1
|
Kasparek A, Stankiewicz A, Beira MJ, Sebastião PJ, Kruk R, Kruk D. 1H Spin-Lattice Superparamagnetic Relaxation Enhancement over a Wide Range of Magnetic Fields─Theory Validation. J Phys Chem B 2025; 129:4446-4453. [PMID: 40292482 DOI: 10.1021/acs.jpcb.5c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
1H spin-lattice relaxation experiments have been performed on water solutions of 10 nm diameter Fe3O4 superparamagnetic nanoparticles functionalized with carboxylic acid and polyethylene glycol. The two data sets were collected over a remarkably wide frequency range from 10 kHz to 500 MHz, with varying temperature, and complemented by diffusometry to determine the translational diffusion coefficient of water molecules in the solutions. The results were used to validate the theory of superparamagnetic relaxation enhancement and to assess the extent to which the model can be used to predict and tune the relaxation effects caused by strong dipole-dipole interactions between the magnetic moments of superparamagnetic nanoparticles and 1H nuclei. The challenging validation was successful, although some discrepancies between experiment and theory were revealed and are discussed. Furthermore, it was shown that the functionalization of superparamagnetic nanoparticles significantly affects the enhancement of 1H spin-lattice relaxation.
Collapse
Affiliation(s)
- Adam Kasparek
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Aleksandra Stankiewicz
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Maria Jardim Beira
- CeFEMA─Center of Physics and Engineering of Advanced Materials and Department of Physics, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Pedro José Sebastião
- CeFEMA─Center of Physics and Engineering of Advanced Materials and Department of Physics, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Robert Kruk
- Department of Chemistry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-957 Olsztyn, Poland
| | - Danuta Kruk
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
2
|
Nowak-Jary J, Płóciennik A, Machnicka B. Functionalized Magnetic Fe 3O 4 Nanoparticles for Targeted Methotrexate Delivery in Ovarian Cancer Therapy. Int J Mol Sci 2024; 25:9098. [PMID: 39201784 PMCID: PMC11354664 DOI: 10.3390/ijms25169098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Magnetic Fe3O4 nanoparticles (MNPs) functionalized with (3-aminopropylo)trietoksysilan (APTES) or N-carboxymethylchitosan (CMC) were proposed as nanocarriers of methotrexate (MTX) to target ovarian cancer cell lines. The successful functionalization of the obtained nanostructures was confirmed by FT-IR spectroscopy. The nanoparticles were characterized by transmission electron spectroscopy (TEM) and dynamic light scattering (DLS) techniques. Their potential zeta, magnetization, and hyperthermic properties were also explored. MTX was conjugated with the nanocarriers by ionic bonds or by amide bonds. The drug release kinetics were examined at different pH and temperatures. The MTT assay showed no toxicity of the MNPs[APTES] and MNPs[CMC]. Finally, the cytotoxicity of the nanostructures with MTX attached towards the ovarian cancer cells was measured. The sensitivity and resistance to methotrexate was determined in simplistic 2D and spheroid 3D conditions. The cytotoxicity tests of the tested nanostructures showed similar values for inhibiting the proliferation of ovarian cancer cells as methotrexate in its free form. Conjugating MTX with nanoparticles allows the drug to be directed to the target site using an external magnetic field, reducing overall toxicity. Combining this approach with hyperthermia could enhance the therapeutic effect in vivo compared to free MTX, though further research on advanced 3D models is needed.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, 65-516 Zielona Gora, Poland;
| | - Artur Płóciennik
- Institute of Experimental Biology, University of Poznan, 61-614 Poznan, Poland;
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, 65-516 Zielona Gora, Poland;
| |
Collapse
|
3
|
Ku KS, Tang J, Chen Y, Shi Y. Current Advancements in Anti-Cancer Chimeric Antigen Receptor T Cell Immunotherapy and How Nanotechnology May Change the Game. Int J Mol Sci 2024; 25:5361. [PMID: 38791398 PMCID: PMC11120994 DOI: 10.3390/ijms25105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy represents a cutting-edge advancement in the landscape of cancer treatment. This innovative therapy has shown exceptional promise in targeting and eradicating malignant tumors, specifically leukemias and lymphomas. However, despite its groundbreaking successes, (CAR)-T cell therapy is not without its challenges. These challenges, particularly pronounced in the treatment of solid tumors, include but are not limited to, the selection of appropriate tumor antigens, managing therapy-related toxicity, overcoming T-cell exhaustion, and addressing the substantial financial costs associated with treatment. Nanomedicine, an interdisciplinary field that merges nanotechnology with medical science, offers novel strategies that could potentially address these limitations. Its application in cancer treatment has already led to significant advancements, including improved specificity in drug targeting, advancements in cancer diagnostics, enhanced imaging techniques, and strategies for long-term cancer prevention. The integration of nanomedicine with (CAR)-T cell therapy could revolutionize the treatment landscape by enhancing the delivery of genes in (CAR)-T cell engineering, reducing systemic toxicity, and alleviating the immunosuppressive effects within the tumor microenvironment. This review aims to explore how far (CAR)-T cell immunotherapy has come alone, and how nanomedicine could strengthen it into the future. Additionally, the review will examine strategies to limit the off-target effects and systemic toxicity associated with (CAR)-T cell therapy, potentially enhancing patient tolerance and treatment outcomes.
Collapse
Affiliation(s)
- Kimberly S. Ku
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (K.S.K.); (J.T.)
| | - Jie Tang
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (K.S.K.); (J.T.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (K.S.K.); (J.T.)
