1
|
Arakawa T, Ejima D, Tomioka Y, Sakuma C, Akuta T. Mini review for niche downstream processes. Protein Expr Purif 2025; 230:106690. [PMID: 39978707 DOI: 10.1016/j.pep.2025.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
We review here several niche downstream purification processes that are not covered by other articles in this special issue. The first is the use of activated carbon to capture contaminants and clarify culture medium for purification of proteins, including antibodies. Flow-through operation of the activated carbon filter showed over 80 % recovery of antibodies with 10--fold reduction of host cell proteins and effective lipopolysaccharide and virus removal. The second is salt or arginine-tolerant column chromatography, in which the respective resins, such as hydroxyapatite and mixed-mode resins, can bind proteins in the presence of salt or arginine at high concentrations. Effective use of arginine was also suggested in size exclusion and affinity chromatography. The last is the isolation of proteins using gel electrophoresis and simple extraction procedure. These technologies offer simple and cost-effective methods for purifying proteins and protein complexes in the native state.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Panter Road, San Diego, CA, 92130, USA.
| | - Daisuke Ejima
- Sysmex Corporation, Technology Innovation, 1-17-8 Shinkiba, Koto-ku, Tokyo, 136-0082, Japan
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi, Ibaraki, 318-0004, Japan
| | - Chiaki Sakuma
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi, Ibaraki, 318-0004, Japan
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi, Ibaraki, 318-0004, Japan
| |
Collapse
|
2
|
Lee SY, Choi JW, Lee TG, Heo MB, Son JG. Influence of albumin concentration on surface characteristics and cellular responses in the pre-incubation of multi-walled carbon nanotubes. NANOSCALE ADVANCES 2024:d4na00743c. [PMID: 39398624 PMCID: PMC11465410 DOI: 10.1039/d4na00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Reliable characterization of protein coronas (PCs) that form when nanomaterials are introduced into biological fluids is a critical step in the development of safe and efficient nanomedicine. We observed that bovine serum albumin (BSA)-coated multi-walled carbon nanotubes (MWCNTs) do not induce cytotoxicity, but have different cellular uptake rates depending on the BSA pretreatment concentration. To determine how these slight differences affect A549 cell responses and intracellular changes, we conducted spectroscopic (circular dichroism and Fourier-transform infrared) and spectrometric (nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses. The various characterization techniques conducted in this study reveal the following. (i) The composition ratio of PCs on MWCNTs differs depending on the BSA concentration. (ii) Analysis of the secondary structure of the proteins revealed that the α-helix structure increased with increasing BSA concentration. (iii) Proteomic analysis showed that different biological pathways were activated at levels higher and lower than 5 mg mL-1. Such combined spectroscopic and spectrometric approaches provide an integrated understanding of PC composition as well as how nano/bio-interface states are linked to cellular-level responses. Our results can support reliable and practical applications of nanomedicine development.
Collapse
Affiliation(s)
- Sun Young Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Jae Won Choi
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
| | - Tae Geol Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Min Beom Heo
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Jin Gyeong Son
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| |
Collapse
|
3
|
Rosa MA, Granja A, Nunes C, Reis S, da Silva ABS, Leal KNDS, Arruda MAZ, Gorup LF, Santos MG, Dias MVS, Figueiredo EC. Magnetic carbon nanotubes modified with proteins and hydrophilic monomers: Cytocompatibility, in-vitro toxicity assays and permeation across biological interfaces. Int J Biol Macromol 2024; 269:131962. [PMID: 38692550 DOI: 10.1016/j.ijbiomac.2024.131962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/26/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Carbon nanotubes are promising materials for biomedical applications like delivery systems and tissue scaffolds. In this paper, magnetic carbon nanotubes (M-CNTs) covered with bovine serum albumin (M-CNTs-BSA) or functionalized with hydrophilic monomers (M-CNTs-HL) were synthesized, characterized, and evaluated concerning their interaction with Caco-2 cells. There is no comparison between these two types of functionalization, and this study aimed to verify their influence on the material's interaction with the cells. Different concentrations of the nanotubes were applied to investigate cytotoxicity, cell metabolism, oxidative stress, apoptosis, and capability to cross biomimetic barriers. The materials showed cytocompatibility up to 100 μg mL-1 and a hemolysis rate below 2 %. Nanotubes' suspensions were allowed to permeate Caco-2 monolayers for up to 8 h under the effect of the magnetic field. Magnetic nanoparticles associated with the nanotubes allowed estimation of permeation through the monolayers, with values ranging from 0.50 to 7.19 and 0.27 to 9.30 × 10-3 μg (equivalent to 0.43 to 6.22 and 0.23 to 9.54 × 10-2 % of the initially estimated mass of magnetic nanoparticles) for cells exposed and non-exposed to the magnets, respectively. Together, these results support that the developed materials are promising for applications in biomedical and biotechnological fields.
