38535925 PMCID: PMC10975676 DOI: 10.3390/toxics12030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The presence of per- and polyfluoroalkyl substances (PFASs) in aquatic environments is often persistent and widespread. Understanding the potential adverse effects from this group of chemicals on aquatic communities allows for better hazard characterization. This study examines impacts on zebrafish (Danio rerio) embryo physiology, behavior, and lipid levels from exposure to perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and heptadecafluorooctanesulfonic acid (PFOS). Embryos were exposed to lethal and sublethal levels of each chemical and monitored for alterations in physiological malformations, mortality, lipid levels, and behavior (only PFOA and PFHxS). The predicted 50% lethal concentrations for 120 hpf embryos were 528.6 ppm PFOA, 14.28 ppm PFHxS, and 2.14 ppm PFOS. Spine curvature and the inability of the 120 hpf embryos to maintain a dorsal-up orientation was significantly increased at 10.2 ppm PFHxS and 1.9 ppm PFOS exposure. All measured 120 hpf embryo behaviors were significantly altered starting at the lowest levels tested, 188 ppm PFOA and 6.4 ppm PFHxS. Lipid levels decreased at the highest PFAS levels tested (375 PFOA ppm, 14.4 PFHxS ppm, 2.42 ppm PFOS). In general, the PFAS chemicals, at the levels examined in this study, increased morphological deformities, embryo activity, and startle response time, as well as decreased lipid levels in 120 hpf zebrafish embryos.
Collapse
Affiliation(s)
- Janice Albers
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - John Mylroie
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Ashley Kimble
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | | | - Kacy Chapman
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - Mitchell Wilbanks
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Edward Perkins
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| |
Collapse
|
19
|
Ivantsova E, Lu A, Martyniuk CJ. Occurrence and toxicity mechanisms of perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) in fish. CHEMOSPHERE 2024; 349:140815. [PMID: 38040261 DOI: 10.1016/j.chemosphere.2023.140815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) are short-chain perfluoroalkyl substances (PFAS) ubiquitous in the environment. Here we review data on the presence and toxicity mechanisms of PFBA and PFBS in fish. We aimed to (1) synthesize data on physiological systems perturbed by PFBA or PFBS; (2) determine whether toxicity studies use concentrations reported in aquatic ecosystems and fish tissues; (3) conduct a computational toxicity assessment to elucidate putative mechanisms of PFBA and PFBS-induced toxicity. PFBA and PFBS are reported in the low ng/L in aquatic systems, and both substances are present in tissues of several fish including carp, bass, tilapia, and drum species. Evidence supports toxicity effects on several organ systems, including the cardiac, immune, hepatic, and reproductive system. Multigenerational effects in fish have also been documented for these smaller chain PFAS. To further elucidate mechanisms of reproductive impairment, we conducted in silico molecular docking to evaluate chemical interactions with several fish estrogen receptors, specifically zebrafish, fathead minnow, and Atlantic salmon. PFBS showed higher binding affinity for fish estrogen receptors relative to PFBA. Computational analysis also pointed to effects on lipids "Adipocyte Hypertrophy and Hyperplasia", "Lipogenesis Regulation in Adipocyte", and estrogen-related processes. Based on our review, most data for PFBA and PFBS are gathered for concentrations outside environmental relevance, limiting our understanding of their environment impacts. At the time of this review, there is relatively more toxicity data available for PFBS relative to PFBA in fish. This review synthesizes data on environmental levels and toxicology endpoints for PFBA and PFBS in fish to guide future investigations and endpoint assessments.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Austin Lu
- Blind Brook High School, Rye Brook, NY, 10573, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, USA.
| |
Collapse
|
20
|
Zoodsma JD, Boonkanon C, Running L, Basharat R, Atilla-Gokcumen GE, Aga DS, Sirotkin HI. Perfluorooctane Sulfonate (PFOS) Negatively Impacts Prey Capture Capabilities in Larval Zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38153236 DOI: 10.1002/etc.5819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in many industrial and domestic applications, which has resulted in unintentional human exposures and bioaccumulation in blood and other organs. Perfluorooctane sulfonate (PFOS) is among the most prevalent PFAS in the environment and has been postulated to affect brain functions in exposed organisms. However, the impacts of PFOS in early neural development have not been well described. We used zebrafish larvae to assess the effects of PFOS on two fundamental complex behaviors, prey capture and learning. Zebrafish exposed to PFOS concentrations ranging from 2 to 20 µM for differing 48-h periods were viable through early larval stages. In addition, PFOS uptake was unaffected by the presence of a chorion. We employed two different experimental paradigms; first we assessed the impacts of increasing organismal PFOS bioaccumulation on prey capture and learning, and second, we probed stage-specific sensitivity to PFOS by exposing zebrafish at different developmental stages (0-2 vs. 3-5 days post fertilization). Following both assays we measured the amount of PFOS present in each larva and found that PFOS levels varied in larvae from different groups within each experimental paradigm. Significant negative correlations were observed between larval PFOS accumulation and percentage of captured prey, whereas nonsignificant negative correlations were observed between PFOS accumulation and experienced-induced prey capture learning. These findings suggest that PFOS accumulation negatively affects larval zebrafish's ability to perform complicated multisensory behaviors and highlights the potential risks of PFOS exposure to animals in the wild, with implications for human health. Environ Toxicol Chem 2024;00:1-9. © 2023 SETAC.
Collapse
Affiliation(s)
- Josiah D Zoodsma
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York, USA
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Chanita Boonkanon
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Phuket, Thailand
| | - Logan Running
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Rehman Basharat
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Howard I Sirotkin
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
21
|
Wasel O, King H, Choi YJ, Lee LS, Freeman JL. Differential Developmental Neurotoxicity and Tissue Uptake of the Per- and Polyfluoroalkyl Substance Alternatives, GenX and PFBS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19274-19284. [PMID: 37943624 PMCID: PMC11299994 DOI: 10.1021/acs.est.3c05023] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals with several applications. Multiple adverse health effects are reported for longer carbon chain (≤C8) PFAS. Shorter carbon chain PFAS, [e.g., hexafluoropropylene oxide dimer acid (HFPO-DA; GenX) and perfluorobutanesulfonic acid (PFBS)] were introduced as alternatives. Past studies indicate that longer-chain PFAS are neurotoxic targeting the dopamine pathway, but it is not known if shorter-chain PFAS act similarly. This study aimed to evaluate developmental neurotoxicity and tissue uptake of GenX and PFBS using the zebrafish (Danio rerio). First, acute toxicity was assessed by measuring LC50 at 120 h postfertilization (hpf). Body burden was determined after embryonic exposure (1-72 hpf) to sublethal concentrations of GenX or PFBS by LC-ESI-MS/MS. Locomotor activity using a visual motor response assay at 120 hpf and dopamine levels at 72 hpf was assessed after embryonic exposure. PFBS was more acutely toxic and bioaccumulative than GenX. GenX and PFBS caused hyperactivity at 120 hpf, but stronger behavioral alterations were observed for PFBS. An increase in whole organism dopamine occurred at 40 ppb of GenX, while a decrease was observed at 400 ppb of PFBS. Differences detected in dopamine for these two PFAS indicate differential mechanisms of developmental neurotoxicity.
