1
|
Hayat C, Yaseen M, Ahmad S, Khalid K, Alamri MA, Khalid A, Shah SQ, Ejiohuo O, Wadood A, Maigoro AY, Kwon HW. Elucidating the interactions of advanced glycation end products with RAGE, employing molecular docking and MD simulation approaches: Implications of potent therapeutic for diabetes and its related complications. J Mol Liq 2024; 416:126467. [DOI: 10.1016/j.molliq.2024.126467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Erim B, Binici Hİ. Advanced glycation end products: understanding their health risks and effective prevention strategies. NUTRIRE 2024; 49:54. [DOI: 10.1186/s41110-024-00298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 01/03/2025]
|
3
|
Clarke DM, Koutnik AP, Johnson RJ, DeBlasi JM, Bikman BT, Arroyo JA, Reynolds PR. Differential Rates of Glycation Following Exposure to Unique Monosaccharides. Int J Mol Sci 2024; 25:6921. [PMID: 39000037 PMCID: PMC11240907 DOI: 10.3390/ijms25136921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
A complication of reducing sugars is that they can undergo Maillard chemical reactions, forming advanced glycation end-products (AGEs) that can induce oxidative stress and inflammation via engagements with the main receptor for AGEs (RAGE) in various tissues. Certain sugars, such as glucose and fructose, are well known to cause AGE formation. Recently, allulose has emerged as a rare natural sugar that is an epimer of fructose and which is of low caloric content that is minimally metabolized, leading to it being introduced as a low-calorie sugar alternative. However, the relative ability of allulose to generate AGEs compared to glucose and fructose is not known. Here we assess the accumulation of AGEs in cell-free, in vitro, and in vivo conditions in response to allulose and compare it to glycation mediated by glucose or fructose. AGEs were quantified in cell-free samples, cell culture media and lysates, and rat serum with glycation-specific ELISAs. In cell-free conditions, we observed concentration and time-dependent increases in AGEs when bovine serum albumin (BSA) was incubated with glucose or fructose and significantly less glycation when incubated with allulose. AGEs were significantly elevated when pulmonary alveolar type II-like cells were co-incubated with glucose or fructose; however, significantly less AGEs were detected when cells were exposed to allulose. AGE quantification in serum obtained from rats fed a high-fat, low-carb (HFLC) Western diet for 2 weeks revealed significantly less glycation in animals co-administered allulose compared to those exposed to stevia. These results suggest allulose is associated with less AGE formation compared to fructose or glucose, and support its safety as a low-calorie sugar alternative.
Collapse
Affiliation(s)
- Derek M Clarke
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Andrew P Koutnik
- Sansum Diabetes Research Institute, Santa Barbara, CA 93105, USA
| | - Richard J Johnson
- Department of Medicine, University of Colorado, Aurora, CO 80309, USA
| | - Janine M DeBlasi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Benjamin T Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Juan A Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Paul R Reynolds
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
4
|
Advanced Glycation End Products in Health and Disease. Microorganisms 2022; 10:microorganisms10091848. [PMID: 36144449 PMCID: PMC9501837 DOI: 10.3390/microorganisms10091848] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Advanced glycation end products (AGEs), formed through the nonenzymatic reaction of reducing sugars with the side-chain amino groups of lysine or arginine of proteins, followed by further glycoxidation reactions under oxidative stress conditions, are involved in the onset and exacerbation of a variety of diseases, including diabetes, atherosclerosis, and Alzheimer’s disease (AD) as well as in the secondary stages of traumatic brain injury (TBI). AGEs, in the form of intra- and interprotein crosslinks, deactivate various enzymes, exacerbating disease progression. The interactions of AGEs with the receptors for the AGEs (RAGE) also result in further downstream inflammatory cascade events. The overexpression of RAGE and the AGE-RAGE interactions are especially involved in cases of Alzheimer’s disease and other neurodegenerative diseases, including TBI and amyotrophic lateral sclerosis (ALS). Maillard reactions are also observed in the gut bacterial species. The protein aggregates found in the bacterial species resemble those of AD and Parkinson’s disease (PD), and AGE inhibitors increase the life span of the bacteria. Dietary AGEs alter the gut microbiota composition and elevate plasma glycosylation, thereby leading to systemic proinflammatory effects and endothelial dysfunction. There is emerging interest in developing AGE inhibitor and AGE breaker compounds to treat AGE-mediated pathologies, including diabetes and neurodegenerative diseases. Gut-microbiota-derived enzymes may also function as AGE-breaker biocatalysts. Thus, AGEs have a prominent role in the pathogenesis of various diseases, and the AGE inhibitor and AGE breaker approach may lead to novel therapeutic candidates.
Collapse
|
5
|
D’Cunha NM, Sergi D, Lane MM, Naumovski N, Gamage E, Rajendran A, Kouvari M, Gauci S, Dissanayka T, Marx W, Travica N. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients 2022; 14:nu14122421. [PMID: 35745150 PMCID: PMC9227209 DOI: 10.3390/nu14122421] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins or lipids formed endogenously in the human body or consumed through diet. Ultra-processed foods and some culinary techniques, such as dry cooking methods, represent the main sources and drivers of dietary AGEs. Tissue accumulation of AGEs has been associated with cellular aging and implicated in various age-related diseases, including type-2 diabetes and cardiovascular disease. The current review summarizes the literature examining the associations between AGEs and neurocognitive and mental health disorders. Studies indicate that elevated circulating AGEs are cross-sectionally associated with poorer cognitive function and longitudinally increase the risk of developing dementia. Additionally, preliminary studies show that higher skin AGE accumulation may be associated with mental disorders, particularly depression and schizophrenia. Potential mechanisms underpinning the effects of AGEs include elevated oxidative stress and neuroinflammation, which are both key pathogenetic mechanisms underlying neurodegeneration and mental disorders. Decreasing dietary intake of AGEs may improve neurological and mental disorder outcomes. However, more sophisticated prospective studies and analytical approaches are required to verify directionality and the extent to which AGEs represent a mediator linking unhealthy dietary patterns with cognitive and mental disorders.