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
4
|
Uzhytchak M, Lunova M, Smolková B, Jirsa M, Dejneka A, Lunov O. Iron oxide nanoparticles trigger endoplasmic reticulum damage in steatotic hepatic cells. NANOSCALE ADVANCES 2023; 5:4250-4268. [PMID: 37560414 PMCID: PMC10408607 DOI: 10.1039/d3na00071k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
Iron oxide nanoparticles (IONPs) are being actively researched in various biomedical applications, particularly as magnetic resonance imaging (MRI) contrast agents for diagnosing various liver pathologies like nonalcoholic fatty liver diseases, nonalcoholic steatohepatitis, and cirrhosis. Emerging evidence suggests that IONPs may exacerbate hepatic steatosis and liver injury in susceptible livers such as those with nonalcoholic fatty liver disease. However, our understanding of how IONPs may affect steatotic cells at the sub-cellular level is still fragmented. Generally, there is a lack of studies identifying the molecular mechanisms of potential toxic and/or adverse effects of IONPs on "non-heathy" in vitro models. In this study, we demonstrate that IONPs, at a dose that does not cause general toxicity in hepatic cells (Alexander and HepG2), induce significant toxicity in steatotic cells (cells loaded with non-toxic doses of palmitic acid). Mechanistically, co-treatment with PA and IONPs resulted in endoplasmic reticulum (ER) stress, accompanied by the release of cathepsin B from lysosomes to the cytosol. The release of cathepsin B, along with ER stress, led to the activation of apoptotic cell death. Our results suggest that it is necessary to consider the interaction between IONPs and the liver, especially in susceptible livers. This study provides important basic knowledge for the future optimization of IONPs as MRI contrast agents for various biomedical applications.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM) Prague 14021 Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM) Prague 14021 Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences Prague 18221 Czech Republic
| |
Collapse
|
5
|
Nowak-Jary J, Machnicka B. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications. Int J Nanomedicine 2023; 18:4067-4100. [PMID: 37525695 PMCID: PMC10387276 DOI: 10.2147/ijn.s415063] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Magnetic iron oxide nanoparticles (magnetite and maghemite) are intensively studied due to their broad potential applications in medical and biological sciences. Their unique properties, such as nanometric size, large specific surface area, and superparamagnetism, allow them to be used in targeted drug delivery and internal radiotherapy by targeting an external magnetic field. In addition, they are successfully used in magnetic resonance imaging (MRI), hyperthermia, and radiolabelling. The appropriate design of nanoparticles allows them to be delivered to the desired tissues and organs. The desired biodistribution of nanoparticles, eg, cancerous tumors, is increased using an external magnetic field. Thus, knowledge of the biodistribution of these nanoparticles is essential for medical applications. It allows for determining whether nanoparticles are captured by the desired organs or accumulated in other tissues, which may lead to potential toxicity. This review article presents the main organs where nanoparticles accumulate. The sites of their first uptake are usually the liver, spleen, and lymph nodes, but with the appropriate design of nanoparticles, they can also be accumulated in organs such as the lungs, heart, or brain. In addition, the review describes the factors affecting the biodistribution of nanoparticles, including their size, shape, surface charge, coating molecules, and route of administration. Modern techniques for determining nanoparticle accumulation sites and concentration in isolated tissues or the body in vivo are also presented.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| | - Beata Machnicka
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| |
Collapse
|
6
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
7
|
Khizar S, Elkalla E, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Magnetic nanoparticles: multifunctional tool for cancer therapy. Expert Opin Drug Deliv 2023; 20:189-204. [PMID: 36608938 DOI: 10.1080/17425247.2023.2166484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cancer has one of the highest mortality rates globally. The traditional therapies used to treat cancer have harmful adverse effects. Considering these facts, researchers have explored new therapeutic possibilities with enhanced benefits. Nanoparticle development for cancer detection, in addition to therapy, has shown substantial progress over the past few years. AREA COVERED Herein, the latest research regarding cancer treatment employing magnetic nanoparticles (MNPs) in chemo-, immuno-, gene-, and radiotherapy along with hyperthermia is summarized, in addition to their physio-chemical features, advantages, and limitations for clinical translation have also been discussed. EXPERT OPINION MNPs are being extensively investigated and developed into effective modules for cancer therapy. They are highly functional tools aimed at cancer therapy owing to their excellent superparamagnetic, chemical, biocompatible, physical, and biodegradable properties.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Eslam Elkalla
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Nadia Zine
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Cla-ude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
8
|
MRI Contrast Agents in Glycobiology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238297. [PMID: 36500389 PMCID: PMC9735696 DOI: 10.3390/molecules27238297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Molecular recognition involving glycoprotein-mediated interactions is ubiquitous in both normal and pathological natural processes. Therefore, visualization of these interactions and the extent of expression of the sugars is a challenge in medical diagnosis, monitoring of therapy, and drug design. Here, we review the literature on the development and validation of probes for magnetic resonance imaging using carbohydrates either as targeting vectors or as a target. Lectins are important targeting vectors for carbohydrate end groups, whereas selectins, the asialoglycoprotein receptor, sialic acid end groups, hyaluronic acid, and glycated serum and hemoglobin are interesting carbohydrate targets.
Collapse
|
9
|
Lee D, Sohn J, Kirichenko A. Quantifying Liver Heterogeneity via R2*-MRI with Super-Paramagnetic Iron Oxide Nanoparticles (SPION) to Characterize Liver Function and Tumor. Cancers (Basel) 2022; 14:cancers14215269. [PMID: 36358689 PMCID: PMC9653969 DOI: 10.3390/cancers14215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Super-paramagnetic iron oxide nanoparticles (SPIONs) are phagocytized by the hepatic Kupffer cells (KC) in the liver and shorten MRI signals within the volume of functional liver parenchyma (FLP) where KCs are found. However, malignant tumors lacking KCs exhibit minimal signal change, resulting in increasing liver heterogeneity. This study investigates whether SPIONs improve liver heterogeneity on R2*-MRI to characterize FLP and non-FLP (i.e., tumor, hepatic vessels, liver fibrosis and scarring associated with hepatic cirrhosis, prior liver-directed therapies or hepatic resection). By using SPIONs, liver heterogeneity was improved across two MRI sessions with and without an intravenous SPION injection, and the volume of FLP was identified in our auto-contouring tool. This is a desirable technique for achieving more accurate characterizations of liver function and tumors during radiation treatment planning. Abstract The use of super-paramagnetic iron oxide nanoparticles (SPIONs) as an MRI contrast agent (SPION-CA) can safely label hepatic macrophages and be localized within hepatic parenchyma for T2*- and R2*-MRI of the liver. To date, no study has utilized the R2*-MRI with SPIONs for quantifying liver heterogeneity to characterize functional liver parenchyma (FLP) and hepatic tumors. This study investigates whether SPIONs enhance liver heterogeneity for an auto-contouring tool to identify the voxel-wise functional liver parenchyma volume (FLPV). This was the first study to directly evaluate the impact of SPIONs on the FLPV in R2*-MRI for 12 liver cancer patients. By using SPIONs, liver heterogeneity was improved across pre- and post-SPION MRI sessions. On average, 60% of the liver [range 40–78%] was identified as the FLPV in our auto-contouring tool with a pre-determined threshold of the mean R2* of the tumor and liver. This method performed well in 10 out of 12 liver cancer patients; the remaining 2 needed a longer echo time. These results demonstrate that our contouring tool with SPIONs can facilitate the heterogeneous R2* of the liver to automatically characterize FLP. This is a desirable technique for achieving more accurate FLPV contouring during liver radiation treatment planning.