Collapse
Affiliation(s)
- Mariana Azevedo Rosa
- Laboratory of Toxicant and Drug Analyses, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Andreia Granja
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Beatriz Santos da Silva
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Ketolly Natanne da Silva Leal
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Luiz Fernando Gorup
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil; School of Chemistry and Food Science, Federal University of Rio Grande, Av. Italia km 8 Bairro Carreiros, 96203-900 Rio Grande, RS, Brazil; Materials Engineering, Federal University of Pelotas, Campus Porto, 96010-610 Pelotas, RS, Brazil
| | - Mariane Gonçalves Santos
- Laboratory of Toxicant and Drug Analyses, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | | | - Eduardo Costa Figueiredo
- Laboratory of Toxicant and Drug Analyses, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
4
|
Wang J, Xu Y, Zhou Y, Zhang J, Jia J, Jiao P, Liu Y, Su G. Modulating the toxicity of engineered nanoparticles by controlling protein corona formation: Recent advances and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169590. [PMID: 38154635 DOI: 10.1016/j.scitotenv.2023.169590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development and widespread application of engineered nanoparticles (ENPs), understanding the fundamental interactions between ENPs and biological systems is essential to assess and predict the fate of ENPs in vivo. When ENPs are exposed to complex physiological environments, biomolecules quickly and inevitably adsorb to ENPs to form a biomolecule corona, such as a protein corona (PC). The formed PC has a significant effect on the physicochemical properties of ENPs and gives them a brand new identity in the biological environment, which determines the subsequent ENP-cell/tissue/organ interactions. Controlling the formation of PCs is therefore of utmost importance to accurately predict and optimize the behavior of ENPs within living organisms, as well as ensure the safety of their applications. In this review, we provide an overview of the fundamental aspects of the PC, including the formation mechanism, composition, and frequently used characterization techniques. We comprehensively discuss the potential impact of the PC on ENP toxicity, including cytotoxicity, immune response, and so on. Additionally, we summarize recent advancements in manipulating PC formation on ENPs to achieve the desired biological outcomes. We further discuss the challenges and prospects, aiming to provide valuable insights for a better understanding and prediction of ENP behaviors in vivo, as well as the development of low-toxicity ENPs.
Collapse
Affiliation(s)
- Jiali Wang
- School of Pharmacy, Nantong University, Nantong 226019, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Yun Zhou
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Jian Zhang
- Digestive Diseases Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 510001, China; Center for Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 510001 Guangzhou, China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226019, China.