Collapse
Affiliation(s)
- Nathan M. D’Cunha
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Melissa M. Lane
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Elizabeth Gamage
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Anushri Rajendran
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Matina Kouvari
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Sarah Gauci
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
- Heart and Mind Research, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Thusharika Dissanayka
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Wolfgang Marx
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nikolaj Travica
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Correspondence:
| |
Collapse
|
6
|
Ravichandran G, Lakshmanan DK, Arunachalam A, Thilagar S. Food obesogens as emerging metabolic disruptors; A toxicological insight. J Steroid Biochem Mol Biol 2022; 217:106042. [PMID: 34890825 DOI: 10.1016/j.jsbmb.2021.106042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/13/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022]
Abstract
Human food is composed of loads of chemicals derived naturally as well as unintentionally through environmental sources. Food additives added purposefully, play an important role in the palatability of foods. Most additives are synthetic whose essentiality in food processing is well-known however their health risks are not overlooked. The palatability of food should not only stimulate our eating desire alone but, also assure sufficient quality and safety. Application of food additives varies from region to region due to cultural or ethnic differences and the local food availability. There are about more than ten thousand chemicals allowed in food whereas due to weak enforcement, it becomes onerous for regulatory bodies identifying chemicals that are inadequately or not tested at all for safety. The hiking population and urbanization in many industrialized and developing countries resulted in life-style changes including culinary and eating choices. Particularly, the modern way of this globalised life demands ready-to-cook or ready-made foods, snacks, sweets, soft drinks, desserts, confectionery and so on. These sorts of food would be most uninteresting unless processed with additives. This puts food industries under demand to robustly supply foods that are either partially, fully or ultra-processed using plenty of additives. Recent research warns consuming food additives may result in serious health risks, not only for children but also for adults. Growing body of studies on food additives in various experimental animals, cell cultures, and human population suggest elevation of number of obesity and diabetes risk factors i.e. adiposity, dyslipidemia, weight gain, hyperglycaemia, insulin resistance, glucose intolerance, energy imbalance, hormonal intervention etc. Hence, it is important to identify and explore food obesogens or obesogenic food additives posing potential impact. Based on the recent toxicological findings, the review aspires to establish the association between exposure of food obesogen and metabolic disruption which may help filling knowledge gaps and distributing more knowledge, awareness and effective measures to implement treatment and preventive strategies for metabolic syndrome.
Collapse
Affiliation(s)
- Guna Ravichandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India; Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, India
| | - Abirami Arunachalam
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
7
|
Implication of Adult Hippocampal Neurogenesis in Alzheimer’s Disease and Potential Therapeutic Approaches. Cells 2022; 11:cells11020286. [PMID: 35053402 PMCID: PMC8773637 DOI: 10.3390/cells11020286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease is the most common neurodegenerative disease, affecting more than 6 million US citizens and representing the most prevalent cause for dementia. Neurogenesis has been repeatedly reported to be impaired in AD mouse models, but the reason for this impairment remains unclear. Several key factors play a crucial role in AD including Aβ accumulation, intracellular neurofibrillary tangles accumulation, and neuronal loss (specifically in the dentate gyrus of the hippocampus). Neurofibrillary tangles have been long associated with the neuronal loss in the dentate gyrus. Of note, Aβ accumulation plays an important role in the impairment of neurogenesis, but recent studies started to shed a light on the role of APP gene expression on the neurogenesis process. In this review, we will discuss the recent approaches to neurogenesis in Alzheimer disease and update the development of therapeutic methods.
Collapse
|
8
|
Tahara N, Tahara A, Maeda-Ogata S, Yoshimura H, Bekki M, Sugiyama Y, Honda A, Igata S, Nishino Y, Matsui T, Fukami A, Enomoto M, Adachi H, Fukumoto Y, Yamagishi SI. Increased Urinary Levels of Pentosidine Measured by a Newly Developed Enzyme-Linked Immunosorbent Assay Are Independently Correlated with Fracture After Fall. Rejuvenation Res 2021; 24:449-455. [PMID: 34846174 DOI: 10.1089/rej.2021.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although we have found that increased serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) are associated with numerous aging-related disorders, it remains unclear which structurally distinct AGEs could be a reliable biomarker of the healthy life-threatening disorders. Since pentosidine is produced by glyceraldehyde, we measured here urinary pentosidine levels with a newly developed enzyme-linked immunosorbent assay (ELISA) kit, which requires no pretreatment with acid hydrolysis and heat, and examined their correlations with geriatric syndrome, such as musculoskeletal disease, frailty, and cognitive impairment, in a general population. Multiple regression analysis revealed that female, age, history of fracture after fall, and taking medication for diabetes were independent correlates of log urine pentosidine-to-creatinine ratio (R2 = 0.190). When gender-adjusted log urine pentosidine-to-creatinine ratio stratified by smile frequency grade was compared using analysis of covariance, urine pentosidine-to-creatinine ratio was significantly decreased according to the increase in smile frequency. Our present findings suggest that measurement of urine pentosidine-to-creatinine ratio by a newly developed ELISA kit may be useful for identifying high-risk patients for fall-related fractures.
Collapse
Affiliation(s)
- Nobuhiro Tahara
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Atsuko Tahara
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shoko Maeda-Ogata
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hanae Yoshimura
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Munehisa Bekki
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoichi Sugiyama
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Akihiro Honda
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sachiyo Igata
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yuri Nishino
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | - Ako Fukami
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Mika Enomoto
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hisashi Adachi
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sho-Ichi Yamagishi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Licochalcone D Ameliorates Oxidative Stress-Induced Senescence via AMPK Activation. Int J Mol Sci 2021; 22:ijms22147324. [PMID: 34298945 PMCID: PMC8304008 DOI: 10.3390/ijms22147324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
Increased oxidative stress is a crucial factor for the progression of cellular senescence and aging. The present study aimed to investigate the effects of licochalcone D (Lico D) on oxidative stress-induced senescence, both in vitro and in vivo, and explore its potential mechanisms. Hydrogen peroxide (200 µM for double time) and D-galactose (D-Gal) (150 mg/kg) were used to induce oxidative stress in human bone marrow-mesenchymal stem cells (hBM-MSCs) and mice, respectively. We performed the SA-β-gal assay and evaluated the senescence markers, activation of AMPK, and autophagy. Lico D potentially reduced oxidative stress-induced senescence by upregulating AMPK-mediated activation of autophagy in hBM-MSCs. D-Gal treatment significantly increased the expression levels of senescence markers, such as p53 and p21, in the heart and hippocampal tissues, while this effect was reversed in the Lico D-treated animals. Furthermore, a significant increase in AMPK activation was observed in both tissues, while the activation of autophagy was only observed in the heart tissue. Interestingly, we found that Lico D significantly reduced the expression levels of the receptors for advanced glycation end products (RAGE) in the hippocampal tissue. Taken together, our findings highlight the antioxidant, anti-senescent, and cardioprotective effects of Lico D and suggest that the activation of AMPK and autophagy ameliorates the oxidative stress-induced senescence.