Collapse
Affiliation(s)
- Danny Lee
- Radiation Oncology, Allegheny Health Network, Pittsburgh, PA 15012, USA
- Radiologic Sciences, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-412-359-4589
| | - Jason Sohn
- Radiation Oncology, Allegheny Health Network, Pittsburgh, PA 15012, USA
- Radiologic Sciences, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Alexander Kirichenko
- Radiation Oncology, Allegheny Health Network, Pittsburgh, PA 15012, USA
- Radiologic Sciences, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Iron-Based Magnetic Nanosystems for Diagnostic Imaging and Drug Delivery: Towards Transformative Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14102093. [PMID: 36297529 PMCID: PMC9607318 DOI: 10.3390/pharmaceutics14102093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
The advancement of biomedicine in a socioeconomically sustainable manner while achieving efficient patient-care is imperative to the health and well-being of society. Magnetic systems consisting of iron based nanosized components have gained prominence among researchers in a multitude of biomedical applications. This review focuses on recent trends in the areas of diagnostic imaging and drug delivery that have benefited from iron-incorporated nanosystems, especially in cancer treatment, diagnosis and wound care applications. Discussion on imaging will emphasise on developments in MRI technology and hyperthermia based diagnosis, while advanced material synthesis and targeted, triggered transport will be the focus for drug delivery. Insights onto the challenges in transforming these technologies into day-to-day applications will also be explored with perceptions onto potential for patient-centred healthcare.
Collapse
|
11
|
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 2022; 20:305. [PMID: 35761279 PMCID: PMC9235206 DOI: 10.1186/s12951-022-01510-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been under intense investigation for at least the last five decades as they show enormous potential for many biomedical applications, such as biomolecule separation, MRI imaging and hyperthermia. Moreover, a large area of research on these nanostructures is concerned with their use as carriers of drugs, nucleic acids, peptides and other biologically active compounds, often leading to the development of targeted therapies. The uniqueness of MNPs is due to their nanometric size and unique magnetic properties. In addition, iron ions, which, along with oxygen, are a part of the MNPs, belong to the trace elements in the body. Therefore, after digesting MNPs in lysosomes, iron ions are incorporated into the natural circulation of this element in the body, which reduces the risk of excessive storage of nanoparticles. Still, one of the key issues for the therapeutic applications of magnetic nanoparticles is their pharmacokinetics which is reflected in the circulation time of MNPs in the bloodstream. These characteristics depend on many factors, such as the size and charge of MNPs, the nature of the polymers and any molecules attached to their surface, and other. Since the pharmacokinetics depends on the resultant of the physicochemical properties of nanoparticles, research should be carried out individually for all the nanostructures designed. Almost every year there are new reports on the results of studies on the pharmacokinetics of specific magnetic nanoparticles, thus it is very important to follow the achievements on this matter. This paper reviews the latest findings in this field. The mechanism of action of the mononuclear phagocytic system and the half-lives of a wide range of nanostructures are presented. Moreover, factors affecting clearance such as hydrodynamic and core size, core morphology and coatings molecules, surface charge and technical aspects have been described.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland.
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland
| |
Collapse
|
12
|
Du Y, Liu D, Du Y. Recent advances in hepatocellular carcinoma therapeutic strategies and imaging-guided treatment. J Drug Target 2021; 30:287-301. [PMID: 34727794 DOI: 10.1080/1061186x.2021.1999963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant cancer in the world, which greatly threatens human health. However, the routine treatment strategies for HCC have failed to specifically eradicate the tumorigenic cells, leading to the occurrence of metastasis and recurrence. To improve treatment efficacies, the development of novel effective technologies is urgently required. Recently, nanotechnologies have gained the extensive attention in cancer targeted therapy, which could provide a promising way for HCC clinical practice. However, a successful cancer management depends on accurate diagnosis of the tumour along with precise therapeutic protocol, thereby predicting the tumour response to existing therapies. The synergistic effect of targeted therapeutic systems and imaging approaches (also called 'imaging-guided cancer treatment') may establish a more effective platform for individual cancer care. This review outlines the recent advanced nano-targeted and -traceable therapeutic strategies for HCC management. The multifunctional nano agents that have both diagnosis and therapy abilities are highlighted. Finally, we conclude with our perspectives on the future development and challenges of HCC nanotheranostics.
Collapse
Affiliation(s)
- Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Liu W, Yin S, Hu Y, Deng T, Li J. Microemulsion-Confined Biomineralization of PEGylated Ultrasmall Fe 3O 4 Nanocrystals for T2-T1 Switchable MRI of Tumors. Anal Chem 2021; 93:14223-14230. [PMID: 34647451 DOI: 10.1021/acs.analchem.1c03128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) are a novel T1 contrast agent with good biocompatibility and switchable imaging signal that have not been widely applied for magnetic resonance imaging (MRI) because it is difficult to induce their relatively close ideal agglomeration. Here, by combining the microemulsion method with the biomineralization principle, a pH-responsive T2-T1 switchable MRI nanoprobe was constructed via the microemulsion-confined biomineralization of PEGylated USPIONs (PEG-USPIONs). The size of the formed CaCO3-coated PEG-USPION conjugates (PEG-USPIONs@CaCO3 nanoprobe) was uniform and controllable, and the preparation method was simple. The PEG-USPIONs inside the nanoconjugates agglomerate more tightly, and the T1-MRI signal of the nanoprobe is converted to the T2-MRI signal. When exposed to the acidic environment of the tumor tissue or internal organelles, the CaCO3-coating of the nanoprobes is dissolved, and free PEG-USPIONs are released, thus realizing the T1-weighted imaging of the tumors. The suitability of the PEG-USPIONs@CaCO3 nanoprobe for tumor MRI detection was successfully demonstrated using a mouse model bearing a subcutaneous 4T1 xenograft.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shengyan Yin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingcai Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
Toropova Y, Korolev D, Istomina M, Shulmeyster G, Petukhov A, Mishanin V, Gorshkov A, Podyacheva E, Gareev K, Bagrov A, Demidov O. Controlling the Movement of Magnetic Iron Oxide Nanoparticles Intended for Targeted Delivery of Cytostatics. Int J Nanomedicine 2021; 16:5651-5664. [PMID: 34447247 PMCID: PMC8384349 DOI: 10.2147/ijn.s318200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background A promising approach to solve the problem of cytostatic toxicity is targeted drug transport using magnetic nanoparticles (MNPs). Purpose To use calculation to determine the optimal characteristics of the magnetic field for controlling MNPs in the body, and to evaluate the efficiency of magnetically controlled delivery of MNPs in vitro and in vivo to a tumour site in mice. Material and Methods For the in vitro study, reference MNPs were used, while for in vivo studies, MNPs coated in polylactide including fluorescent indocyanine (MNPs-ICG) were used. The in vivo luminescence intensity study was performed in mice with tumours, with and without of a magnetic field at the sites of interest. The studies were performed on a hydrodynamic stand developed at the Institute of Experimental Medicine of the Almazov National Medical Research Centre of the Ministry of Health of Russia. Results The use of neodymium magnets facilitated selective accumulation of MNPs. One minute after the administration of MNPs-ICG to mice with a tumour, MNPs-ICG predominantly accumulated in the liver, in the absence and presence of a magnetic field, which indicates its metabolic pathway. The intensity of the fluorescence in the animals' livers did not change over time, although an increase in fluorescence in the tumour was observed in the presence of a magnetic field. Conclusion This type of MNP, used in combination with a magnetic field of calculated strength, can form the basis for the development of magnetically controlled transport of cytostatic drugs into tumour tissue.