| |
Collapse
|
5
|
Tavakol M, Hajipour MJ, Ferdousi M, Zanganeh S, Maurizi L. Competition of opsonins and dysopsonins on the nanoparticle surface. NANOSCALE 2023; 15:17342-17349. [PMID: 37860936 DOI: 10.1039/d3nr03823h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The biological behavior and fate of nanoparticles are dependent on their retention time in the blood circulation system. The protein corona components, especially opsonins, and dysopsonins, adsorbed on the nanoparticle surface determine their blood circulation time. The protein corona formation is a dynamic process that involves the competition between different proteins to be adsorbed on the nanoparticles. Therefore, studying how proteins compete and are oriented on the nanoparticle surface is essential. We hypothesized that the presence of opsonins (immunoglobulin (IgG)) might affect the adsorption of dysopsonins (human serum albumin (HSA)) and vice versa. Using the molecular dynamics simulations, we showed that the adsorption of HSA on the GO surface after the IgG adsorption is more probable than the opposite order of adsorption. It was also observed that the higher lateral diffusion of the HSA compared to the IgG helped the system reach a more stable configuration while the initial adsorption of the HSA limits the lateral diffusion of IgG. Therefore, replacing IgG adsorbed on the GO surface with HSA is plausible while the reverse process is less likely to occur. This study revealed that albumin might extend the blood circulation time of GO by replacing opsonins (IgG).
Collapse
Affiliation(s)
- Mahdi Tavakol
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Mohammad Javad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California 94304, USA.
| | - Maryam Ferdousi
- Neurobiology Department, Northwestern University, Evanston, Illinois, USA
| | | | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne Franche-Comté, BP 47870, Dijon Cedex F-21078, France.
| |
Collapse
|
6
|
Xie J, Kim HM, Kamada K, Oh JM. Blood Compatibility of Drug-Inorganic Hybrid in Human Blood: Red Blood Cell Hitchhiking and Soft Protein Corona. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6523. [PMID: 37834660 PMCID: PMC10573551 DOI: 10.3390/ma16196523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
A drug-delivery system consisting of an inorganic host-layered double hydroxide (LDH)-and an anticancer drug-methotrexate (MTX)-was prepared via the intercalation route (MTX-LDH), and its hematocompatibility was investigated. Hemolysis, a red blood cell counting assay, and optical microscopy revealed that the MTX-LDH had no harmful toxic effect on blood cells. Both scanning electron microscopy and atomic force microscopy exhibited that the MTX-LDH particles softly landed on the concave part inred blood cells without serious morphological changes of the cells. The time-dependent change in the surface charge and hydrodynamic radius of MTX-LDH in the plasma condition demonstrated that the proteins can be gently adsorbed on the MTX-LDH particles, possibly through protein corona, giving rise to good colloidal stability. The fluorescence quenching assay was carried out to monitor the interaction between MTX-LDH and plasma protein, and the result showed that the MTX-LDH had less dynamic interaction with protein compared with MTX alone, due to the capsule moiety of the LDH host. It was verified by a quartz crystal microbalance assay that the surface interaction between MTX-LDH and protein was reversible and reproducible, and the type of protein corona was a soft one, having flexibility toward the biological environment.
Collapse
Affiliation(s)
- Jing Xie
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Hyoung-Mi Kim
- Biomedical Manufacturing Technology Center, Daegyeong Division, Korea Institute of Industrial Technology (KITECH), Yeongcheon-si 38822, Republic of Korea;
| | - Kai Kamada
- Department of Materials Science and Engineering, Faculty of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| |
Collapse
|
7
|