Collapse
|
10
|
Zhang Y, Dong L, Zhang J, Shi J, Wang Y, Wang S. Adverse Effects of Thermal Food Processing on the Structural, Nutritional, and Biological Properties of Proteins. Annu Rev Food Sci Technol 2021; 12:259-286. [PMID: 33770470 DOI: 10.1146/annurev-food-062320-012215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thermal processing is one of the most important processing methods in the food industry. However, many studies have revealed that thermal processing can have detrimental effects on the nutritional and functional properties of foods because of the complex interactions among food components. Proteins are essential nutrients for humans, and changes in the structure and nutritional properties of proteins can substantially impact the biological effects of foods. This review focuses on the interactions among proteins, sugars, and lipids during thermal food processing and the effects of these interactions on the structure, nutritional value, and biological effects of proteins. In particular, the negative effects of modified proteins on human health and strategies for mitigating these detrimental effects from two perspectives, namely, reducing the formation of modified proteins during thermal processing and dietary intervention in vivo, are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Jinhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Jiaqi Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Yaya Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| |
Collapse
|
11
|
Intagliata S, Spadaro A, Lorenti M, Panico A, Siciliano EA, Barbagallo S, Macaluso B, Kamble SH, Modica MN, Montenegro L. In Vitro Antioxidant and Anti-Glycation Activity of Resveratrol and Its Novel Triester with Trolox. Antioxidants (Basel) 2020; 10:antiox10010012. [PMID: 33374280 PMCID: PMC7823449 DOI: 10.3390/antiox10010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Resveratrol (RSV) is well known for its many beneficial activities, but its unfavorable physicochemical properties impair its effectiveness after systemic and topical administration; thus, several strategies have been investigated to improve RSV efficacy. With this aim, in this work, we synthesized a novel RSV triester with trolox, an analogue of vitamin E with strong antioxidant activity. The new RSV derivative (RSVTR) was assayed in vitro to evaluate its antioxidant and anti-glycation activity compared to RSV. RSVTR chemical stability was assessed at pH 2.0, 6.8, and 7.2 and different storage temperatures (5 °C, 22 °C, and 37 °C). An influence of pH stronger than that of temperature on RSVTR half-life values was pointed out, and RSVTR greatest stability was observed at pH 7.2 and 5 °C. RSVTR showed a lower antioxidant ability compared to RSV (determined by the oxygen radical absorbance capacity assay) while its anti-glycation activity (evaluated using the Maillard reaction) was significantly greater than that of RSV. The improved ability to inhibit the glycation process was attributed to a better interaction of RSVTR with albumin owing to its increased topological polar surface area value and H-bond acceptor number compared to RSV. Therefore, RSVTR could be regarded as a promising anti-glycation agent worthy of further investigations.
Collapse
Affiliation(s)
- Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Angelo Spadaro
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Miriam Lorenti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Annamaria Panico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Edy A. Siciliano
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Sabrina Barbagallo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Benito Macaluso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
| | - Shyam H. Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| | - Maria N. Modica
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
- Correspondence: (M.N.M.); (L.M.); Tel.: +39-095-738-6061 (M.N.M.); +39-095-738-4010 (L.M.)
| | - Lucia Montenegro
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (S.I.); (A.S.); (M.L.); (A.P.); (E.A.S.); (S.B.); (B.M.)
- Correspondence: (M.N.M.); (L.M.); Tel.: +39-095-738-6061 (M.N.M.); +39-095-738-4010 (L.M.)
| |
Collapse
|
12
|
Defective mitophagy in Alzheimer's disease. Ageing Res Rev 2020; 64:101191. [PMID: 33022416 DOI: 10.1016/j.arr.2020.101191] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive, mental illness without cure. Several years of intense research on postmortem AD brains, cell and mouse models of AD have revealed that multiple cellular changes are involved in the disease process, including mitochondrial abnormalities, synaptic damage, and glial/astrocytic activation, in addition to age-dependent accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). Synaptic damage and mitochondrial dysfunction are early cellular changes in the disease process. Healthy and functionally active mitochondria are essential for cellular functioning. Dysfunctional mitochondria play a central role in aging and AD. Mitophagy is a cellular process whereby damaged mitochondria are selectively removed from cell and mitochondrial quality and biogenesis. Mitophagy impairments cause the progressive accumulation of defective organelle and damaged mitochondria in cells. In AD, increased levels of Aβ and p-tau can induce reactive oxygen species (ROS) production, causing excessive fragmentation of mitochondria and promoting defective mitophagy. The current article discusses the latest developments of mitochondrial research and also highlights multiple types of mitophagy, including Aβ and p-tau-induced mitophagy, stress-induced mitophagy, receptor-mediated mitophagy, ubiquitin mediated mitophagy and basal mitophagy. This article also discusses the physiological states of mitochondria, including fission-fusion balance, Ca2+ transport, and mitochondrial transport in normal and diseased conditions. Our article summarizes current therapeutic interventions, like chemical or natural mitophagy enhancers, that influence mitophagy in AD. Our article discusses whether a partial reduction of Drp1 can be a mitophagy enhancer and a therapeutic target for mitophagy in AD and other neurological diseases.
Collapse
|
13
|
Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, Yu CL. The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules 2020; 25:molecules25235591. [PMID: 33261212 PMCID: PMC7729569 DOI: 10.3390/molecules25235591] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products (AGEs) are generated by nonenzymatic modifications of macromolecules (proteins, lipids, and nucleic acids) by saccharides (glucose, fructose, and pentose) via Maillard reaction. The formed AGE molecules can be catabolized and cleared by glyoxalase I and II in renal proximal tubular cells. AGE-related diseases include physiological aging, neurodegenerative/neuroinflammatory diseases, diabetes mellitus (DM) and its complications, autoimmune/rheumatic inflammatory diseases, bone-degenerative diseases, and chronic renal diseases. AGEs, by binding to receptors for AGE (RAGEs), alter innate and adaptive immune responses to induce inflammation and immunosuppression via the generation of proinflammatory cytokines, reactive oxygen species (ROS), and reactive nitrogen intermediates (RNI). These pathological molecules cause vascular endothelial/smooth muscular/connective tissue-cell and renal mesangial/endothelial/podocytic-cell damage in AGE-related diseases. In the present review, we first focus on the cellular and molecular bases of AGE–RAGE axis signaling pathways in AGE-related diseases. Then, we discuss in detail the modes of action of newly discovered novel biomolecules and phytochemical compounds, such as Maillard reaction and AGE–RAGE signaling inhibitors. These molecules are expected to become the new therapeutic strategies for patients with AGE-related diseases in addition to the traditional hypoglycemic and anti-hypertensive agents. We particularly emphasize the importance of “metabolic memory”, the “French paradox”, and the pharmacokinetics and therapeutic dosing of the effective natural compounds associated with pharmacogenetics in the treatment of AGE-related diseases. Lastly, we propose prospective investigations for solving the enigmas in AGE-mediated pathological effects.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Hsun Lu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Han Wu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Yu-Min Kuo
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Correspondence: (S.-C.H.); (C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Department of Internal Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung 80756, Taiwan
- Correspondence: (S.-C.H.); (C.-L.Y.)