Collapse
Affiliation(s)
- Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, 197341, Russian Federation
| | - Dmitry Korolev
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, 197341, Russian Federation
| | - Maria Istomina
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, 197341, Russian Federation.,Saint Petersburg Electrotechnical University "LETI", Saint-Petersburg, 197376, Russian Federation
| | - Galina Shulmeyster
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, 197341, Russian Federation
| | - Alexey Petukhov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, 197341, Russian Federation.,Personalised Medicine Center, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, 197341, Russian Federation
| | - Vladimir Mishanin
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, 197341, Russian Federation
| | - Andrey Gorshkov
- FSBI "Research Institute of Influenza named after A.A. Smorodintsev " Ministry of Health of Russian Federation, Saint-Petersburg, Russian Federation
| | - Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, 197341, Russian Federation
| | - Kamil Gareev
- Saint Petersburg Electrotechnical University "LETI", Saint-Petersburg, 197376, Russian Federation
| | - Alexei Bagrov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| | - Oleg Demidov
- Institute of Cytology RAS, Saint-Petersburg, 194064, Russian Federation.,INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
15
|
Demin AM, Pershina AG, Minin AS, Brikunova OY, Murzakaev AM, Perekucha NA, Romashchenko AV, Shevelev OB, Uimin MA, Byzov IV, Malkeyeva D, Kiseleva E, Efimova LV, Vtorushin SV, Ogorodova LM, Krasnov VP. Smart Design of a pH-Responsive System Based on pHLIP-Modified Magnetite Nanoparticles for Tumor MRI. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36800-36815. [PMID: 34324807 DOI: 10.1021/acsami.1c07748] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic Fe3O4 nanoparticles (MNPs) are often used to design agents enhancing contrast in magnetic resonance imaging (MRI) that can be considered as one of the efficient methods for cancer diagnostics. At present, increasing the specificity of the MRI contrast agent accumulation in tumor tissues remains an open question and attracts the attention of a wide range of researchers. One of the modern methods for enhancing the efficiency of contrast agents is the use of molecules for tumor acidic microenvironment targeting, for example, pH-low insertion peptide (pHLIP). We designed novel organosilicon MNPs covered with poly(ethylene glycol) (PEG) and covalently modified by pHLIP. To study the specific features of the binding of pHLIP-modified MNPs to cells, we also obtained nanoconjugates with Cy5 fluorescent dye embedded in the SiO2 shell. The nanoconjugates obtained were characterized by transmission electron microscopy (TEM), attenuated total reflection (ATR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), dynamic light scattering (DLS), UV and fluorescence spectrometry, thermogravimetric analysis (TGA), CHN elemental analyses, and vibrating sample magnetometry. Low cytotoxicity and high specificity of cellular uptake of pHLIP-modified MNPs at pH 6.4 versus 7.4 (up to 23-fold) were demonstrated in vitro. The dynamics of the nanoconjugate accumulation in the 4T1 breast cancer orthotopically grown in BALB/c mice and MDA-MB231 xenografts was evaluated in MRI experiments. Biodistribution and biocompatibility studies of the obtained nanoconjugate showed no pathological change in organs and in the blood biochemical parameters of mice after MNP administration. A high accumulation rate of pHLIP-modified MNPs in tumor compared with PEGylated MNPs after their intravenous administration was demonstrated. Thus, we propose a promising approach to design an MRI agent with the tumor acidic microenvironment targeting ability.
Collapse
Affiliation(s)
- Alexander M Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Yekaterinburg, Russia
| | - Alexandra G Pershina
- Siberian State Medical University, 634050 Tomsk, Russia
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Artem S Minin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Yekaterinburg, Russia
| | - Olga Ya Brikunova
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Aidar M Murzakaev
- Institute of Electrophysics, Russian Academy of Sciences (Ural Branch), 620016 Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Yekaterinburg, Russia
| | | | - Alexander V Romashchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences (Siberian Branch), 630090 Novosibirsk, Russia
| | - Oleg B Shevelev
- Institute of Cytology and Genetics, Russian Academy of Sciences (Siberian Branch), 630090 Novosibirsk, Russia
| | - Mikhail A Uimin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Yekaterinburg, Russia
| | - Iliya V Byzov
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 620990 Yekaterinburg, Russia
| | - Dina Malkeyeva
- Institute of Cytology and Genetics, Russian Academy of Sciences (Siberian Branch), 630090 Novosibirsk, Russia
| | - Elena Kiseleva
- Institute of Cytology and Genetics, Russian Academy of Sciences (Siberian Branch), 630090 Novosibirsk, Russia
| | | | - Sergey V Vtorushin
- Siberian State Medical University, 634050 Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | | | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Yekaterinburg, Russia
| |
Collapse
|
16
|
Zhu M, Chen H, Zhou S, Zheng L, Li X, Chu R, Chen W, Wang B, Wang M, Chai Z, Feng W. Iron oxide nanoparticles aggravate hepatic steatosis and liver injury in nonalcoholic fatty liver disease through BMP-SMAD-mediated hepatic iron overload. Nanotoxicology 2021; 15:761-778. [PMID: 33961538 DOI: 10.1080/17435390.2021.1919329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading hepatic manifestation of metabolic syndrome worldwide, and is clinically accompanied by iron overload. As the increasing application of iron oxide nanoparticles (IONPs) on the imaging and diagnosis in NAFLD, the potential hepatic effect and mechanism of IONPs on NAFLD should be well studied. Here, we demonstrate that carboxyl-modified (COOH-IONPs) and amino-coated IONPs (NH2-IONPs) exhibit no significant hepatic toxicity in normal mice at the clinical injection dose, but aggravate SREBP-1c-mediated de novo lipogenesis (DNL) in the livers of mice with NAFLD induced by high-fat diet (HFD) and in HepG2 cells incubated with oleic acid (OA), especially in those treated by the positive NH2-IONPs. In the present study, mice receiving IONPs for 7 day show mild iron overload in the liver and exhibit enhanced hepatic inflammation in NAFLD. The BMP-SMAD pathway is initiated by hepatic iron overload and is aggravated in NAFLD. In conclusion, BMP-SMAD-mediated hepatic iron overload aggravated lipid accumulation in the liver and hepatic inflammatory responses, implying that effective measures in addition to hepatic iron overload are needed for individuals at the risk of IONPs in NAFLD.