Collapse
Affiliation(s)
- Ola Wasel
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hanna King
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Youn J Choi
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Sharpton TJ, Alexiev A, Tanguay RL. Defining the environmental determinants of dysbiosis at scale with zebrafish. CURRENT OPINION IN TOXICOLOGY 2023; 36:100430. [PMID: 38486798 PMCID: PMC10938905 DOI: 10.1016/j.cotox.2023.100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The gut microbiome, critical to maintaining vertebrate homeostasis, is susceptible to a various exposures. In some cases, these exposures induce dysbiosis, wherein the microbiome changes into a state conducive to disease progression. To better prevent, manage, and treat health disorders, we need to define which exposures induce dysbiosis. Contemporary methods face challenges due to the immense diversity of the exposome and the restricted throughput of conventional experimental tools used for dysbiosis evaluation. We propose integrating high-throughput model systems as an augment to traditional techniques for rapid identification of dysbiosis-inducing agents. Although high-throughput screening tools revolutionized areas such as pharmacology and toxicology, their incorporation in gut microbiome research remains limited. One particularly powerful high-throughput model system is the zebrafish, which affords access to scalable in vivo experimentation involving a complex gut microbiome. Numerous studies have employed this model to identify potential dysbiosis triggers. However, its potential could be further harnessed via innovative study designs, such as evaluation of synergistic effects from combined exposures, expansions to the methodological toolkit to discern causal effects of microbiota, and efforts to assess and improve the translational relevance of the model. Ultimately, this burgeoning experimental resource can accelerate the discovery of agents that underlie dysbiotic disorders.
Collapse
Affiliation(s)
- Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR
- Department of Statistics, Oregon State University, Corvallis, OR
| | | | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
- Sinnhuber Aquatic Research Center, Oregon State University, Corvallis, OR
| |
Collapse
|
23
|
Gao XX, Zuo QL, Fu XH, Song LL, Cen MQ, Wu J. Association between prenatal exposure to per- and polyfluoroalkyl substances and neurodevelopment in children: Evidence based on birth cohort. ENVIRONMENTAL RESEARCH 2023; 236:116812. [PMID: 37536558 DOI: 10.1016/j.envres.2023.116812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Although numerous studies have examined the effect of prenatal per- and polyfluoroalkyl substances (PFAS) exposure on neurodevelopment in children, findings have been inconsistent. OBJECTIVE To better understand the effects of PFAS exposure during pregnancy on offspring neurodevelopment, we conducted a systematic review of prenatal exposure to different types of PFAS and neurodevelopment in children. METHODS A comprehensive search was conducted in the PubMed, Web of Science, and EMBASE electronic databases up to March 2023. Only birth cohort studies that report a specific association between PFAS exposure during pregnancy and neurodevelopment were included in this review. RESULTS 31 birth cohort studies that met the inclusion criteria were qualitatively integrated. Among these, 14 studies investigated the impact of PFAS exposure during pregnancy on cognition, 13 on neurobehavior, and 4 on both cognition and neurobehavior. Additionally, 4 studies explored the influence of PFAS on children's comprehensive development. CONCLUSION Prenatal PFAS exposure was associated with poor neurodevelopment in children, including psychomotor development, externalizing behavior, and comprehensive development. However, conclusive evidence regarding its effects on other neurological outcomes remains limited. In addition, sex-specific effects on social behavior and sleep problems were identified.
Collapse
Affiliation(s)
- Xin-Xin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian-Lin Zuo
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Hang Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling-Ling Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man-Qiu Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Paquette SE, Martin NR, Rodd A, Manz KE, Allen E, Camarillo M, Weller HI, Pennell K, Plavicki JS. Evaluation of Neural Regulation and Microglial Responses to Brain Injury in Larval Zebrafish Exposed to Perfluorooctane Sulfonate. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117008. [PMID: 37966802 PMCID: PMC10650473 DOI: 10.1289/ehp12861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are biopersistent, global pollutants. Although some in vitro and epidemiological studies have explored the neurotoxic potential of perfluorooctane sulfonate (PFOS), a prevalent PFAS congener, it is unknown how developmental PFOS exposure affects neuronal signaling, microglia development, and microglial-neuron communication. OBJECTIVES We sought to determine the extent to which PFOS exposure disrupts brain health, neuronal activity, and microglia-neuron communication during development. In addition, although PFOS impairs humoral immunity, its impact on innate immune cells, including resident microglia, is unclear. As such, we investigated whether microglia are cellular targets of PFOS, and, if so, whether disrupted microglial development or function could contribute to or is influenced by PFOS-induced neural dysfunction. METHODS Zebrafish were chronically exposed to either a control solution [0.1% dimethyl sulfoxide (DMSO)], 7 μ M PFOS, 14 μ M PFOS, 28 μ M PFOS, or 64 μ M perfluorooctanoic acid (PFOA). We used in vivo imaging and gene expression analysis to assess microglial populations in the developing brain and to determine shifts in the microglia state. We functionally challenged microglia state using a brain injury model and, to assess the neuronal signaling environment, performed functional neuroimaging experiments using the photoconvertible calcium indicator calcium-modulated photoactivatable ratiometric integrator (CaMPARI). These studies were paired with optogenetic manipulations of neurons and microglia, an untargeted metabolome-wide association study (MWAS), and behavioral assays. RESULTS Developmental PFOS exposure resulted in a shift away from the homeostatic microglia state, as determined by functional and morphological differences in exposed larvae, as well as up-regulation of the microglia activation gene p2ry12. PFOS-induced effects on microglia state exacerbated microglia responses to brain injury in the absence of increased cell death or inflammation. PFOS exposure also heightened neural activity, and optogenetic silencing of neurons or microglia independently was sufficient to normalize microglial responses to injury. An untargeted MWAS of larval brains revealed PFOS-exposed larvae had neurochemical signatures of excitatory-inhibitory imbalance. Behaviorally, PFOS-exposed larvae also exhibited anxiety-like thigmotaxis. To test whether the neuronal and microglial phenotypes were specific to PFOS, we exposed embryos to PFOA, a known immunotoxic PFAS. PFOA did not alter thigmotaxis, neuronal activity, or microglial responses, further supporting a role for neuronal activity as a critical modifier of microglial function following PFOS exposure. DISCUSSION Together, this study provides, to our knowledge, the first detailed account of the effects of PFOS exposure on neural cell types in the developing brain in vivo and adds neuronal hyperactivity as an important end point to assess when studying the impact of toxicant exposures on microglia function. https://doi.org/10.1289/EHP12861.