| |
Collapse
|
14
|
Consequence of macromolecular crowding on aggregation propensity and structural stability of haemoglobin under glycating conditions. Int J Biol Macromol 2020; 162:1044-1053. [PMID: 32553973 DOI: 10.1016/j.ijbiomac.2020.06.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/31/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Cell interiors are extremely congested with biological macromolecules exerting crowding effect, influencing various physiognomies of protein life. Present work deals with effect of crowding on folding behaviour of haemoglobin (Hb) under glycating conditions. Macromolecular crowding was mimicked by concentrated solutions of dextran 70. Hb with 0.2 M fructose and ribose was incubated separately for 96 h in dilute and crowded solution to analyse conformational changes. Reduced intrinsic and ANS fluorescence, decreased Soret absorbance, enhanced turbidity, browning of protein, red shift in ThT and Congo red spectra significantly unveiled protein aggregation. FTIR and CD results revealed transition from α-helix to β-sheets confirming aggregation. Transmission electron microscopy exhibited incidence of aggregates. Macromolecular crowding was witnessed to defend conformational stability of native Hb under stress condition at 100 mg/ml dextran, noticeably indicating deceleration of aggregation. Stabilising effect of crowding was marginally better in fructosylated Hb than with ribose due to difference in their glycation potential. Contrarily, in over-crowded solution where dextran concentration was 500 mg/ml, heightened aggregation was perceived implying concentration dependant, dual nature of macromolecular crowding. The novelty of this study lies in idea of considering macromolecular crowding as a key player in regulation of protein stability which was safely ignored previously.
Collapse
|
15
|
dos Santos FB, Quines CB, Pilissão LEB, Dal Forno AHDC, Rodrigues CF, Denardin CC, Farias FM, Ávila DS. Aqueous Bark Extract of Ceiba speciosa (A. St.-Hill) Ravenna Protects against Glucose Toxicity in Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1321354. [PMID: 33101582 PMCID: PMC7568133 DOI: 10.1155/2020/1321354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/01/2020] [Accepted: 07/25/2020] [Indexed: 12/25/2022]
Abstract
Plants are widely used in folk medicine because of their pharmacological properties. Ceiba speciosa, popularly known as paineira-rosa or tree-of-wool, is a species found in the Northwest of Rio Grande do Sul, being native of the upper Uruguay River, Brazil. The tea obtained from the stem bark is employed in folk medicine to reduce cholesterol, triacylglycerides, and glucose levels. However, there are no studies in the literature proving its efficacy or the safety of its use. For this study, we used Caenorhabditis elegans as an animal model considering its advantages for risk assessment and pharmacological screenings. For the toxicological tests, C. elegans N2 (wild type) was treated with the aqueous extract of the stem bark of C. speciosa (ECE) at the first larval stage (L1) at concentrations of 5, 25, 50, and 250 μg/mL. To evaluate biological activities, we challenged the extract for oxidative stress resistance in the presence of paraquat (0.5 mM), H2O2 (1 mM), and against glucose-induced toxicity. Our results demonstrated that ECE did not alter survival rate, pharyngeal pumping, and reproduction of the nematodes. The extract was not able to protect the nematodes against the toxicity induced by prooxidants. Notably, ECE protected against glucotoxicity by increasing worms' life span and by reducing glucose levels. On the other hand, ECE treatment did not reduce lipid accumulation induced by exogenous glucose feeding, as observed in worms which lipid droplets were tagged with GFP. Based on our results, we believe that the extract is indeed promising for further studies focusing on carbohydrates metabolism; however, it needs to be carefully evaluated since the extract does not seem to modulate lipid accumulation.
Collapse
Affiliation(s)
- Fabrine Bianchin dos Santos
- Laboratório de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Brazil BR 472-Km 592-Caixa Postal 118, CEP 97500-970
| | - Caroline Brandão Quines
- Laboratório de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Brazil BR 472-Km 592-Caixa Postal 118, CEP 97500-970
| | - Luiz Eduardo Ben Pilissão
- Laboratório de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Brazil BR 472-Km 592-Caixa Postal 118, CEP 97500-970
| | - Ana Helena de Castro Dal Forno
- Laboratório de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Brazil BR 472-Km 592-Caixa Postal 118, CEP 97500-970
| | - Cristiane Freitas Rodrigues
- Laboratório de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Brazil BR 472-Km 592-Caixa Postal 118, CEP 97500-970
| | - Cristiane Casagrande Denardin
- Laboratório de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Brazil BR 472-Km 592-Caixa Postal 118, CEP 97500-970
| | - Fabiane Moreira Farias
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Brazil BR 472-Km 592-Caixa Postal 118, CEP 97500-970
| | - Daiana Silva Ávila
- Laboratório de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, Brazil BR 472-Km 592-Caixa Postal 118, CEP 97500-970
| |
Collapse
|
16
|
Lai MC, Liu WY, Liou SS, Liu IM. A Bibenzyl Component Moscatilin Mitigates Glycation-Mediated Damages in an SH-SY5Y Cell Model of Neurodegenerative Diseases through AMPK Activation and RAGE/NF- κB Pathway Suppression. Molecules 2020; 25:molecules25194574. [PMID: 33036367 PMCID: PMC7582731 DOI: 10.3390/molecules25194574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023] Open
Abstract
Moscatilin can protect rat pheochromocytoma cells against methylglyoxal-induced damage. Elimination of the effect of advanced glycation end-products (AGEs) but activation of AMP-activated protein kinase (AMPK) are the potential therapeutic targets for the neurodegenerative diseases. Our study aimed to clarify AMPK signaling’s role in the beneficial effects of moscatilin on the diabetic/hyperglycemia-associated neurodegenerative disorders. AGEs-induced injury in SH-SY5Y cells was used as an in vitro neurodegenerative model. AGEs stimulation resulted in cellular viability loss and reactive oxygen species production, and mitochondrial membrane potential collapse. It was observed that the cleaved forms of caspase-9, caspase-3, and poly (ADP-ribose) polymerase increased in SH-SY5Y cells following AGEs exposure. AGEs decreased Bcl-2 but increased Bax and p53 expression and nuclear factor kappa-B activation in SH-SY5Y cells. AGEs also attenuated the phosphorylation level of AMPK. These AGEs-induced detrimental effects were ameliorated by moscatilin, which was similar to the actions of metformin. Compound C, an inhibitor of AMPK, abolished the beneficial effects of moscatilin on the regulation of SH-SY5Y cells’ function, indicating the involvement of AMPK. In conclusion, moscatilin offers a promising therapeutic strategy to reduce the neurotoxicity or AMPK dysfunction of AGEs. It provides a potential beneficial effect with AGEs-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Mei Chou Lai
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (M.C.L.); (S.-S.L.)
| | - Wayne Young Liu
- Department of Urology, Jen-Ai Hospital, Taichung 41265, Taiwan;
- Center for Basic Medical Science, Collage of Health Science, Central Taiwan University of Science and Technology, Taichung City 406053, Taiwan
| | - Shorong-Shii Liou
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (M.C.L.); (S.-S.L.)
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (M.C.L.); (S.-S.L.)