Collapse
Affiliation(s)
- Meilin Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Hanqing Chen
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuang Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xue Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Runxuan Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.,State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
17
|
Vimala K, Kannan S. Phyto-drug conjugated nanomaterials enhance apoptotic activity in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:275-305. [PMID: 33931143 DOI: 10.1016/bs.apcsb.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Cancer continues to be one of the leading causes of death worldwide and is a major obstacle to increased life expectancy. However, survival has not improved significantly with average cancer standard treatment strategies over the past few decades; survival rates have remained low, with tumor metastasis, adverse drug reactions, and drug resistance. Therefore, substitute therapies are essential to treat this dreadful disease. Recently, research has shown that natural compounds in plants, such as phytochemicals, are extensively exploited for their anticarcinogenic potential. Phytochemicals may show their anticancer activity different cancer cell markers may alter molecular pathways, which promote in cellular events such as cell cycle arrest and apoptosis, regulate antioxidant status, cell proliferation, migration, invasion and toxicity. Although their outstanding anticancer activity, however, their pharmacological budding is hindered by their low aqueous solubility, poor bioavailability, and poor penetration into cells, hepatic disposition, narrow therapeutic index, and rapid uptake by normal tissues. In this situation, nanotechnology has developed novel inventions to increase the potential use of phytochemicals in anticancer therapy. Nanoparticles can improve the solubility and stability of phytochemicals, specific tumor cell/tissue targeting, enhanced cellular uptake, reduction of phytochemicals. Therapeutic doses of phytochemicals for a long time. Additional benefits include better blood stability, multifunctional design of nanocarriers and improvement in countermeasures. This review summarizes the advances in the use of nanoparticles for the treatment of cancer, as well as various nano-drug deliveries of phytochemicals against cancer. In particular, we are introducing several applications of nanoparticles in combination with phyto-drug for the treatment of cancer.
Collapse
Affiliation(s)
- Karuppaiya Vimala
- Division of Cancer Nanomedicine, Department of Zoology, School of Life Science, Periyar University, Salem, Tamil Nadu, India
| | - Soundarapandian Kannan
- Division of Cancer Nanomedicine, Department of Zoology, School of Life Science, Periyar University, Salem, Tamil Nadu, India.
| |
Collapse
|
18
|
Tannic acid-functionalized boron nitride nanosheets for theranostics. J Control Release 2020; 327:616-626. [PMID: 32916228 DOI: 10.1016/j.jconrel.2020.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 01/05/2023]
Abstract
Here, we report a tannic acid-Fe3+ coordination complex coating that confers magnetic resonance imaging (MRI) theranostic properties to inert nanomaterials. Boron nitride nanosheets (BNS), which lack magnetic field and light responsiveness, were used as a model nonfunctional nanomaterial. Among various catechol derivatives tested (i.e., dopamine, 3,4-dihydroxyphenylacetic acid, gallic acid, and tannic acid), a coating of tannic acid-Fe3+ coordination complex provided the highest magnetic field relaxivity and near infrared (NIR) laser light responsiveness. An in vitro study showed that KB tumor cells treated with tannic acid-Fe3+ coordination complex adsorbed on BNS (TA-Fe/BNS) exhibited higher T1-weighted magnetic resonance contrast compared with plain BNS, and BNS coated with tannic acid or Fe alone. NIR irradiation at 808 nm caused a significant increase in KB tumor cell death after treatment with TA-Fe/BNS compared with other treatments. In vivo MRI imaging revealed tumor accumulation of intravenously administered TA-Fe/BNS. Guided by MRI information, application of focused laser irradiation onto tumor tissues resulted in complete tumor ablation. These results support the potential of TA-Fe/BNS for MRI theranostics. Moreover, this study suggests the wide applicability of TA-Fe noncovalent coating as biocompatible and facile tool for converting nonfunctional early-generation nanomaterials into functional new nanomaterials, opening new opportunities for their use in translational biomedical applications such as MRI theranostics.
Collapse
|
19
|
Suciu M, Ionescu CM, Ciorita A, Tripon SC, Nica D, Al-Salami H, Barbu-Tudoran L. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1092-1109. [PMID: 32802712 PMCID: PMC7404288 DOI: 10.3762/bjnano.11.94] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/07/2020] [Indexed: 05/13/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have unique properties with regard to biological and medical applications. SPIONs have been used in clinical settings although their safety of use remains unclear due to the great differences in their structure and in intra- and inter-patient absorption and response. This review addresses potential applications of SPIONs in vitro (formulations), ex vivo (in biological cells and tissues) and in vivo (preclinical animal models), as well as potential biomedical applications in the context of drug targeting, disease treatment and therapeutic efficacy, and safety studies.
Collapse
Affiliation(s)
- Maria Suciu
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| | - Corina M Ionescu
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
| | - Alexandra Ciorita
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| | - Septimiu C Tripon
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| | - Dragos Nica
- Functional Sciences Department, Medical Faculty, University of Medicine and Pharmacy “Victor Babes”, 2 Eftimie Murgu, Timisoara, Timis County, 300041, Romania
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, the School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth Western Australia 6845, Australia
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Electron Microscopy Laboratory, Biology and Geology Faculty, Babes-Bolyai University, 5–7 Clinicilor Str., Cluj-Napoca, Cluj County, 400006, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Str., Cluj-Napoca, Cluj County, 400293, Romania
| |
Collapse
|
20
|
Malla RR, Kumari S, Kgk D, Momin S, Nagaraju GP. Nanotheranostics: Their role in hepatocellular carcinoma. Crit Rev Oncol Hematol 2020; 151:102968. [DOI: 10.1016/j.critrevonc.2020.102968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
|
21
|
Hernández-Hernández AA, Aguirre-Álvarez G, Cariño-Cortés R, Mendoza-Huizar LH, Jiménez-Alvarado R. Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01229-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Palacios-Hernandez T, Diaz-Diestra DM, Nguyen AK, Skoog SA, Vijaya Chikkaveeraiah B, Tang X, Wu Y, Petrochenko PE, Sussman EM, Goering PL. Cytotoxicity, cellular uptake and apoptotic responses in human coronary artery endothelial cells exposed to ultrasmall superparamagnetic iron oxide nanoparticles. J Appl Toxicol 2020; 40:918-930. [PMID: 32080871 DOI: 10.1002/jat.3953] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 01/11/2023]
Abstract
Ultrasmall superparamagnetic iron oxide nanoparticles (USPION) possess reactive surfaces, are metabolized and exhibit unique magnetic properties. These properties are desirable for designing novel theranostic biomedical products; however, toxicity mechanisms of USPION are not completely elucidated. The goal of this study was to investigate cell interactions (uptake and cytotoxicity) of USPION using human coronary artery endothelial cells as a vascular cell model. Polyvinylpirrolidone-coated USPION were characterized: average diameter 17 nm (transmission electron microscopy [TEM]), average hydrodynamic diameter 44 nm (dynamic light scattering) and zeta potential -38.75 mV. Cells were exposed to 0 (control), 25, 50, 100 or 200 μg/mL USPION. Concentration- and time-dependent cytotoxicity were observed after 3-6 hours through 24 hours of exposure using Alamar Blue and Real-Time Cell Electronic Sensing assays. Cell uptake was evaluated by imaging using live-dead confocal microscopy, actin and nuclear fluorescent staining, and TEM. Phase-contrast, confocal microscopy, and TEM imaging showed significant USPION internalization as early as 3 hours after exposure to 25 μg/mL. TEM imaging demonstrated particle internalization in secondary lysosomes with perinuclear localization. Three orthogonal assays were conducted to assess apoptosis. TUNEL staining demonstrated a marked increase in fragmented DNA, a response pathognomonic of apoptosis, after a 4-hour exposure. Cells subjected to agarose gel electrophoresis exhibited degraded DNA 3 hours after exposure. Caspase-3/7 activity increased after a 3-hour exposure. USPION uptake resulted in cytotoxicity involving apoptosis and these results contribute to further mechanistic understanding of the USPION toxicity in vitro in cardiovascular endothelial cells.