Collapse
Affiliation(s)
- Shannon E. Paquette
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Nathan R. Martin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - April Rodd
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Katherine E. Manz
- School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Eden Allen
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Manuel Camarillo
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Hannah I. Weller
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Kurt Pennell
- School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Jessica S. Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
25
|
Ivantsova E, Lopez-Scarim V, Sultan A, English C, Biju A, Souders CL, Padillo-Anthemides NE, Konig I, Martyniuk CJ. Evidence for neurotoxicity and oxidative stress in zebrafish embryos/larvae treated with HFPO-DA ammonium salt (GenX). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104315. [PMID: 37984673 DOI: 10.1016/j.etap.2023.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
"GenX" [ammonium perfluoro (2-methyl-3-oxahexanoate] was developed as a replacement chemical for toxic perfluorinated compounds to be used in product manufacturing. Here, we assessed developmental, mitochondrial, and behavioral toxicity endpoints in zebrafish embryos/larvae exposed to GenX. GenX exerted low toxicity to zebrafish embryos/larvae up to 20 mg/L. GenX did not affect mitochondrial oxidative phosphorylation nor ATP levels. ROS levels were reduced in larvae fish exposed to 10 and 100 µg/L, indicative of an antioxidant defense; however, ROS levels were elevated in fish exposed to 1000 µg/L. Increased expression of cox1 and sod2 in GenX exposed 7-day larvae was noted. GenX (0.1 or 1 µg/L) altered transcripts associated with neurotoxicity (elavl3, gfap, gap43, manf, and tubb). Locomotor activity of larvae was reduced by 100 µg/L GenX, but only in light periods. Perturbations of anxiety-related behaviors in larvae were not observed with GenX exposure. These data inform risk assessments for long-lived perfluorinated chemicals of concern.
Collapse
Affiliation(s)
- Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Victoria Lopez-Scarim
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Amany Sultan
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Animal Health Research Institute, Agriculture Research Center (ARC), Egypt
| | - Cole English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Angel Biju
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Natalia E Padillo-Anthemides
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA; UF Genetics Institute, Genetics and Genomics Graduate Program, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Brazil
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute and the Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, USA.
| |
Collapse
|
26
|
Miranda DA, Zachritz AM, Whitehead HD, Cressman SR, Peaslee GF, Lamberti GA. Occurrence and biomagnification of perfluoroalkyl substances (PFAS) in Lake Michigan fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164903. [PMID: 37355115 DOI: 10.1016/j.scitotenv.2023.164903] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
We measured perfluoroalkyl substances (PFAS) in prey and predator fish from Lake Michigan (USA) to investigate the occurrence and biomagnification of these compounds in this important ecosystem. Twenty-one PFAS were analyzed in 117 prey fish obtained from sites across Lake Michigan and in 87 salmonids collected in four lake quadrants. The mean concentration of sum (∑) PFAS above the method detection limit was 12.7 ± 6.96 ng g-1 wet weight in predator fish (all of which were salmonids) and 10.7 ± 10.4 ng g-1 in prey fish, with outlier levels found in slimy sculpin, Cottus cognatus (187 ± 12.2 ng g-1 ww). Perfluorooctanoic sulfonic acid (PFOS) was the most frequently detected and most abundant compound of the 21 PFAS, occurring in 98 % of individuals with a mean concentration of 9.86 ± 6.36 ng g-1 ww without outliers. Perfluoroalkyl carboxylates (PFCA) concentrations were higher in prey fish than in predators, with some compounds such as perfluorooctanoic acid (PFOA) being detected in higher frequency in prey fish. Besides PFOS, detection of several long-chain (C8-C12) PFCAs were observed in >80 % of the prey fish. Overall, the observed concentrations in Lake Michigan fish were lower than those reported in other Laurentian Great Lakes except for Lake Superior. Biomagnification factors (BMFs) for PFOS exceeded 1.0 (range, 1.80 to 5.12) in all predator-prey relationships analyzed, indicating biomagnification of these compounds, whereas BMFs of other long-chain PFCAs varied according to the fish species. PFAS were found in all fish species measured from Lake Michigan and commonly biomagnified from prey to predator fish, strongly suggesting a dietary connection.
Collapse
Affiliation(s)
- Daniele A Miranda
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Environmental Change initiative, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, United States.
| | - Alison M Zachritz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Heather D Whitehead
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Shannon R Cressman
- U.S. Fish and Wildlife Service, Green Bay Fish and Wildlife Conservation Office, New Franken, WI 54229, United States
| | - Graham F Peaslee
- Environmental Change initiative, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Gary A Lamberti
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Environmental Change initiative, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
27
|
Jeong Y, Vyas K, Irudayaraj J. Toxicity of per- and polyfluoroalkyl substances to microorganisms in confined hydrogel structures. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131672. [PMID: 37236111 PMCID: PMC10330869 DOI: 10.1016/j.jhazmat.2023.131672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) as a group of environmentally persistent synthetic chemicals has been widely used in industrial and consumer products. Bioaccumulation studies have documented the adverse effects of PFAS in various living organisms. Despite the large number of studies, experimental approaches to evaluate the toxicity of PFAS on bacteria in a biofilm-like niche as structured microbial communities are sparse. This study suggests a facile approach to query the toxicity of PFOS and PFOA on bacteria (Escherichia coli K12 MG1655 strain) in a biofilm-like niche provided by hydrogel-based core-shell beads. Our study shows that E. coli MG1655 upon complete confinement in hydrogel beads exhibit altered physiological characteristics of viability, biomass, and protein expression, compared to their susceptible counterpart cultivated under planktonic conditions. We find that soft-hydrogel engineering platforms may provide a protective role for microorganisms from environmental contaminants, depending on the size or thickness of the protective/barrier layer. We expect our study to provide insights on the toxicity of environmental contaminants on organisms under encapsulated conditions that could potentially be useful for toxicity screening and in evaluating ecological risk of soil, plant, and mammalian microbiome.