- Correspondence: ; Tel.: +886-8-7624002
| |
Collapse
|
17
|
Increased serum levels of advanced glycation end products due to induced molting in hen layers trigger a proinflammatory response by peripheral blood leukocytes. Poult Sci 2020; 99:3452-3462. [PMID: 32616239 PMCID: PMC7597842 DOI: 10.1016/j.psj.2020.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Induced molting (IM), a severe detriment to animal welfare, is still used in the poultry industry in some countries to increase or rejuvenate egg production and is responsible for several physiological perturbations, possibly including reactive oxidative stress, a form of metabolic stress. Because metabolic stress has been shown to induce a proinflammatory response involved in attempts to restore homeostasis, we hypothesized that similar responses followed IM. To confirm this hypothesis, we initially confirmed the establishment of oxidative stress during IM in 75-wk-old layers by demonstrating increased production of advanced glycation end products (AGE). Concomitant with increased oxidative metabolites, cellular stress was demonstrated in peripheral blood leukocytes (PBL) by increased levels of stress gene products (the glucocorticoid receptor, sirtuin-1, and heat shock protein 70 mRNA). Increased expression of stress proteins in PBL was followed by a proinflammatory response as demonstrated by increased levels of proinflammatory gene products (IL-6 and IL-1β mRNA); increased expression of these gene products was also demonstrated in direct response to AGE in vitro, thus establishing a direct link between oxidative and cellular stress. To establish a possible pathway for inducing a proinflammatory response by PBL, we showed that AGE increased a time dependent expression of galactin-3, Toll-like receptor-4, and nuclear factor - κB, all involved in the proinflammatory activation pathway. In vivo, AGE formed complexes with increased levels of circulating acute phase proteins (lysozyme and transferrin), products of a proinflammatory immune response, thereby demonstrating an effector response to cope with the consequences of oxidative stress. Thus, the harmful consequences of IM for animal welfare are extended here by demonstrating the activation of a resource-demanding proinflammatory response.
Collapse
|
18
|
Lawes M, Pinkas A, Frohlich BA, Iroegbu JD, Ijomone OM, Aschner M. Metal-induced neurotoxicity in a RAGE-expressing C. elegans model. Neurotoxicology 2020; 80:71-75. [PMID: 32621835 DOI: 10.1016/j.neuro.2020.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Environmental and occupational metal exposure poses serious global concerns. Metal exposure have severally been associated with neurotoxicity and brain damage. Furthermore, receptor for advanced glycation end products (RAGE) is also implicated in neurological disorders, particularly those with altered glucose metabolism. Here, we examine potential compounding effect of metal exposure and RAGE expression on dopamine (DA) and serotonin (SER) neurons in C. elegans. In addition, we evaluate the effect of RAGE expression on DA and SER neurons in hyperglycemic conditions. Newly generated RAGE-expressing C. elegans tagged with green fluorescent proteins (GFP) in DAergic and SERergic neurons were treated with cadmium (Cd) or manganese (Mn). Additionally, the RAGE-expressing worms were also exposed to high glucose conditions. Results showed metals induced neurodegeneration both in the presence and absence of RAGE expression, but the manner of degeneration differed between Cd and Mn treated nematodes. Furthermore, RAGE-expressing worms showed significant neurodegeneration in both DAergic and SERergic neurons. Our results indicate co-occurrence of metal exposure and RAGE expression can induce neurodegeneration. Additionally, we show that RAGE expression can exacerbate hyperglycemic induced neurodegeneration.
Collapse
Affiliation(s)
- Michael Lawes
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA
| | - Adi Pinkas
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA
| | - Bailey A Frohlich
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA
| | - Joy D Iroegbu
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA.
| |
Collapse
|
19
|
Sergi D, Boulestin H, Campbell FM, Williams LM. The Role of Dietary Advanced Glycation End Products in Metabolic Dysfunction. Mol Nutr Food Res 2020; 65:e1900934. [PMID: 32246887 DOI: 10.1002/mnfr.201900934] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of molecules produced, non-enzymatically, from the interaction between reducing sugars and the free amino groups of proteins, nucleic acids, and lipids. AGEs are formed as a normal consequence of metabolism but can also be absorbed from the diet. They have been widely implicated in the complications of diabetes affecting cardiovascular health, the nervous system, eyes, and kidneys. Increased levels of AGEs are also detrimental to metabolic health and may contribute to the metabolic abnormalities induced by the Western diet, which is high in processed foods and represents a significant source of AGEs. While increased AGE levels are a consequence of diabetic hyperglycaemia, AGEs themselves activate signaling pathways, which compromise insulin signaling and pancreatic β-cell function, thus, contributing to the development of type 2 diabetes mellitus (T2DM). Furthermore, AGEs may also contribute to the obesogenic effects of the Western diet by promoting hypothalamic inflammation and disrupting the central control of energy balance. Here, the role of dietary AGEs in metabolic dysfunction is reviewed with a focus on the mechanisms underpinning their detrimental role in insulin resistance, pancreatic β-cell dysfunction, hypothalamic control of energy balance, and the pathogenesis of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, 5000, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Hakim Boulestin
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Fiona M Campbell
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
20
|
Konopka CJ, Woźniak M, Hedhli J, Siekierzycka A, Skokowski J, Pęksa R, Matuszewski M, Munirathinam G, Kajdacsy-Balla A, Dobrucki IT, Kalinowski L, Dobrucki LW. Quantitative imaging of the receptor for advanced glycation end-products in prostate cancer. Eur J Nucl Med Mol Imaging 2020; 47:2562-2576. [PMID: 32166512 DOI: 10.1007/s00259-020-04721-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE Current screening and monitoring of prostate cancer (PCa) is insufficient, producing inaccurate diagnoses. Presence of the receptor for advanced glycation end-products (RAGE) is associated with signature characteristics of PCa development such as cell proliferation, anchorage-independent growth, angiogenesis, migration, invasion, and poor patient survival. Therefore, we developed a preclinical multimodal imaging strategy targeted at RAGE to diagnose and monitor PCa. METHODS In this work, RAGE-targeted multimodal nanoparticles (64Cu-Cy5-G4-CML) were synthesized and rendered functional for nuclear and optical imaging using previously established methods. The probe's binding affinity and targeting specificity was assessed in androgen-dependent (LNCaP) and androgen-independent (DU145) prostate cancer cells using flow cytometry and confocal microscopy. In vivo PET-CT imaging was used to evaluate RAGE levels in DU145 and LNCaP xenograft models in mice. Then, tumors were excised post-imaging for histological staining and autoradiography to further assess RAGE levels and targeting efficiency of the tracer. Finally, RAGE levels from human PCa samples of varying Gleason Scores were evaluated using Western blot and immunohistochemical staining. RESULTS PCa cell culture studies confirmed adequate RAGE-targeting with 64Cu-Cy5-G4-CML with KD between 360 and 540 nM as measured by flow cytometry. In vivo PET-CT images of PCa xenografts revealed favorable kinetics, rapid blood clearance, and a non-homogenous, enhanced uptake in tumors, which varied based on cell type and tumor size with mean uptake between 0.5 and 1.4%ID/g. RAGE quantification of human samples confirmed increased RAGE uptake corresponding to increased Gleason scoring. CONCLUSIONS Our study has shown that RAGE-targeted cancer imaging is feasible and could significantly impact PCa management.