Collapse
Affiliation(s)
- Teresa Palacios-Hernandez
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Daysi M Diaz-Diestra
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Alexander K Nguyen
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Shelby A Skoog
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Bhaskara Vijaya Chikkaveeraiah
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Xing Tang
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Yong Wu
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Peter E Petrochenko
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Eric M Sussman
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Peter L Goering
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
23
|
Magnetic nanocarriers: Emerging tool for the effective targeted treatment of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Yadav N, Parveen S, Banerjee M. Potential of nano-phytochemicals in cervical cancer therapy. Clin Chim Acta 2020; 505:60-72. [PMID: 32017926 DOI: 10.1016/j.cca.2020.01.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
Abstract
Cervical cancer is common among women with a recurrence rate of 35% despite surgery, radiation, and chemotherapy. Patients receiving chemotherapy or radiotherapy routinely experience several side effects including toxicity, non-targeted damage of tissues, hair loss, neurotoxicity, multidrug resistance (MDR), nausea, anemia and neutropenia. Phytochemicals can interfere with almost every stage of carcinogenesis to prevent cancer development. Many natural compounds are known to activate/deactivate multiple redox-sensitive transcription factors that modulate tumor signaling pathways. Polyphenols have been found to be promising agents against cervical cancer. However, applications of phytochemicals as a therapeutic drug are limited due to low oral bioavailability, poor aqueous solubility and requirement of high doses. Nano-sized phytochemicals (NPCs) are promising anti-cancer agents as they are required in minute quantities which lowers overall treatment costs. Several phytochemicals, including quercetin, lycopene, leutin, curcumin, green tea polyphenols and others have been packaged as nanoparticles and proven to be useful in nano-chemoprevention and nano-chemotherapy. Nanoparticles have high biocompatibility, biodegradability and stability in biological environment. Nano-scale drug delivery systems are excellent source for enhanced drug specificity, improved absorption rates, reduced drug degradation and systemic toxicity. The present review discusses current knowledge in the involvement of phytochemical nanoparticles in cervical cancer therapy over conventional chemotherapy.
Collapse
Affiliation(s)
- Neera Yadav
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Shama Parveen
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| |
Collapse
|
25
|
Medina-Ramírez IE, Díaz de León Olmos MA, Muñoz Ortega MH, Zapien JA, Betancourt I, Santoyo-Elvira N. Development and Assessment of Nano-Technologies for Cancer Treatment: Cytotoxicity and Hyperthermia Laboratory Studies. Cancer Invest 2019; 38:61-84. [PMID: 31791151 DOI: 10.1080/07357907.2019.1698593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cancer treatment by magnetic hyperthermia offers numerous advantages, but for practical applications many variables still need to be adjusted before developing a controlled and reproducible cancer treatment that is bio-compatible (non-damaging) to healthy cells. In this work, Fe3O4 and CoFe2O4 were synthesized and systematically studied for the development of efficient therapeutic agents for applications in hyperthermia. The biocompatibility of the materials was further evaluated using HepG2 cells as biological model. Colorimetric and microscopic techniques were used to evaluate the interaction of magnetic nano-materials (MNMs) and HepG2 cells. Finally, the behavior of MNMs was evaluated under the influence of an alternating magnetic field (AMF), observing a more efficient temperature increment for CoFe2O4, a desirable behavior for biomedical applications since lower doses and shorter expositions to alternating magnetic field might be required.
Collapse
Affiliation(s)
- Iliana E Medina-Ramírez
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | | | - Martín Humberto Muñoz Ortega
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China
| | - Israel Betancourt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Nathaly Santoyo-Elvira
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
26
|
Khairnar S, More N, Mounika C, Kapusetti G. Advances in Contrast Agents for Contrast-Enhanced Magnetic Resonance Imaging. J Med Imaging Radiat Sci 2019; 50:575-589. [PMID: 31727524 DOI: 10.1016/j.jmir.2019.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) is a well-established medical invention in modern medical technology diagnosis. It is a nondestructive, versatile, and sensitive technique with a high spatial resolution for medical diagnosis. However, MRI has some limitations in differentiating certain tissues, particularly tiny blood vessels, pathological to healthy tissues, specific tumors, and inflammatory conditions such as arthritis, atherosclerosis, and multiple sclerosis. The contrast agent (CA) assisted imaging is the best possible solution to resolve the limitations of MRI. METHOD The literature review was carried out using the keywords, "MRI, T1&T2 relaxation, MRI CAs, delivery and adverse effects, classification of CAs." The tools used for the literature search were PubMed, Scopus, and Google Scholar. RESULT AND DISCUSSION The literature findings focus on MRI technique, limitations, and possible solutions. Primarily, the review focuses on the mechanism of CAs in image formation with detailed explanations of T1 and T2 relaxations, the mechanism of the MRI-CA image formations. This review presents the adverse effects of CA as well as available marketed formulations and recent patents to extent complete information about the MRI-CA. CONCLUSION MRI generates detailed visual information of various tissues with high resolution and contrast. The proton present in the biological fluid plays a crucial role in MR image formation, and it is unable to distinguish pathological conditions in many cases. The CAs are the best solution to resolve the limitation by interacting with native protons. The present review discusses the mechanism of CAs in contrast enhancement and its broad classification with the latest literature. Furthermore, the article presents information about CA biodistribution and adverse effects. The review concludes with an appropriate solution for adverse effects and presents the future prospective for researchers to develop advanced formulations.