Collapse
Affiliation(s)
- Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA
| | - Khushali Vyas
- School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, Beckman Institute, Holonyak Micro and Nanotechnology Laboratory, Urbana, IL, USA.
| |
Collapse
|
28
|
Min EK, Lee H, Sung EJ, Seo SW, Song M, Wang S, Kim SS, Bae MA, Kim TY, Lee S, Kim KT. Integrative multi-omics reveals analogous developmental neurotoxicity mechanisms between perfluorobutanesulfonic acid and perfluorooctanesulfonic acid in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131714. [PMID: 37263023 DOI: 10.1016/j.jhazmat.2023.131714] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
The molecular mechanism of perfluorobutanesulfonic acid (PFBS), an alternative to legacy perfluorooctanesulfonic acid (PFOS), is not fully understood yet. Therefore, we conducted a developmental toxicity evaluation on zebrafish embryos exposed to PFBS and PFOS and assessed neurobehavioral changes at concentrations below each point of departure (POD) determined by embryonic mortality. Using transcriptomics, proteomics, and metabolomics, biomolecular perturbations in response to PFBS were profiled and then integrated for comparison with those for PFOS. Although PFBS (7525.47 μM POD) was approximately 700 times less toxic than PFOS (11.42 μM POD), altered neurobehavior patterns and affected kinds of endogenous neurochemicals were similar between PFBS and PFOS at the corresponding POD-based concentrations. Multi-omics analysis revealed that the PFBS neurotoxicity mechanism was associated with oxidative stress, lipid metabolism, and glycolysis/glucogenesis. The commonalities in developmental neurotoxicity-related mechanisms between PFBS and PFOS interconnected by knowledge-based integration of multi-omics included the calcium signaling pathway, lipid homeostasis, and primary bile acid biosynthesis. Despite being less toxic than PFOS, PFBS exhibited similar dysregulated molecular mechanisms, suggesting that chain length differences do not affect the intrinsic toxicity mechanism. Overall, carefully managing potential toxicity of PFBS can secure its status as an alternative to PFOS.
Collapse
Affiliation(s)
- Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyojin Lee
- Department of Biology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Eun Ji Sung
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong Woo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myungha Song
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Seungjun Wang
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
29
|
Hawkey AB, Mead M, Natarajan S, Gondal A, Jarrett O, Levin ED. Embryonic exposure to PFAS causes long-term, compound-specific behavioral alterations in zebrafish. Neurotoxicol Teratol 2023; 97:107165. [PMID: 36801483 PMCID: PMC10198882 DOI: 10.1016/j.ntt.2023.107165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are commonly used as surfactants and coatings for industrial processes and consumer products. These compounds have been increasingly detected in drinking water and human tissue, and concern over their potential effects on health and development is growing. However, relatively little data are available for their potential impacts on neurodevelopment and the degree to which different compounds within this class may differ from one another in their neurotoxicity. The present study examined the neurobehavioral toxicology of two representative compounds in a zebrafish model. Zebrafish embryos were exposed to 0.1-100uM perfluorooctanoic acid (PFOA) or 0.01-1.0uM perfluorooctanesulfonic acid (PFOS) from 5 to 122 h post-fertilization. These concentrations were below threshold for producing increased lethality or overt dysmorphologies, and PFOA was tolerated at a concentration 100× higher than PFOS. Fish were maintained to adulthood, with behavioral assessments at 6 days, 3 months (adolescence) and 8 months of age (adulthood). Both PFOA and PFOS caused behavioral changes in zebrafish, but PFOS and PFOS produced strikingly different phenotypes. PFOA was associated with increased larval motility in the dark (100uM), and enhanced diving responses in adolescence (100uM) but not adulthood. PFOS was associated with a reversed light-dark response in the larval motility test (0.1-1uM), whereby the fish were more active in the light than the dark. PFOS also caused time-dependent changes in locomotor activity in the novel tank test during adolescence (0.1-1.0uM) and an overall pattern of hypoactivity in adulthood at the lowest concentration (0.01uM). Additionally, the lowest concentration of PFOS (0.01uM) reduced acoustic startle magnitude in adolescence, but not adulthood. These data suggest that PFOS and PFOA both produce neurobehavioral toxicity, but these effects are quite distinct from one another.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Mikayla Mead
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Sarabesh Natarajan
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Anas Gondal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Olivia Jarrett
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA.
| |
Collapse
|
30
|
Gong S, McLamb F, Shea D, Vu JP, Vasquez MF, Feng Z, Bozinovic K, Hirata KK, Gersberg RM, Bozinovic G. Toxicity assessment of hexafluoropropylene oxide-dimer acid on morphology, heart physiology, and gene expression during zebrafish (Danio rerio) development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32320-32336. [PMID: 36462083 PMCID: PMC10017623 DOI: 10.1007/s11356-022-24542-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/25/2022] [Indexed: 05/25/2023]
Abstract
Hexafluoropropylene oxide-dimer acid (HFPO-DA) is one of the emerging replacements for the "forever" carcinogenic and toxic long-chain PFAS. HFPO-DA is a polymerization aid used for manufacturing fluoropolymers, whose global distribution and undetermined toxic properties are a concern regarding human and ecological health. To assess embryotoxic potential, zebrafish embryos were exposed to HFPO-DA at concentrations of 0.5-20,000 mg/L at 24-, 48-, and 72-h post-fertilization (hpf). Heart rate increased significantly in embryos exposed to 2 mg/L and 10 mg/L HFPO-DA across all time points. Spinal deformities and edema phenotypes were evident among embryos exposed to 1000-16,000 mg/L HFPO-DA at 72 hpf. A median lethal concentration (LC50) was derived as 7651 mg/L at 72 hpf. Shallow RNA sequencing analysis of 9465 transcripts identified 38 consistently differentially expressed genes at 0.5 mg/L, 1 mg/L, 2 mg/L, and 10 mg/L HFPO-DA exposures. Notably, seven downregulated genes were associated with visual response, and seven upregulated genes were expressed in or regulated the cardiovascular system. This study identifies biological targets and molecular pathways affected during animal development by an emerging, potentially problematic, and ubiquitous industrial chemical.
Collapse
Affiliation(s)
- Sylvia Gong
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | | | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Kesten Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- Graduate School of Arts and Sciences, Georgetown University, Washington, DC, USA
| | - Ken K Hirata
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | | | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA.
- School of Public Health, San Diego State University, San Diego, CA, USA.