Collapse
Affiliation(s)
- Christian J Konopka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Marcin Woźniak
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.,Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Jamila Hedhli
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Jarosław Skokowski
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland.,Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Rafał Pęksa
- Department of Pathology, Medical University of Gdansk, Gdansk, Poland
| | | | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | | | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA. .,Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland. .,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland. .,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.
| |
Collapse
|
21
|
Frandsen J, Choi SR, Narayanasamy P. Neural Glyoxalase Pathway Enhancement by Morin Derivatives in an Alzheimer's Disease Model. ACS Chem Neurosci 2020; 11:356-366. [PMID: 31909963 DOI: 10.1021/acschemneuro.9b00566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The glyoxalase pathway (GP) is an antioxidant defense system that detoxifies metabolic byproduct methylglyoxal (MG). Through sequential reactions, reduced glutathione (GSH), glyoxalase I (glo-1), and glyoxalase II (glo-2) convert MG into d-lactate. Spontaneous reactions involving MG alter the structure and function of cellular macromolecules through the formation of inflammatory advanced glycation endproducts (AGEs). Accumulation of MG and AGEs in neural cells contributes to oxidative stress (OS), a state of elevated inflammation commonly found in neurodegenerative diseases including Alzheimer's disease (AD). Morin is a common plant-produced flavonoid polyphenol that exhibits the ability to enhance the GP-mediated detoxification of MG. We hypothesize that structural modifications to morin will improve its inherent GP enhancing ability. Here we synthesized a morin derivative, dibromo-morin (DBM), formulated a morin encapsulated nanoparticle (MNP), and examined their efficacy in enhancing neural GP activity. Cultured mouse primary cerebellar neurons and Caenorhabditis elegans were induced to a state of OS with MG and treated with morin, DBM, and MNP. Results indicated the morin derivatives were more effective compared to the parent compound in neural GP enhancement and preventing MG-mediated OS in an AD model.
Collapse
Affiliation(s)
- Joel Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Seoung-ryoung Choi
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
22
|
Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health. Biomolecules 2019; 9:biom9120888. [PMID: 31861217 PMCID: PMC6995512 DOI: 10.3390/biom9120888] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
The Maillard reaction is a simple but ubiquitous reaction that occurs both in vivo and ex vivo during the cooking or processing of foods under high-temperature conditions, such as baking, frying, or grilling. Glycation of proteins is a post-translational modification that forms temporary adducts, which, on further crosslinking and rearrangement, form permanent residues known as advanced glycation end products (AGEs). Cooking at high temperature results in various food products having high levels of AGEs. This review underlines the basis of AGE formation and their corresponding deleterious effects on the body. Glycated Maillard products have a direct association with the pathophysiology of some metabolic diseases, such as diabetes mellitus type 2 (DM2), acute renal failure (ARF), Alzheimer’s disease, dental health, allergies, and polycystic ovary syndrome (PCOS). The most glycated and structurally abundant protein is collagen, which acts as a marker for diabetes and aging, where decreased levels indicate reduced skin elasticity. In diabetes, high levels of AGEs are associated with carotid thickening, ischemic heart disease, uremic cardiomyopathy, and kidney failure. AGEs also mimic hormones or regulate/modify their receptor mechanisms at the DNA level. In women, a high AGE diet directly correlates with high levels of androgens, anti-Müllerian hormone, insulin, and androstenedione, promoting ovarian dysfunction and/or infertility. Vitamin D3 is well-associated with the pathogenesis of PCOS and modulates steroidogenesis. It also exhibits a protective mechanism against the harmful effects of AGEs. This review elucidates and summarizes the processing of infant formula milk and the associated health hazards. Formulated according to the nutritional requirements of the newborn as a substitute for mother’s milk, formula milk is a rich source of primary adducts, such as carboxy-methyl lysine, which render an infant prone to inflammation, dementia, food allergies, and other diseases. We therefore recommend that understanding this post-translational modification is the key to unlocking the mechanisms and physiology of various metabolic syndromes.
Collapse
Affiliation(s)
- Vidhu Gill
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| | - Kritanjali Singh
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Ashok Kumar
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| |
Collapse
|
23
|
Genetic Disorders Associated with Metal Metabolism. Cells 2019; 8:cells8121598. [PMID: 31835360 PMCID: PMC6952812 DOI: 10.3390/cells8121598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic disorders associated with metal metabolism form a large group of disorders and mostly result from defects in the proteins/enzymes involved in nutrient metabolism and energy production. These defects can affect different metabolic pathways and cause mild to severe disorders related to metal metabolism. Some disorders have moderate to severe clinical consequences. In severe cases, these elements accumulate in different tissues and organs, particularly the brain. As they are toxic and interfere with normal biological functions, the severity of the disorder increases. However, the human body requires a very small amount of these elements, and a deficiency of or increase in these elements can cause different genetic disorders to occur. Some of the metals discussed in the present review are copper, iron, manganese, zinc, and selenium. These elements may play a key role in the pathology and physiology of the nervous system.
Collapse
|
24
|
Sofronova A, Semenyuk P, Muronetz V. The influence of β-casein glycation on its interaction with natural and synthetic polyelectrolytes. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Volpina OM, Samokhin AN, Koroev DO, Nesterova IV, Volkova TD, Medvinskaya NI, Nekrasov PV, Tatarnikova OG, Kamynina AV, Balasanyants SM, Voronina TA, Kulikov AM, Bobkova NV. Synthetic Fragment of Receptor for Advanced Glycation End Products Prevents Memory Loss and Protects Brain Neurons in Olfactory Bulbectomized Mice. J Alzheimers Dis 2019; 61:1061-1076. [PMID: 29332040 DOI: 10.3233/jad-170483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activation of receptor for advanced glycation end products (RAGE) plays an essential role in the development of Alzheimer's disease (AD). It is known that the soluble isoform of the receptor binds to ligands and prevents negative effects of the receptor activation. We proposed that peptide fragments from RAGE prevent negative effects of the receptor activation during AD neurodegeneration. We have synthesized peptide fragments from surface-exposed regions of RAGE. Peptides were intranasally administrated into olfactory bulbectomized (OBX) mice, which developed some characteristics similar to AD neurodegeneration. We have found that only insertion of fragment (60-76) prevents the memory of OBX mice. Immunization of OBX mice with peptides showed that again only (60-76) peptide protected the memory of animals. Both intranasal insertion and immunization decreased the amyloid-β (Aβ) level in the brain. Activity of shortened fragments of (60-76) peptide was tested and showed only the (60-70) peptide is responsible for manifestation of activity. Intranasal administration of (60-76) peptide shows most protective effect on morpho-functional characteristics of neurons in the cortex and hippocampal areas. Using Flu-(60-76) peptide, we revealed its penetration in the brain of OBX mice as well as colocalization of Flu-labeled peptide with Aβ in the brain regions in transgenic mice. Flu-(60-76) peptide complex with trimer of Aβ was detected by SDS-PAGE. These data indicate that Aβ can be one of the molecular target of (60-70) peptide. These findings provide a new peptide molecule for design of anti-AD drug and for investigation of RAGE activation ways in progression of AD neurodegeneration.