Yadav N, Mor S, Venkatesu P. The attenuating ability of deep eutectic solvents towards the carboxylated multiwalled carbon nanotubes induced denatured β-lactoglobulin structure. Phys Chem Chem Phys 2023. [PMID: 37470288 DOI: 10.1039/d3cp02908e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The stabilization of proteins has been a major challenge for their practical utilization in industrial applications. Proteins can easily lose their native conformation in the presence of denaturants, which unfolds the protein structure. Since the introduction of deep eutectic solvents (DESs), there are numerous studies in which DESs act as promising co-solvents that are biocompatible with biomolecules. DESs have emerged as sustainable biocatalytic media and an alternative to conventional organic solvents and ionic liquids (ILs). However, the superiority of DESs over the deleterious influence of denaturants on proteins is often neglected. To address this, we present the counteracting ability of biocompatible DESs, namely, choline chloride-glycerol (DES-1) and choline chloride-urea (DES-2), against the structural changes induced in β-lactoglobulin (Blg) by carboxylated multiwalled carbon nanotubes (CA-MWCNTs). The work is substantiated with various spectroscopic and thermal studies. The spectroscopic results revealed that the fluorescence emission intensity enhances for the protein in DESs. Contrary to this, the emission intensity extremely quenches in the presence of CA-MWCNTs. However, in the mixture of DESs and CA-MWCNTs, there was a slight increase in the fluorescence intensity. Circular dichroism spectral studies reflect the reappearance of the native band that was lost in the presence of CA-MWCNTs, which is a good indicator of the counteraction ability of DESs. Further, thermal fluorescence studies showed that the protein exhibited extremely great thermal stability in both DESs as well as in the mixture of DES-CA-MWCNTs compared to the protein in buffer. This study is also supported by dynamic light scattering and zeta potential measurements; the results reveal that DESs were successfully able to maintain the protein structure. The addition of CA-MWCNTs results in complex formation with the protein, which is indicated by the increased hydrodynamic size of the protein. The presence of DESs in the mixture of CA-MWCNTs and DESs was quite successful in eliminating the negative impact of CA-MWCNTs on protein structural alteration. DES-1 proved to be superior to DES-2 over counteraction against CA-MWCNTs and maintained the native conformation of the protein. Overall, both DESs act as recoiling media for both native and unfolded (denatured by CA-MWCNTs) Blg structures. Both the DESs can be described as potential co-solvents for Blg with increased structural and thermal stability of the protein. To the best of our knowledge, this study for the first time has demonstrated the role of choline-based DESs in the mixture with CA-MWCNTs in the structural transition of Blg. The DESs in the mixture successfully enhance the stability of the protein by reducing the perturbation caused by CA-MWCNTs and then amplifying the advantages of the DESs present in the mixture. Overall, these results might find implications for understanding the role of DES-CA-MWCNT mixtures in protein folding/unfolding and pave a new direction for the development of eco-friendly protein-protective solvents.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Sanjay Mor
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
8
|
Chen S, Su Y, Zhang M, Zhang Y, Xiu P, Luo W, Zhang Q, Zhang X, Liang H, Lee APW, Shao L, Xiu J. Insights into the toxicological effects of nanomaterials on atherosclerosis: mechanisms involved and influence factors. J Nanobiotechnology 2023; 21:140. [PMID: 37118804 PMCID: PMC10148422 DOI: 10.1186/s12951-023-01899-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/16/2023] [Indexed: 04/30/2023] Open
Abstract
Atherosclerosis is one of the most common types of cardiovascular disease and is driven by lipid accumulation and chronic inflammation in the arteries, which leads to stenosis and thrombosis. Researchers have been working to design multifunctional nanomedicines with the ability to target, diagnose, and treat atherosclerosis, but recent studies have also identified that nanomaterials can cause atherosclerosis. Therefore, this review aims to outline the molecular mechanisms and physicochemical properties of nanomaterials that promote atherosclerosis. By analyzing the toxicological effects of nanomaterials on cells involved in the pathogenesis of atherosclerosis such as vascular endothelial cells, vascular smooth muscle cells and immune cells, we aim to provide new perspectives for the prevention and treatment of atherosclerosis, and raise awareness of nanotoxicology to advance the clinical translation and sustainable development of nanomaterials.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
| | - Manjin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yulin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Peiming Xiu
- Guangdong Medical University, Dongguan, 523808, China