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0355, USA.
| |
Collapse
|
31
|
Liu H, Chen Y, Hu W, Luo Y, Zhu P, You S, Li Y, Jiang Z, Wu X, Li X. Impacts of PFOA C8, GenX C6, and their mixtures on zebrafish developmental toxicity and gene expression provide insight about tumor-related disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160085. [PMID: 36356740 DOI: 10.1016/j.scitotenv.2022.160085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Concerns about per- and polyfluoroalkyl substances (PFASs) have grown in importance in the fields of ecotoxicology and public health. This study aims to compare the potential effects of long-chain (carbon atoms ≥ 7) and short-chain derivatives and their mixtures' exposure according to PFASs-exposed (1, 2, 5, 10, and 20 mg/L) zebrafish's (Danio rerio) toxic effects and their differential gene expression. Here, PFOAC8, GenXC6, and their mixtures (v/v, 1:1) could reduce embryo hatchability and increase teratogenicity and mortality. The toxicity of PFOAC8 was higher than that of GenXC6, and the toxicity of their mixtures was irregular. Their exposure (2 mg/L) caused zebrafish ventricular edema, malformation of the spine, blood accumulation, or developmental delay. In addition, all of them had significant differences in gene expression. PFOAC8 exposure causes overall genetic changes, and the pathways of this transformation were autophagy and apoptosis. More importantly, in order to protect cells from PFOAC8, GenXC6, and their mixtures' influences, zebrafish inhibited the expression of ATPase and Ca2+ transport gene (atp1b2b), mitochondrial function-related regulatory genes (mt-co2, mt-co3, and mt-cyb), and tumor or carcinogenic cell proliferation genes (laptm4b and ctsbb). Overall, PFOAC8, GenXC6, and their mixtures' exposures will affect the gene expression effects of zebrafish embryos, indicating that PFASs may pose a potential threat to aquatic biological safety. These results showed that the relevant genes in zebrafish that were inhibited by PFASs exposure were related to tumorigenesis. Therefore, the effect of PFASs on zebrafish can be further used to study the pathogenesis of tumors.
Collapse
Affiliation(s)
- Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yu Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Wenli Hu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuan Luo
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Shiqi You
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yunxuan Li
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhaobiao Jiang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiushan Wu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
32
|
In silico analysis decodes transthyretin (TTR) binding and thyroid disrupting effects of per- and polyfluoroalkyl substances (PFAS). Arch Toxicol 2023; 97:755-768. [PMID: 36566436 PMCID: PMC9968702 DOI: 10.1007/s00204-022-03434-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 12/26/2022]
Abstract
Transthyretin (TTR) is a homo-tetramer protein involved in the transport of thyroid hormone (thyroxine; T4) in the plasma and cerebrospinal fluid. Many pollutants have been shown to bind to TTR, which could be alarming as disruption in the thyroid hormone system can lead to several physiological problems. It is also indicated that the monomerization of tetramer and destabilization of monomer can lead to amyloidogenesis. Many compounds are identified that can bind to tetramer and stabilize the tetramer leading to the inhibition of amyloid fibril formation. Other compounds are known to bind tetramer and induce amyloid fibril formation. Among the pollutants, per- and polyfluoroalkyl substances (PFAS) are known to disrupt the thyroid hormone system. The molecular mechanisms of thyroid hormone disruption could be diverse, as some are known to bind with thyroid hormone receptors, and others can bind to membrane transporters. Binding to TTR could also be one of the important pathways to alter thyroid signaling. However, the molecular interactions that drive thyroid-disrupting effects of long-chain and short-chain PFASs are not comprehensively understood at the molecular level. In this study, using a computational approach, we show that carbon chain length and functional group in PFASs are structural determinants, in which longer carbon chains of PFASs and sulfur-containing PFASs favor stronger interactions with TTR than their shorter-chained counterparts. Interestingly, short-chain PFAS also showed strong binding capacity, and the interaction energy for some was as close to the longer-chain PFAS. This suggests that short-chain PFASs are not completely safe, and their use and build-up in the environment should be carefully regulated. Of note, TTR homologs analysis suggests that thyroid-disrupting effects of PFASs could be most likely translated to TTR-like proteins and other species.
Collapse
|
33
|
Thunga P, Truong L, Rericha Y, Du JL, Morshead M, Tanguay RL, Reif DM. Utilizing a Population-Genetic Framework to Test for Gene-Environment Interactions between Zebrafish Behavior and Chemical Exposure. TOXICS 2022; 10:769. [PMID: 36548602 PMCID: PMC9781692 DOI: 10.3390/toxics10120769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Individuals within genetically diverse populations display broad susceptibility differences upon chemical exposures. Understanding the role of gene-environment interactions (GxE) in differential susceptibility to an expanding exposome is key to protecting public health. However, a chemical's potential to elicit GxE is often not considered during risk assessment. Previously, we've leveraged high-throughput zebrafish (Danio rerio) morphology screening data to reveal patterns of potential GxE effects. Here, using a population genetics framework, we apportioned variation in larval behavior and gene expression in three different PFHxA environments via mixed-effect modeling to assess significance of GxE term. We estimated the intraclass correlation (ICC) between full siblings from different families using one-way random-effects model. We found a significant GxE effect upon PFHxA exposure in larval behavior, and the ICC of behavioral responses in the PFHxA exposed population at the lower concentration was 43.7%, while that of the control population was 14.6%. Considering global gene expression data, a total of 3746 genes showed statistically significant GxE. By showing evidence that heritable genetics are directly affecting gene expression and behavioral susceptibility of individuals to PFHxA exposure, we demonstrate how standing genetic variation in a heterogeneous population such as ours can be leveraged to test for potential GxE.
Collapse
Affiliation(s)
- Preethi Thunga
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Yvonne Rericha
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Jane La Du
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Mackenzie Morshead
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - David M. Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
34
|
Wasel O, Thompson KM, Freeman JL. Assessment of unique behavioral, morphological, and molecular alterations in the comparative developmental toxicity profiles of PFOA, PFHxA, and PFBA using the zebrafish model system. ENVIRONMENT INTERNATIONAL 2022; 170:107642. [PMID: 36410238 PMCID: PMC9744091 DOI: 10.1016/j.envint.2022.107642] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 05/14/2023]
Abstract
Perfluoroalkyl substances (PFAS) are a class of synthetic chemicals that are persistent in the environment. Due to adverse health outcomes associated with longer chain PFAS, shorter chain chemicals were used as replacements, but developmental toxicity assessments of the shorter chain chemicals are limited. Toxicity of three perfluoroalkyl acids (PFAAs) [perfluorooctanoic acid (PFOA), composed of 8 carbon (C8), perfluorohexanoic acid (PFHxA, C6), and perfluorobutanoic acid (PFBA, C4)] was compared in developing zebrafish (Danio rerio). LC50s at 120 h post fertilization (hpf) assessed potency of each PFAA by exposing developing zebrafish (1-120 hpf) to range of concentrations. Zebrafish were then exposed to sublethal concentrations (0.4-4000 ppb, µg/L) throughout embryogenesis (1-72 hpf). Effects of the embryonic exposure on locomotor activities was completed with the visual motor response test at 120 hpf. At 72 hpf, morphological changes (total body length, head length, head width) and transcriptome profiles to compare altered molecular and disease pathways were determined. The LC50 ranking followed trend as expected based on chain length. PFOA caused hyperactivity and PFBA hypoactivity, while PFHxA did not change behavior. PFOA, PFHxA, and PFBA caused morphological and transcriptomic alterations that were unique for each chemical and were concentration-dependent indicating different toxicity mechanisms. Cancer was a top disease for PFOA and FXR/RXR activation was a top canonical pathway for PFBA. Furthermore, comparison of altered biological and molecular pathways in zebrafish exposed to PFOA matched findings reported in prior epidemiological studies and other animal models, supporting the predictive value of the transcriptome approach and for predicting adverse health outcomes associated with PFHxA or PFBA exposure.