Collapse
Affiliation(s)
- Olga M Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexandr N Samokhin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Dmitriy O Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Inna V Nesterova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Tatyana D Volkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Pavel V Nekrasov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Olga G Tatarnikova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anna V Kamynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Samson M Balasanyants
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexey M Kulikov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
26
|
Konopka CJ, Wozniak M, Hedhli J, Ploska A, Schwartz-Duval A, Siekierzycka A, Pan D, Munirathinam G, Dobrucki IT, Kalinowski L, Dobrucki LW. Multimodal imaging of the receptor for advanced glycation end-products with molecularly targeted nanoparticles. Am J Cancer Res 2018; 8:5012-5024. [PMID: 30429883 PMCID: PMC6217059 DOI: 10.7150/thno.24791] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is central to multiple disease states, including diabetes-related conditions such as peripheral arterial disease (PAD). Despite RAGE's importance in these pathologies, there remains a need for a molecular imaging agent that can accurately assess RAGE levels in vivo. Therefore, we have developed a multimodal nanoparticle-based imaging agent targeted at RAGE with the well-characterized RAGE ligand, carboxymethyllysine (CML)-modified human serum albumin (HSA). Methods: A multimodal tracer (64Cu-Rho-G4-CML) was developed using a generation-4 (G4) polyamidoamine (PAMAM) dendrimer, conjugated with both rhodamine and copper-64 (64Cu) chelator (NOTA) for optical and PET imaging, respectively. First, 64Cu-Rho-G4-CML and its non-targeted analogue (64Cu-Rho-G4-HSA) were evaluated chemically using techniques such as dynamic light scattering (DLS), electron microscopy and nuclear magnetic resonance (NMR). The tracers' binding capabilities were examined at the cellular level and optimized using live and fixed HUVEC cells grown in 5.5-30 mM glucose, followed by in vivo PET-CT imaging, where the probes' kinetics, biodistribution, and RAGE targeting properties were examined in a murine model of hindlimb ischemia. Finally, histological assessment of RAGE levels in both ischemic and non-ischemic tissues was performed. Conclusions: Our RAGE-targeted probe demonstrated an average size of 450 nm, a Kd of 340-390 nM, rapid blood clearance, and a 3.4 times greater PET uptake in ischemic RAGE-expressing hindlimbs than their non-ischemic counterpart. We successfully demonstrated increased RAGE expression in a murine model of hindlimb ischemia and the feasibility for non-invasive examination of cellular, tissue, and whole-body RAGE levels with a molecularly targeted tracer.
Collapse
|
27
|
C. elegans-An Emerging Model to Study Metal-Induced RAGE-Related Pathologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071407. [PMID: 29973513 PMCID: PMC6069300 DOI: 10.3390/ijerph15071407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/29/2022]
Abstract
The receptor for advanced glycation end products (RAGE), a multi-ligand receptor, is mostly associated with promoting inflammation and oxidative stress. In addition to advanced glycation end products (AGEs), its ligands include High mobility group box 1 protein (HMGB-1), S-100 proteins and beta-sheet fibrils. The effects of several metals and metalloids on RAGE expression and activation have been recently studied: in vivo and in vitro exposure to methylmercury, selenium, zinc, manganese, and arsenic was associated with a variety of RAGE-related alterations and behavioral impairments, which are mostly dependent upon the administration procedure (local vs. systemic) and age during exposure. Recently, C. elegans has been proposed as a potential novel model for studying RAGE-related pathologies; preliminary data regarding such model and its potential contribution to the study of metal-induced RAGE-related pathologies are discussed.
Collapse
|
28
|
Pinkas A, Lee KH, Chen P, Aschner M. A C. elegans Model for the Study of RAGE-Related Neurodegeneration. Neurotox Res 2018; 35:19-28. [PMID: 29869225 DOI: 10.1007/s12640-018-9918-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/15/2023]
Abstract
The receptor for advanced glycation products (RAGE) is a cell surface, multi-ligand receptor belonging to the immunoglobulin superfamily; this receptor is implicated in a variety of maladies, via inflammatory pathways and induction of oxidative stress. Currently, RAGE is being studied using a limited number of mammalian in vivo, and some complementary in vitro, models. Here, we present a Caenorhabditis elegans model for the study of RAGE-related pathology: a transgenic strain, expressing RAGE in all neurons, was generated and subsequently tested behaviorally, developmentally, and morphologically. In addition to RAGE expression being associated with a significantly shorter lifespan, the following behavioral observations were made when RAGE-expressing worms were compared to the wild type: RAGE-expressing worms showed an impaired dopaminergic system, evaluated by measuring the fluorescent signal of GFP tagging; these worms exhibited decreased locomotion-both general and following ethanol exposure-as measured by counting body bends in adult worms; RAGE expression was also associated with impaired recovery of quiescence and pharyngeal pumping secondary to heat shock, as a significantly smaller fraction of RAGE-expressing worms engaged in these behaviors in the 2 h immediately following the heat shock. Finally, significant developmental differences were also found between the two strains: RAGE expression leads to a significantly smaller fraction of hatched eggs 24 h after laying and also to a significantly slower developmental speed overall. As evidence for the role of RAGE in a variety of neuropathologies accumulates, the use of this novel and expedient model should facilitate the elucidation of relevant underlying mechanisms and also the development of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Adi Pinkas
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA.
| | - Kun He Lee
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| | - Pan Chen
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| | - Michael Aschner
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| |
Collapse
|
29
|
Frandsen JR, Narayanasamy P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol 2018; 14:465-473. [PMID: 29080525 PMCID: PMC5680520 DOI: 10.1016/j.redox.2017.10.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
The glyoxalase pathway functions to detoxify reactive dicarbonyl compounds, most importantly methylglyoxal. The glyoxalase pathway is an antioxidant defense mechanism that is essential for neuroprotection. Excessive concentrations of methylglyoxal have deleterious effects on cells, leading to increased levels of inflammation and oxidative stress. Neurodegenerative diseases - including Alzheimer's, Parkinson's, Aging and Autism Spectrum Disorder - are often induced or exacerbated by accumulation of methylglyoxal. Antioxidant compounds possess several distinct mechanisms that enhance the glyoxalase pathway and function as neuroprotectants. Flavonoids are well-researched secondary plant metabolites that appear to be effective in reducing levels of oxidative stress and inflammation in neural cells. Novel flavonoids could be designed, synthesized and tested to protect against neurodegenerative diseases through regulating the glyoxalase pathway.