Collapse
Affiliation(s)
- Snehal Khairnar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Namdev More
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Choppadandi Mounika
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Govinda Kapusetti
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India.
| |
Collapse
|
27
|
Wen T, Du L, Chen B, Yan D, Yang A, Liu J, Gu N, Meng J, Xu H. Iron oxide nanoparticles induce reversible endothelial-to-mesenchymal transition in vascular endothelial cells at acutely non-cytotoxic concentrations. Part Fibre Toxicol 2019; 16:30. [PMID: 31300057 PMCID: PMC6626375 DOI: 10.1186/s12989-019-0314-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/07/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Iron oxide nanoparticles (IONPs) have been extensively studied in different biomedical fields. Recently, the non-cytotoxic concentration of IONPs induced cell-specific response raised concern of their safety. Endothelial cell exposure was unavoidable in their applications, while whether IONPs affect the phenotype of vascular endothelial cells is largely unknown. In this work, the effect of IONPs on endothelial-to-mesenchymal transition (EndMT) was investigated in vitro and in vivo. RESULTS The incubation with γ-Fe2O3 nanoparticles modified with polyglucose sorbitol carboxymethyether (PSC-Fe2O3) at non-cytotoxic concentration induced morphological changes of human umbilical vein endothelial cells (HUVECs) from cobblestone-like to spindle mesenchymal-like morphology, while PSC-Fe2O3 mostly stay in the culture medium and intercellular space. At the same time, the endothelial marker CD31 and VE-cadherin was decreased along with the inhibitory of angiogenesis properties of HUVEC. Meanwhile, the mesenchymal marker α-smooth muscle actin (α-SMA) and fibroblast specific protein (FSP) was up regulated significantly, and the migration ability of the cells was enhanced. When ROS scavenger mannitol or AA was supplemented, the EndMT was rescued. Results from the in vivo study showed that, expression of CD31 was decreased and α-SMA increased in the liver, spleen and kidney of mice given PSC-Fe2O3, and the density of collagen fibers in the liver sinusoid of mice was increased. The supplementary mannitol or AA could reverse the degree of EndMT in the tissues. Mechanistic study in vitro indicated that the level of extracellular hydroxyl radicals (·OH) was up regulated significantly by PSC-Fe2O3, which induced the response of intracellular ROS and resulted in the EndMT effect on HUVECs. CONCLUSION The PSC-Fe2O3 was capable of inducing EndMT in the endothelial cells at acutely non-cytotoxic dose due to its intrinsic peroxidase-like activity, though they were few taken up by endothelial cell. The EndMT effect on HUVEC can be rescued by ROS scavenger in vitro and in vivo.
Collapse
Affiliation(s)
- Tao Wen
- 0000 0001 0662 3178grid.12527.33Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China
| | - Lifan Du
- 0000 0001 0662 3178grid.12527.33Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China
| | - Bo Chen
- 0000 0004 0604 9016grid.440652.1Materials Science and Devices Institute, Suzhou University of science and Technology, Suzhou, 215009 China
| | - Doudou Yan
- 0000 0001 0662 3178grid.12527.33Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China
| | - Aiyun Yang
- 0000 0001 0662 3178grid.12527.33Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China
| | - Jian Liu
- 0000 0001 0662 3178grid.12527.33Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China
| | - Ning Gu
- 0000 0004 1761 0489grid.263826.bState Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China
| | - Jie Meng
- 0000 0001 0662 3178grid.12527.33Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China
| | - Haiyan Xu
- 0000 0001 0662 3178grid.12527.33Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China
| |
Collapse
|
28
|
Mahmood AA, Zhang J, Liao R, Pan X, Xu D, Xu H, Zhou Q. Evaluation of non-targeting, C- or N-pH (low) insertion peptide modified superparamagnetic iron oxide nanoclusters for selective MRI of liver tumors and their potential toxicity in cirrhosis. RSC Adv 2019; 9:14051-14059. [PMID: 35519327 PMCID: PMC9064030 DOI: 10.1039/c9ra02430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/01/2019] [Indexed: 11/21/2022] Open
Abstract
Superparamagnetic iron oxide nanoclusters (SPIONs) modified with pH (low) insertion peptide (pHLIP) could be advantageous for magnetic resonance imaging (MRI) diagnosis of liver tumors at the early stage due to their unique responsiveness to the tumor acidic microenvironment when tumor markers are unknown. However, many critical aspects including the effectiveness of selective MRI in liver tumors, types of delivery and the potential safety profile in cirrhosis need to be fully evaluated. In this study, we report the evaluation of non-targeting, C- or N-pHLIP modified SPIONs as the contrast agent for selective MRI of liver tumors and their potential toxicity profile in cirrhosis. It was found that N-pHLIP modified SPIONs did not result in the loss of liver tumor in the T2-weight MRI but provided additional dynamic details of tumor structures that would enhance the diagnosis of liver tumors at a small size below 8 mm. In addition, an enhanced safety profile was found for N-pHLIP modified SPIONs with almost fully recoverable impact in cirrhosis. In contrast, the poly-d-lysine assembled SPIONs and C-terminus linked pHLIP SPIONs had non-tumor specific MRI contrast enhancement and potential safety risks in cirrhosis due to the iron overload post injection. All these results implied the promising potential of N-terminus linked pHLIP SPIONs as an MRI contrast agent for the diagnosis of liver tumors. The acid-responsive pHLIP modified SPION as an MRI contrast agent for liver cancer diagnosis requires the validation of both the tumor-specific enhancement and a safe profile in cirrhosis.![]()
Collapse
Affiliation(s)
- Abdulrahman Ahmed Mahmood
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Jianqi Zhang
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Rufang Liao
- Department of Radiology
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Xiwei Pan
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Dan Xu
- Department of Radiology
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Haibo Xu
- Department of Radiology
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Qibing Zhou
- Department of Nanomedicine & Biopharmaceuticals
- College of Life Science and Technology
- National Engineering Research Center for Nanomedicine
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
29
|
He C, Jiang S, Yao H, Zhang L, Yang C, Zhan D, Lin G, Zeng Y, Xia Y, Lin Z, Liu G, Lin Y. Endoplasmic reticulum stress mediates inflammatory response triggered by ultra-small superparamagnetic iron oxide nanoparticles in hepatocytes. Nanotoxicology 2018; 12:1198-1214. [PMID: 30422028 DOI: 10.1080/17435390.2018.1530388] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultra-small superparamagnetic iron oxide nanoparticles (USPIO-NPs) are widely used as clinical magnetic resonance imaging contrast agents for hepatic diseases diagnosis. USPIO-NPs often damage the hepatocytes and affect the function of liver but its mechanism of action remains unclear. In the present study, USPIO-NPs caused higher cytotoxicity and lactate dehydrogenase (LDH) leakage in hepatic L02 cells than SPIO-NPs. Subsequently, USPIO-NPs affected more genes' expression than SPIO-NPs analyzed through microarray and bioinformatics analysis. The affected genes were involved in several biological processes, including calcium ion homeostasis, inflammatory response-related leukocyte chemotaxis, and migration. In addition, the level of endoplasmic reticulum (ER) calcium ion was increased by USPIO-NPs. USPIO-NPs also upregulated the genes related to acute-phase inflammation, including IL1B, IL6, IL18, TNFSF12, TNFRSF12, SAA1, SAA2, JAK1, STAT5B, and CXCL14. Furthermore, interleukin-6 (IL-6) secretion was elevated by USPIO-NPs as detected using ELISA. On the other hand, USPIO-NPs changed the morphology of ER and triggered the ER stress and unfolded protein response PERK/ATF4 pathway. Furthermore, blocking ER stress with inhibitor or ATF4 small interfering RNA counteracted IL-6-related acute-phase inflammation and cytotoxicity caused by USPIO-NPs. Taken together, we found that the USPIO-NPs could trigger stronger IL-6-related acute-phase inflammation than SPIO-NPs in hepatocytes. We demonstrated, for the first time, that IL-6-related acute-phase inflammation caused by NPs was regulated by PERK/ATF4 signaling. The PERK/ATF4 pathway explored in this study could be a candidate for diagnostic and therapeutic target against NPs-induced liver injury and cytotoxicity, which would be helpful for USPIO-NPs medical application.