| | - Wei Luo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiuxia Zhang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinlu Zhang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongbin Liang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Alex Pui-Wai Lee
- Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Jiancheng Xiu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Zhao X, Amevor FK, Xue X, Wang C, Cui Z, Dai S, Peng C, Li Y. Remodeling the hepatic fibrotic microenvironment with emerging nanotherapeutics: a comprehensive review. J Nanobiotechnology 2023; 21:121. [PMID: 37029392 PMCID: PMC10081370 DOI: 10.1186/s12951-023-01876-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Liver fibrosis could be the last hope for treating liver cancer and remodeling of the hepatic microenvironment has emerged as a strategy to promote the ablation of liver fibrosis. In recent years, especially with the rapid development of nanomedicine, hepatic microenvironment therapy has been widely researched in studies concerning liver cancer and fibrosis. In this comprehensive review, we summarized recent advances in nano therapy-based remodeling of the hepatic microenvironment. Firstly, we discussed novel strategies for regulatory immune suppression caused by capillarization of liver sinusoidal endothelial cells (LSECs) and macrophage polarization. Furthermore, metabolic reprogramming and extracellular matrix (ECM) deposition are caused by the activation of hepatic stellate cells (HSCs). In addition, recent advances in ROS, hypoxia, and impaired vascular remodeling in the hepatic fibrotic microenvironment due to ECM deposition have also been summarized. Finally, emerging nanotherapeutic approaches based on correlated signals were discussed in this review. We have proposed novel strategies such as engineered nanotherapeutics targeting antigen-presenting cells (APCs) or direct targeting T cells in liver fibrotic immunotherapy to be used in preventing liver fibrosis. In summary, this comprehensive review illustrated the opportunities in drug targeting and nanomedicine, and the current challenges to be addressed.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- , No. 1166, Liu Tai Avenue, Wenjiang district, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Mujica ML, Tamborelli A, Vaschetti VM, Espinoza LC, Bollo S, Dalmasso PR, Rivas GA. Two birds with one stone: integrating exfoliation and immunoaffinity properties in multi-walled carbon nanotubes by non-covalent functionalization with human immunoglobulin G. Mikrochim Acta 2023; 190:73. [PMID: 36695940 DOI: 10.1007/s00604-022-05630-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023]
Abstract
An innovative strategy is proposed to simultaneously exfoliate multi-walled carbon nanotubes (MWCNTs) and generate MWCNTs with immunoaffinity properties. This strategy was based on the non-covalent functionalization of MWCNTs with human immunoglobulin G (IgG) by sonicating 2.5 mg mL-1 MWCNTs in 2.0 mg mL-1 IgG for 15 min with sonicator bath. Impedimetric experiments performed at glassy carbon electrodes (GCE) modified with the resulting MWCNT-IgG nanohybrid in the presence of anti-human immunoglobulin G antibody (Anti-IgG) demonstrated that the immunoglobulin retains their biorecognition properties even after the treatment during the MWCNT functionalization. We proposed, as proof-of-concept, two model electrochemical sensors, a voltammetric one for uric acid quantification by taking advantages of the exfoliated MWCNTs electroactivity (linear range, 5.0 × 10-7 M - 5.0 × 10-6 M; detection limit, 165 nM) and an impedimetric immunosensor for the detection of Anti-IgG through the use of the bioaffinity properties of the IgG present in the nanohybrid (linear range, 5-50 µg mL-1; detection limit, 2 µg mL-1).
Collapse
Affiliation(s)
- Michael López Mujica
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Alejandro Tamborelli
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.,CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - Virginia M Vaschetti
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina
| | - L Carolina Espinoza
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Santiago, Chile. Sergio Livingstone 1007, Independencia, Santiago, Chile.,Departamento de Química Farmacológica Y Toxicológica, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Santiago, Chile. Sergio Livingstone 1007, Independencia, Santiago, Chile.,Departamento de Química Farmacológica Y Toxicológica, Facultad de Ciencias Químicas Y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Pablo R Dalmasso
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Maestro López Esq, Universidad Tecnológica Nacional, Cruz Roja Argentina, 5016, Córdoba, Argentina.