Collapse
Affiliation(s)
- Ola Wasel
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Kathryn M Thompson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
35
|
Wu DL, Cheng L, Rao QX, Wang XL, Zhang QC, Yao CX, Chen SS, Liu X, Song W, Zhou JX, Song WG. Toxic effects and transcriptional responses in zebrafish liver cells following perfluorooctanoic acid exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106328. [PMID: 36302320 DOI: 10.1016/j.aquatox.2022.106328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
As a typical type of persistent organic pollutant, perfluorooctanoic acid (PFOA) is pervasive in the environment. Multiple studies have found that PFOA has hepatotoxicity, but the mechanism remains poorly understood. In this study, the toxic effects of different concentrations of PFOA on zebrafish liver cells were systematically assessed by recording cell survival, ultrastructural observations, and transcriptome analyses. The results showed that the inhibition of cell viability and the massive accumulation of autophagic vacuoles were observed at 400 µM PFOA, while transcriptomic changes occurred with treatments of 1 and 400 µM PFOA. The transcription levels of 1055 (977 up- and 78 down-regulated genes) and 520 (446 up- and 74 down-regulated genes) genes were significantly changed after treatment with 1 and 400 µM PFOA, respectively. Based on Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, significant expression changes were observed in autophagy, tight junction, signal transduction, immune system, endocrine system, and metabolism-related pathways, indicating that such processes were greatly affected by PFOA exposure. The findings of this study will provide a scientific basis for the toxic effects and potential toxic mechanisms of PFOA on zebrafish, and provide information for ecological risk assessments.
Collapse
Affiliation(s)
- Dong-Lei Wu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201106, China; Shanghai Engineering Research Center for Agro-products Quality and Safety, Shanghai 201403, China
| | - Lin Cheng
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201106, China; Shanghai Engineering Research Center for Agro-products Quality and Safety, Shanghai 201403, China
| | - Qin-Xiong Rao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201106, China; Shanghai Engineering Research Center for Agro-products Quality and Safety, Shanghai 201403, China
| | - Xian-Li Wang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201106, China; Shanghai Engineering Research Center for Agro-products Quality and Safety, Shanghai 201403, China
| | - Qi-Cai Zhang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201106, China; Shanghai Engineering Research Center for Agro-products Quality and Safety, Shanghai 201403, China
| | - Chun-Xia Yao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201106, China; Shanghai Engineering Research Center for Agro-products Quality and Safety, Shanghai 201403, China
| | - Shan-Shan Chen
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201106, China; Shanghai Engineering Research Center for Agro-products Quality and Safety, Shanghai 201403, China
| | - Xing Liu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201106, China; Shanghai Engineering Research Center for Agro-products Quality and Safety, Shanghai 201403, China
| | - Wei Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201106, China; Shanghai Engineering Research Center for Agro-products Quality and Safety, Shanghai 201403, China
| | - Jia-Xin Zhou
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201106, China; Shanghai Engineering Research Center for Agro-products Quality and Safety, Shanghai 201403, China
| | - Wei-Guo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201106, China; Shanghai Engineering Research Center for Agro-products Quality and Safety, Shanghai 201403, China.
| |
Collapse
|
36
|
Jeong S, Jang S, Kim SS, Bae MA, Shin J, Lee KB, Kim KT. Size-dependent seizurogenic effect of polystyrene microplastics in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129616. [PMID: 36104895 DOI: 10.1016/j.jhazmat.2022.129616] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The effects of polystyrene microplastic (PS-MP) size on neurotoxicity remain to be evaluated at various microsizes, and the seizurogenic effects of PS-MPs are unknown. This study aimed to evaluate the swimming behavior of zebrafish larvae under light-dark transitions after exposure to four PS-MP sizes (i.e., 1, 6, 10, and 25 μm) at concentrations of 500, 5,000, and 50,000 particles/mL. Changes in electroencephalographic signals, seizure-related gene expression, and neurochemical concentrations were measured. Locomotor activity was inhibited only by 10-μm PS-MPs. According to electroencephalographic signals, the number and total duration of seizure-like events significantly increased by 10-μm PS-MPs, which was confirmed by the altered expression of seizure-related genes c-fos and pvalb5. Additionally, an increase in the levels of neurochemicals choline, betaine, dopamine, 3-methoxytyramine, and gamma-aminobutyric acid indicated that the observed hypoactivity and seizure-like behavior were associated with the dysregulation of the cholinergic, dopaminergic, and GABAergic systems. Overall, these findings demonstrate that exposure to PS-MPs can potentially cause seizurogenic effects in developing zebrafish embryos, and we highlight that PS-MPs 10 µm in size dominantly affect neurotoxicity.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea
| | - Soogyeong Jang
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, the Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, the Republic of Korea
| | | | - Ki-Baek Lee
- Zefit Inc., Daegu 42988, the Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea.
| |
Collapse
|
37
|
Jane L Espartero L, Yamada M, Ford J, Owens G, Prow T, Juhasz A. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. ENVIRONMENTAL RESEARCH 2022; 212:113431. [PMID: 35569538 DOI: 10.1016/j.envres.2022.113431] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly persistent, manufactured chemicals used in various manufacturing processes and found in numerous commercial products. With over 9000 compounds belonging to this chemical class, there is increasing concern regarding human exposure to these compounds due to their persistent, bioaccumulative, and toxic nature. Human exposure to PFAS may occur from a variety of exposure sources, including, air, food, indoor dust, soil, water, from the transfer of PFAS from non-stick wrappers to food, use of cosmetics, and other personal care products. This critical review presents recent research on the health-related impacts of PFAS exposure, highlighting compounds other than Perfluorooctanoic acid (PFOA) and Perfluoroctane sulfonate (PFOS) that cause adverse health effects, updates the current state of knowledge on PFAS toxicity, and, where possible, elucidates cause-and-effect relationships. Recent reviews identified that exposure to PFAS was associated with adverse health impacts on female and male fertility, metabolism in pregnancy, endocrine function including pancreatic dysfunction and risk of developing Type 2 diabetes, lipid metabolism and risk of childhood adiposity, hepatic and renal function, immune function, cardiovascular health (atherosclerosis), bone health including risk for dental cavities, osteoporosis, and vitamin D deficiency, neurological function, and risk of developing breast cancer. However, while cause-and-effect relationships for many of these outcomes were not able to be clearly elucidated, it was identified that 1) the evidence derived from both animal models and humans suggested that PFAS may exert harmful impacts on both animals and humans, however extrapolating data from animal to human studies was complicated due to differences in exposure/elimination kinetics, 2) PFAS precursor kinetics and toxicity mechanism data are still limited despite ongoing exposures, and 3) studies in humans, which provide contrasting results require further investigation of the long-term-exposed population to better evaluate the biological toxicity of chronic exposure to PFAS.