Collapse
Affiliation(s)
- Joel R Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| |
Collapse
|
30
|
Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2018; 115:E2791-E2800. [PMID: 29511104 DOI: 10.1073/pnas.1714178115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As Western diets continue to include an ever-increasing amount of sugar, there has been a rise in obesity and type 2 diabetes. To avoid metabolic diseases, the body must maintain proper metabolism, even on a high-sugar diet. In both humans and Caenorhabditis elegans, excess sugar (glucose) is stored as glycogen. Here, we find that animals increased stored glycogen as they aged, whereas even young adult animals had increased stored glycogen on a high-sugar diet. Decreasing the amount of glycogen storage by modulating the C. elegans glycogen synthase, gsy-1, a key enzyme in glycogen synthesis, can extend lifespan, prolong healthspan, and limit the detrimental effects of a high-sugar diet. Importantly, limiting glycogen storage leads to a metabolic shift whereby glucose is now stored as trehalose. Two additional means to increase trehalose show similar longevity extension. Increased trehalose is entirely dependent on a functional FOXO transcription factor DAF-16 and autophagy to promote lifespan and healthspan extension. Our results reveal that when glucose is stored as glycogen, it is detrimental, whereas, when stored as trehalose, animals live a longer, healthier life if DAF-16 is functional. Taken together, these results demonstrate that trehalose modulation may be an avenue for combatting high-sugar-diet pathology.
Collapse
|
31
|
Marques CMS, Nunes EA, Lago L, Pedron CN, Manieri TM, Sato RH, Oliveira VX, Cerchiaro G. Generation of Advanced Glycation End-Products (AGEs) by glycoxidation mediated by copper and ROS in a human serum albumin (HSA) model peptide: reaction mechanism and damage in motor neuron cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 824:42-51. [PMID: 29150049 DOI: 10.1016/j.mrgentox.2017.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Glucose, in the presence of reactive oxygen species (ROS), acts as an as an oxidative agent and drives deleterious processes in Diabetes Mellitus. We have studied the mechanism and the toxicological effects of glucose-dependent glycoxidation reactions driven by copper and ROS, using a model peptide based on the exposed sequence of Human Serum Albumin (HSA) and containing a lysine residue susceptible to copper complexation. The main products of these reactions are Advanced Glycation End-products (AGEs). Carboxymethyl lysine and pyrraline condensed on the model peptide, generating a Modified Peptide (MP). These products were isolated, purified, and tested on cultured motor neuron cells. We observed DNA damage, enhancement of membrane roughness, and formation of domes. We evaluated nuclear abnormalities by the cytokinesis-blocked micronucleus assay and we measured cytostatic and cytotoxic effects, chromosomal breakage, nuclear abnormalities, and cell death. AGEs formed by glycoxidation caused large micronucleus aberrations, apoptosis, and large-scale nuclear abnormalities, even at low concentrations.
Collapse
Affiliation(s)
| | - Emilene Arusievicz Nunes
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Larissa Lago
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Cibele Nicolaski Pedron
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Tânia Maria Manieri
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Roseli Hiromi Sato
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Vani Xavier Oliveira
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados 5001, 09210-580, Santo André, SP, Brazil.
| |
Collapse
|
32
|
Intrinsically Disordered Regions in Serum Albumin: What Are They For? Cell Biochem Biophys 2017; 76:39-57. [PMID: 28281231 DOI: 10.1007/s12013-017-0785-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022]
Abstract
Serum albumin is a major plasma protein in mammalian blood. The importance of this protein lies in its roles in both bioregulation and transport phenomena. Serum albumin binds various metal ions and participates in the transport and storage of fatty acids, bilirubin, steroids amino acids, and many other ligands, usually with regions of hydrophobic surface. Although the primary role of serum albumin is to transport various ligand, its versatile binding capacities and high concentration mean that it can assume a number of additional functions. The major goal of this article is to show how intrinsic disorder is encoded in the amino acid sequence of serum albumin, and how intrinsic disorder is related to functions of this important serum protein.
Collapse
|
33
|
Zaman A, Arif Z, Alam K. Fructosylation induced structural changes in mammalian DNA examined by biophysical techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:171-176. [PMID: 27902958 DOI: 10.1016/j.saa.2016.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Glycosylation of DNA, proteins, lipids, etc. by reducing sugars, can lead to the formation of advanced glycation end products (AGEs). These products may accumulate and involve in the pathogenesis of a number of diseases, contributing to tissue injury via several mechanisms. In this study, fructosylation of calf thymus dsDNA was carried out with varying concentrations of fructose. The neo-structure of fructosylated-DNA was studied by various biophysical techniques and morphological characterization. Fructosylated-DNA showed hyperchromicity, increase in fluorescence intensity and decrease in melting temperature. The CD signal of modified-DNA shifted in the direction of higher wavelength indicative of structural changes in DNA. FTIR results indicated shift in specific band positions in fructosylated-DNA. Morphological characterization of fructosylated-DNA exhibited strand breakage and aggregation. The results suggest that the structure and conformation of DNA may be altered under high concentrations of fructose.
Collapse
Affiliation(s)
- Asif Zaman
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, India
| | - Zarina Arif
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
34
|
Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 2016; 13:517-28. [PMID: 27435372 PMCID: PMC5005185 DOI: 10.1038/nrgastro.2016.107] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The enteric nervous system (ENS) is large, complex and uniquely able to orchestrate gastrointestinal behaviour independently of the central nervous system (CNS). An intact ENS is essential for life and ENS dysfunction is often linked to digestive disorders. The part the ENS plays in neurological disorders, as a portal or participant, has also become increasingly evident. ENS structure and neurochemistry resemble that of the CNS, therefore pathogenic mechanisms that give rise to CNS disorders might also lead to ENS dysfunction, and nerves that interconnect the ENS and CNS can be conduits for disease spread. We review evidence for ENS dysfunction in the aetiopathogenesis of autism spectrum disorder, amyotrophic lateral sclerosis, transmissible spongiform encephalopathies, Parkinson disease and Alzheimer disease. Animal models suggest that common pathophysiological mechanisms account for the frequency of gastrointestinal comorbidity in these conditions. Moreover, the neurotropic pathogen, varicella zoster virus (VZV), unexpectedly establishes latency in enteric and other autonomic neurons that do not innervate skin. VZV reactivation in these neurons produces no rash and is therefore a clandestine cause of gastrointestinal disease, meningitis and strokes. The gut-brain alliance has raised consciousness as a contributor to health, but a gut-brain axis that contributes to disease merits equal attention.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, 622 West 168th Street, New York, New York 10032, USA
| | - Michael D. Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA
| |
Collapse
|