| | - Gustavo A Rivas
- INFIQC (CONICET-UNC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
11
|
Functionalized carbon nanotubes as an alternative to traditional anti-HIV-1 protease inhibitors: An understanding towards Nano-medicine development through MD simulations. J Mol Graph Model 2022; 117:108280. [PMID: 35963109 DOI: 10.1016/j.jmgm.2022.108280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/14/2023]
Abstract
The Human Immunodeficiency Virus (HIV) has been the source of epidemic infection of AIDS for a longer period. One of the most difficult tasks is identifying novel medications that can help to decrease or control this global health hazard by overcoming drug resistance. In recent decades' nanoparticles are emerging as extremely relevant in drug delivery platforms. In the current study, the pristine (SWCNT) and hydroxyl functionalized (SWCNT-OH) versions of the SWCNT were investigated as inhibitors against the wild-type (WT) and three key mutants of HIV-1 protease (HIV-pr) (I50V, V82A, and I84V). Molecular docking of SWCNT in the catalytic domain and running all-atom MD simulations of all complexes are also part of this project. A thorough inspection of conformational dynamics from 50 ns trajectories reveals that both the pristine and SWCNT-OH can fit right to the pocket region of HIV-pr and govern flap dynamics. The binding affinity of the four HIV-pr-SWCNT/SWCNT-OH complexes was further investigated using MM-PBSA-dependent binding free energy studies. In most mutants and WT systems, SWCNT-OH was reported to bind proportionately many folds (kcal/mol) more than pristine SWCNTs. Hence, SWCNTs are possible HIV-pr inhibitors in terms of their stable existence in the pocket area, stronger binding to the protease, and regulation of flap dynamics in controlling the active site volume, which have vast potential for applications against drug resistance.
Collapse
|
12
|
Panico S, Capolla S, Bozzer S, Toffoli G, Dal Bo M, Macor P. Biological Features of Nanoparticles: Protein Corona Formation and Interaction with the Immune System. Pharmaceutics 2022; 14:pharmaceutics14122605. [PMID: 36559099 PMCID: PMC9781747 DOI: 10.3390/pharmaceutics14122605] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoparticles (NPs) are versatile candidates for nanomedical applications due to their unique physicochemical properties. However, their clinical applicability is hindered by their undesirable recognition by the immune system and the consequent immunotoxicity, as well as their rapid clearance in vivo. After injection, NPs are usually covered with layers of proteins, called protein coronas (PCs), which alter their identity, biodistribution, half-life, and efficacy. Therefore, the characterization of the PC is for in predicting the fate of NPs in vivo. The aim of this review was to summarize the state of the art regarding the intrinsic factors closely related to the NP structure, and extrinsic factors that govern PC formation in vitro. In addition, well-known opsonins, including complement, immunoglobulins, fibrinogen, and dysopsonins, such as histidine-rich glycoprotein, apolipoproteins, and albumin, are described in relation to their role in NP detection by immune cells. Particular emphasis is placed on their role in mediating the interaction of NPs with innate and adaptive immune cells. Finally, strategies to reduce PC formation are discussed in detail.
Collapse
Affiliation(s)
- Sonia Panico
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Sara Bozzer
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0405588683
| |
Collapse
|
13
|
Chetyrkina MR, Fedorov FS, Nasibulin AG. In vitro toxicity of carbon nanotubes: a systematic review. RSC Adv 2022; 12:16235-16256. [PMID: 35733671 PMCID: PMC9152879 DOI: 10.1039/d2ra02519a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotube (CNT) toxicity-related issues provoke many debates in the scientific community. The controversial and disputable data about toxicity doses, proposed hazard effects, and human health concerns significantly restrict CNT applications in biomedical studies, laboratory practices, and industry, creating a barrier for mankind in the way of understanding how exactly the material behaves in contact with living systems. Raising the toxicity question again, many research groups conclude low toxicity of the material and its potential safeness at some doses for contact with biological systems. To get new momentum for researchers working on the intersection of the biological field and nanomaterials, i.e., CNT materials, we systematically reviewed existing studies with in vitro toxicological data to propose exact doses that yield toxic effects, summarize studied cell types for a more thorough comparison, the impact of incubation time, and applied toxicity tests. Using several criteria and different scientific databases, we identified and analyzed nearly 200 original publications forming a "golden core" of the field to propose safe doses of the material based on a statistical analysis of retrieved data. We also differentiated the impact of various forms of CNTs: on a substrate and in the form of dispersion because in both cases, some studies demonstrated good biocompatibility of CNTs. We revealed that CNTs located on a substrate had negligible impact, i.e., 90% of studies report good viability and cell behavior similar to control, therefore CNTs could be considered as a prospective conductive substrate for cell cultivation. In the case of dispersions, our analysis revealed mean values of dose/incubation time to be 4-5 μg mL-1 h-1, which suggested the material to be a suitable candidate for further studies to get a more in-depth understanding of its properties in biointerfaces and offer CNTs as a promising platform for fundamental studies in targeted drug delivery, chemotherapy, tissue engineering, biosensing fields, etc. We hope that the present systematic review will shed light on the current knowledge about CNT toxicity, indicate "dark" spots and offer possible directions for the subsequent studies based on the demonstrated here tabulated and statistical data of doses, cell models, toxicity tests, viability, etc.