Collapse
Affiliation(s)
- Lore Jane L Espartero
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Miko Yamada
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Judith Ford
- University of Sydney, New South Wales, United Kingdom
| | - Gary Owens
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Tarl Prow
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia; Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, United Kingdom
| | - Albert Juhasz
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia.
| |
Collapse
|
38
|
Gebreab KY, Benetti D, Grosell M, Stieglitz JD, Berry JP. Toxicity of perfluoroalkyl substances (PFAS) toward embryonic stages of mahi-mahi (Coryphaena hippurus). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1057-1067. [PMID: 35982347 DOI: 10.1007/s10646-022-02576-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl substances (PFAS) are highly persistent organic pollutants that have been detected in a wide array of environmental matrices and, in turn, diverse biota including humans and wildlife wherein they have been associated with a multitude of toxic, and otherwise adverse effects, including ecosystem impacts. In the present study, we developed a toxicity assay for embryonic stages of mahi-mahi (Coryphaena hippurus), as an environmentally relevant pelagic fish species, and applied this assay to the evaluation of the toxicity of "legacy" and "next-generation" PFAS including, respectively, perfluorooctanoic acid (PFOA) and several perfluoroethercarboxylic acids (PFECA). Acute embryotoxicity, in the form of lethality, was measured for all five PFAS toward mahi-mahi embryos with median lethal concentrations (LC50) in the micromolar range. Consistent with studies in other similar model systems, and specifically the zebrafish, embryotoxicity in mahi-mahi generally (1) correlated with fluoroalkyl/fluoroether chain length and hydrophobicity, i.e., log P, of PFAS, and thus, aligned with a role of uptake in the relative toxicity; and (2) increased with continuous exposure, suggesting a possible role of development stage specifically including a contribution of hatching (and loss of protective chorion) and/or differentiation of target systems (e.g., liver). Compared to prior studies in the zebrafish embryo model, mahi-mahi was significantly more sensitive to PFAS which may be related to differences in either exposure conditions (e.g., salinity) and uptake, or possibly differential susceptibility of relevant targets, for the two species. Moreover, when considered in the context of the previously reported concentration of PFAS within upper sea surface layers, and co-localization of buoyant eggs (i.e., embryos) and other early development stages (i.e., larvae, juveniles) of pelagic fish species to the sea surface, the observed toxicity potentially aligns with environmentally relevant concentrations in these marine systems. Thus, impacts on ecosystems including, in particular, population recruitment are a possibility. The present study is the first to demonstrate embryotoxicity of PFAS in a pelagic marine fish species, and suggests that mahi-mahi represents a potentially informative, and moreover, environmentally relevant, ecotoxicological model for PFAS in marine systems.
Collapse
Affiliation(s)
- Kiflom Y Gebreab
- Department of Chemistry and Biochemistry, Institute of Environment, Florida International University, North Miami, FL, USA
| | - Daniel Benetti
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - J P Berry
- Department of Chemistry and Biochemistry, Institute of Environment, Florida International University, North Miami, FL, USA.
| |
Collapse
|
39
|
Rericha Y, Truong L, Leong C, Cao D, Field JA, Tanguay RL. Dietary Perfluorohexanoic Acid (PFHxA) Exposures in Juvenile Zebrafish Produce Subtle Behavioral Effects across Generations. TOXICS 2022; 10:toxics10070372. [PMID: 35878277 PMCID: PMC9319656 DOI: 10.3390/toxics10070372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Abstract
Ubiquitous anthropogenic contaminants of concern, per- and polyfluoroalkyl substances (PFAS) are frequently detected in the environment and human populations around the world. Diet is a predominate route of human exposure, and PFAS are frequently measured in food. Manufacturing trends have shifted from legacy PFAS to shorter-chain alternatives that are suggested to be safer, such as perfluorohexanoic acid (PFHxA). However, the current amount of data to support safety assessments of these alternatives is not yet sufficient. The present study investigated the effects of a 42-day dietary exposure to 1, 10, or 100 ng/g PFHxA in juvenile zebrafish. The zebrafish model was leveraged to interrogate morphometrics, fecundity, and numerous behavior endpoints across multiple generations. Dietary PFHxA exposure did not result in measurable body burden and did not affect growth, fecundity, adult social perception behavior, or associative learning. PFHxA exposure did induce abnormal adult anxiety behaviors in the F0 generation that persisted transgenerationally in the F1 and F2. Abnormal larval and juvenile behavior was observed in the F1 generation, but not in the F2. PFHxA juvenile dietary exposure induced subtle and multigenerational behavior effects that warrant further investigation of this and other alternative short-chain PFAS.
Collapse
Affiliation(s)
- Yvonne Rericha
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA; (Y.R.); (L.T.); (C.L.); (J.A.F.)
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97333, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA; (Y.R.); (L.T.); (C.L.); (J.A.F.)
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97333, USA
| | - Connor Leong
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA; (Y.R.); (L.T.); (C.L.); (J.A.F.)
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97333, USA
| | - Dunping Cao
- Department of Chemistry, College of Science, Oregon State University, Corvallis, OR 97331, USA;
| | - Jennifer A. Field
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA; (Y.R.); (L.T.); (C.L.); (J.A.F.)
- Department of Chemistry, College of Science, Oregon State University, Corvallis, OR 97331, USA;
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA; (Y.R.); (L.T.); (C.L.); (J.A.F.)
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97333, USA
- Correspondence: ; Tel.: +1-541-737-6514
| |
Collapse
|
40
|
Truong L, Rericha Y, Thunga P, Marvel S, Wallis D, Simonich MT, Field JA, Cao D, Reif DM, Tanguay RL. Systematic developmental toxicity assessment of a structurally diverse library of PFAS in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128615. [PMID: 35263707 PMCID: PMC8970529 DOI: 10.1016/j.jhazmat.2022.128615] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 06/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of widely used chemicals with limited human health effects data relative to the diversity of structures manufactured. To help fill this data gap, an extensive in vivo developmental toxicity screen was performed on 139 PFAS provided by the US EPA. Dechorionated embryonic zebrafish were exposed to 10 nominal water concentrations of PFAS (0.015-100 µM) from 6 to 120 h post-fertilization (hpf). The embryos were assayed for embryonic photomotor response (EPR), larval photomotor response (LPR), and 13 morphological endpoints. A total of 49 PFAS (35%) were bioactive in one or more assays (11 altered EPR, 25 altered LPR, and 31 altered morphology). Perfluorooctanesulfonamide (FOSA) was the only structure that was bioactive in all 3 assays, while Perfluorodecanoic acid (PFDA) was the most potent teratogen. Low PFAS volatility was associated with developmental toxicity (p < 0.01), but no association was detected between bioactivity and five other physicochemical parameters. The bioactive PFAS were enriched for 6 supergroup chemotypes. The results illustrate the power of a multi-dimensional in vivo platform to assess the developmental (neuro)toxicity of diverse PFAS and in the acceleration of PFAS safety research.