Collapse
Affiliation(s)
- Chengyong He
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , China
| | - Shengwei Jiang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , China
| | - Huan Yao
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , China
| | - Liyin Zhang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , China
| | - Chuanli Yang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , China
| | - Denglin Zhan
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , China
| | - Gan Lin
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , China
| | - Yun Zeng
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , China
| | - Yankai Xia
- b State Key Laboratory of Cellular Stress Biology, School of Life Sciences , Xiamen University , Xiamen , China
| | - Zhongning Lin
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , China
| | - Gang Liu
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , China.,c State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Yuchun Lin
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen , China
| |
Collapse
|
30
|
Mirshafiee V, Sun B, Chang CH, Liao YP, Jiang W, Jiang J, Liu X, Wang X, Xia T, Nel AE. Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages versus Apoptosis in Hepatocytes. ACS NANO 2018; 12:3836-3852. [PMID: 29543433 PMCID: PMC5946698 DOI: 10.1021/acsnano.8b01086] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The liver and the mononuclear phagocyte system are a frequent target for engineered nanomaterials, either as a result of particle uptake and spread from primary exposure sites or systemic administration of therapeutic and imaging nanoparticles. In this study, we performed a comparative analysis of the toxicological impact of 29 metal oxide nanoparticles (NPs), some commonly used in consumer products, in transformed or primary Kupffer cells (KCs) and hepatocytes. We not only observed differences between KCs and hepatocytes, but also differences in the toxicological profiles of transition-metal oxides (TMOs, e. g., Co3O4) versus rare-earth oxide (REO) NPs ( e. g., Gd2O3). While pro-oxidative TMOs induced the activation of caspases 3 and 7, resulting in apoptotic cell death in both cell types, REOs induced lysosomal damage, NLRP3 inflammasome activation, caspase 1 activation, and pyroptosis in KCs. Pyroptosis was accompanied by cell swelling, membrane blebbing, IL-1β release, and increased membrane permeability, which could be reversed by knockdown of the pore forming protein, gasdermin D. Though similar features were not seen in hepatocytes, the investigation of the cytotoxic effects of REO NPs could also be seen to affect macrophage cell lines such as J774A.1 and RAW 264.7 cells as well as bone marrow-derived macrophages. These phagocytic cell types also demonstrated features of pyroptosis and increased IL-1β production. Collectively, these findings demonstrate important mechanistic considerations that can be used for safety evaluation of metal oxides, including commercial products that are developed from these materials.
Collapse
Affiliation(s)
- Vahid Mirshafiee
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, California 90095, United States
| | - Bingbing Sun
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, California 90095, United States
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, 2 Linggong Rd., Dalian 116024, China
| | - Chong Hyun Chang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yu Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, California 90095, United States
| | - Wen Jiang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Jinhong Jiang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, California 90095, United States
| | - Xiang Wang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Tian Xia
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, California 90095, United States
- Address correspondence to: ;
| | - André E. Nel
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, California 90095, United States
- Address correspondence to: ;
| |
Collapse
|
31
|
Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol 2017; 7:738-746. [PMID: 29075487 PMCID: PMC5649002 DOI: 10.3892/mco.2017.1399] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022] Open
Abstract
In recent years, magnetic nanoparticles (MNPs) have demonstrated marked progress in the field of oncology. General nanoparticles are widely used in tumor targeting, and the intrinsic magnetic property of MNPs makes them the most promising nanomaterial to be used as contrast agents for magnetic resonance imaging (MRI) and induced magnetic hyperthermia. The properties of MNPs are fully exploited when they are used as drug delivery agents, wherein drugs may be targeted to the desired specific location in vivo by application of an external magnetic field. Early diagnosis of cancer may be achieved by MRI, therefore, individualized treatment may be combined with MRI, so as to achieve the precise definition and appropriate treatment. In the present review, research on MNPs in cancer diagnosis, drug delivery and treatment has been summarized. Furthermore, the future perspectives and challenges of MNPs in the field of oncology are also discussed.
Collapse
Affiliation(s)
- Meijia Wu
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Shengwu Huang
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| |
Collapse
|
32
|
Wei Y, Liao R, Mahmood AA, Xu H, Zhou Q. pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent. Acta Biomater 2017; 55:194-203. [PMID: 28363789 DOI: 10.1016/j.actbio.2017.03.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/20/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are contrast agents used for noninvasive tumor magnetic resonance imaging (MRI). SPION with active targeting by tumor-specific ligands can effectively enhance the MRI sensitivity and specificity of tumors. However, the challenge remains when the tumor specific markers are yet to be determined, especially in the case of early tumor detection. In this study, the effectiveness of pH-responsive SPION via a pH low insertion peptide (pHLIP) to target tumor acidic microenvironments was investigated. Polylysine polymers were first successfully modified with pHLIP to have the pH-responsive capability. SPION pHLIP nanoclusters of 64, 82, 103, and 121nm size were then assembled by the pH-responsive polymers in a size-controlled manner. The pH-responsive SPION nanoclusters of the 64nm size exhibited the most effective pH-responsive retention in cells and tumor selective imaging in MRI. More importantly, the unique contrast enhancement of tumor inner core by the pH-responsive SPION in three different tumor models demonstrated the clinical potential to target tumor acidic microenvironment through pHLIP for tumor early detection and diagnosis by MRI. STATEMENT OF SIGNIFICANCE Detection and diagnosis of tumors at early stage are critical for the improvement of the survival rate of cancer patients. However, the challenge remains when the tumor specific markers are yet to be determined, especially in early tumor detection. pH low insertion peptide (pHLIP) has been used as a specific ligand to target the tumor acidic microenvironment for tumors at early and metastatic stages. Superparamagnetic iron nanoparticles (SPION) are contrast enhancing agents used in the noninvasive magnetic resonance imaging for tumors. This research has demonstrated that pH-responsive pHLIP nanoclusters of SPION were able to target different tumors and facilitate the noninvasive diagnosis of tumors by MRI.
Collapse
Affiliation(s)
- Yushuang Wei
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Abdulrahman Ahmed Mahmood
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Qibing Zhou
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|