Collapse
Affiliation(s)
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
- Aalto University FI-00076 15100 Espoo Finland
| |
Collapse
|
14
|
Keshavan S, Gupta G, Martin S, Fadeel B. Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils. Nanotoxicology 2021; 15:1125-1150. [PMID: 34657549 DOI: 10.1080/17435390.2021.1988171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carbon nanotubes (CNTs) have been extensively investigated, and several studies have shown that multi-walled CNTs can trigger inflammation and fibrosis in animal models. However, while neutrophils are involved in inflammation, most in vitro studies have addressed macrophages. Here we explored the impact of three MWCNTs with varying morphology (i.e. long and rigid versus short and/or tangled) on primary human macrophages and macrophage-differentiated THP-1 cells versus primary human neutrophils and neutrophil-differentiated HL-60 cells. We found that long and rigid MWCNTs triggered caspase-dependent cell death in macrophages, accompanied by NLRP3 inflammasome activation and gasdermin D (GSDMD)-mediated release of pro-inflammatory IL-1β. The release of IL-1β was suppressed by disulfiram, an FDA-approved drug known to act as an inhibitor of membrane pore formation by GSDMD. Evidence of autophagic cell death was noted in macrophages exposed to higher concentrations of the long and rigid MWCNTs. Furthermore, lysosomal damage with cytosolic release of cathepsin B was observed in macrophages exposed to the latter MWCNTs. On the other hand, there was little evidence of uptake of MWCNTs in neutrophils and the cells failed to undergo MWCNT-triggered cell death. Our studies have demonstrated that long and rigid MWCNTs trigger pyroptosis in human macrophages.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Kumar S, Kumar K, Yadav R, Kukutla P, Devunuri N, Deenadayalu N, Venkatesu P. Understanding the close encounter of heme proteins with carboxylated multiwalled carbon nanotubes: a case study of contradictory stability trend for hemoglobin and myoglobin. Phys Chem Chem Phys 2021; 23:19740-19751. [PMID: 34525143 DOI: 10.1039/d1cp02167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes (CNTs) are one of the unique and promising nanomaterials that possess plenty of applications, such as biosensors, advanced drug delivery systems and biotechnology. CNTs bind rapidly with proteins, which result in the formation of a protein coating layer known as a "protein corona" around the surface of the nanomaterial. This hinders their applications as a drug carrier and influences the properties of biological macromolecules. The present work focuses on studying the thermal stability and molecular level interactions of two heme proteins, hemoglobin (Hb) and myoglobin (Mb), in the presence of carboxylated functionalized multi-walled CNTs (CA-MWCNTs). Through the current study, the following steps have been taken to distinguish the biocompatibility of the hydrophilic surface CA-MWCNTs for heme proteins via a series of spectroscopic techniques and differential scanning calorimetry (DSC). UV-Visible and steady-state fluorescence spectroscopy were used to reveal changes in the aromatic amino acid residues of heme proteins upon the addition of CA-MWCNTs. Circular dichroism spectroscopy (CD) shows the alteration in the native structure of proteins in the presence of the nanomaterial. A tremendous increase in the size of the protein CA-MWCNTs system is observed in dynamic light scattering (DLS), which clearly manifests the protein corona formation. Unexpectedly, both proteins interact differently with CA-MWCNTs, which is observed in CD spectroscopy and DSC. In the presence of CA-MWCNTs, an increase in the transition temperature (Tm) was observed for Hb, while the Tm value decreases for Mb. Different interactions with proteins at the molecular scale may be the reason for this unexpected behavior. Henceforth, the present results can help in the design of the next-generation drug carrier nanomaterials with the idea of the heme protein corona formation prior to development.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Ritu Yadav