Collapse
Affiliation(s)
- Lisa Truong
- Department of Environmental and Molecular Toxicology, the Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Yvonne Rericha
- Department of Environmental and Molecular Toxicology, the Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Preethi Thunga
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Skylar Marvel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dylan Wallis
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, the Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Department of Chemistry at Oregon State University, Corvallis, OR, USA
| | - Dunping Cao
- Department of Environmental and Molecular Toxicology, Department of Chemistry at Oregon State University, Corvallis, OR, USA
| | - David M Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Robyn L Tanguay
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
41
|
Araújo RG, Rodríguez-Hernandéz JA, González-González RB, Macias-Garbett R, Martínez-Ruiz M, Reyes-Pardo H, Hernández Martínez SA, Parra-Arroyo L, Melchor-Martínez EM, Sosa-Hernández JE, Coronado-Apodaca KG, Varjani S, Barceló D, Iqbal HMN, Parra-Saldívar R. Detection and Tertiary Treatment Technologies of Poly-and Perfluoroalkyl Substances in Wastewater Treatment Plants. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 10. [DOI: 10.3389/fenvs.2022.864894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
PFAS are a very diverse group of anthropogenic chemicals used in various consumer and industrial products. The properties that characterize are their low degradability as well as their resistance to water, oil and heat. This results in their high persistence in the environment and bioaccumulation in different organisms, causing many adverse effects on the environment as well as in human health. Some of their effects remain unknown to this day. As there are thousands of registered PFAS, it is difficult to apply traditional technologies for an efficient removal and detection for all. This has made it difficult for wastewater treatment plants to remove or degrade PFAS before discharging the effluents into the environment. Also, monitoring these contaminants depends mostly on chromatography-based methods, which require expensive equipment and consumables, making it difficult to detect PFAS in the environment. The detection of PFAS in the environment, and the development of technologies to be implemented in tertiary treatment of wastewater treatment plants are topics of high concern. This study focuses on analyzing and discussing the mechanisms of occurrence, migration, transformation, and fate of PFAS in the environment, as well the main adverse effects in the environment and human health. The following work reviews the recent advances in the development of PFAS detection technologies (biosensors, electrochemical sensors, microfluidic devices), and removal/degradation methods (electrochemical degradation, enzymatic transformation, advanced oxidation, photocatalytic degradation). Understanding the risks to public health and identifying the routes of production, transportation, exposure to PFAS is extremely important to implement regulations for the detection and removal of PFAS in wastewater and the environment.
Collapse
|
42
|
Liu Z, Chen Z, Gao J, Yu Y, Men Y, Gu C, Liu J. Accelerated Degradation of Perfluorosulfonates and Perfluorocarboxylates by UV/Sulfite + Iodide: Reaction Mechanisms and System Efficiencies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3699-3709. [PMID: 35226468 PMCID: PMC9481055 DOI: 10.1021/acs.est.1c07608] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The addition of iodide (I-) in the UV/sulfite system (UV/S) significantly accelerated the reductive degradation of perfluorosulfonates (PFSAs, CnF2n+1SO3-) and perfluorocarboxylates (PFCAs, CnF2n+1COO-). Using the highly recalcitrant perfluorobutane sulfonate (C4F9SO3-) as a probe, we optimized the UV/sulfite + iodide system (UV/S + I) to degrade n = 1-7 PFCAs and n = 4, 6, 8 PFSAs. In general, the kinetics of per- and polyfluoroalkyl substance (PFAS) decay, defluorination, and transformation product formations in UV/S + I were up to three times faster than those in UV/S. Both systems achieve a similar maximum defluorination. The enhanced reaction rates and optimized photoreactor settings lowered the EE/O for PFCA degradation below 1.5 kW h m-3. The relatively high quantum yield of eaq- from I- made the availability of hydrated electrons (eaq-) in UV/S + I and UV/I two times greater than that in UV/S. Meanwhile, the rapid scavenging of reactive iodine species by SO32- made the lifetime of eaq- in UV/S + I eight times longer than that in UV/I. The addition of I- also substantially enhanced SO32- utilization in treating concentrated PFAS. The optimized UV/S + I system achieved >99.7% removal of most PFSAs and PFCAs and >90% overall defluorination in a synthetic solution of concentrated PFAS mixtures and NaCl. We extended the discussion over molecular transformation mechanisms, development of PFAS degradation technologies, and the fate of iodine species.
Collapse
Affiliation(s)
- Zekun Liu
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Zhanghao Chen
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jinyu Gao
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yaochun Yu
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
- Department
of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yujie Men
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
- Department
of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cheng Gu
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jinyong Liu
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
43
|
Rericha Y, Cao D, Truong L, Simonich MT, Field JA, Tanguay RL. Sulfonamide functional head on short-chain perfluorinated substance drives developmental toxicity. iScience 2022; 25:103789. [PMID: 35146398 PMCID: PMC8819378 DOI: 10.1016/j.isci.2022.103789] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously detected in environmental and biological samples and cause adverse health effects. Studies have predominately focused on long-chain PFAS, with far fewer addressing short-chain alternatives. This study leveraged embryonic zebrafish to investigate developmental toxicity of a short-chain series: perfluorobutane sulfonate (PFBS), perfluoropentanoic acid (PFPeA), perfluorobutane sulfonamide (FBSA), and 4:2 fluorotelomer sulfonic acid (4:2 FTS). Following static exposures at 8 h postfertilization (hpf) to each chemical (1-100 μM), morphological and behavioral endpoints were assessed at 24 and 120 hpf. Only FBSA induced abnormal morphology, while exposure to all chemicals caused aberrant larval behavior. RNA sequencing at 48 hpf following 47 μM exposures revealed only FBSA significantly disrupted normal gene expression. Measured tissue concentrations were FBSA > PFBS > 4:2 FTS > PFPeA. This study demonstrates functional head groups impact bioactivity and bioconcentration.
Collapse
Affiliation(s)
- Yvonne Rericha
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Dunping Cao
- Department of Chemistry, College of Science, Oregon State University, Corvallis, OR 97333, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| |
Collapse
|