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Prasanna Kukutla
- Department of Chemistry, University of Delhi, Delhi-110 007, India. .,Vignan's Foundation for Science, Technology and Research (VFSTR) Deemed to be University, Vadlamudi, Guntur-522 213, Andhra Pradesh, India
| | - Nagaraju Devunuri
- Vignan's Foundation for Science, Technology and Research (VFSTR) Deemed to be University, Vadlamudi, Guntur-522 213, Andhra Pradesh, India
| | - Nirmala Deenadayalu
- Department of Chemistry, Durban University of Technology, Durban-4000, South Africa
| | | |
Collapse
|
16
|
Yang M, Wu E, Tang W, Qian J, Zhan C. Interplay between nanomedicine and protein corona. J Mater Chem B 2021; 9:6713-6727. [PMID: 34328485 DOI: 10.1039/d1tb01063h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomedicine is recognized as a promising agent for diverse biomedical applications; however, its safety and efficiency in clinical practice remains to be enhanced. A priority issue is the protein corona (PC), which imparts unique biological identities to prototype and determines the actual biological functions in biological fluids. Decades of work has already illuminated abundant considerations that influence the composition of the protein corona. Thereinto, the physical assets of nanomedicines (e.g., size and shape, surface properties, nanomaterials) and the biological environment collectively play fundamental roles in shaping the PC, including the types and quantities of plasma proteins. The properties of nanomedicines are dependent on certain factors. This review aims to explore the applications of nanomedicines by regulating their interplay with PC.
Collapse
Affiliation(s)
- Min Yang
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China.
| | - Ercan Wu
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Wenjing Tang
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Jun Qian
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, P. R. China. and MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| |
Collapse
|
17
|
Yeniyurt Y, Kilic S, Güner-Yılmaz ÖZ, Bozoglu S, Meran M, Baysak E, Kurkcuoglu O, Hizal G, Karatepe N, Batirel S, Güner FS. Fmoc-PEG Coated Single-Wall Carbon Nanotube Carriers by Non-covalent Functionalization: An Experimental and Molecular Dynamics Study. Front Bioeng Biotechnol 2021; 9:648366. [PMID: 34055757 PMCID: PMC8160473 DOI: 10.3389/fbioe.2021.648366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Due to their structural characteristics at the nanoscale level, single-walled carbon nanotubes (SWNTs), hold great promise for applications in biomedicine such as drug delivery systems. Herein, a novel single-walled carbon nanotube (SWNT)-based drug delivery system was developed by conjugation of various Fmoc-amino acid bearing polyethylene glycol (PEG) chains (Mw = 2,000, 5,000, and 12,000). In the first step, full-atom molecular dynamics simulations (MD) were performed to identify the most suitable Fmoc-amino acid for an effective surface coating of SWNT. Fmoc-glycine, Fmoc-tryptophan, and Fmoc-cysteine were selected to attach to the PEG polymer. Here, Fmoc-cysteine and -tryptophan had better average interaction energies with SWNT with a high number of aromatic groups, while Fmoc-glycine provided a non-aromatic control. In the experimental studies, non-covalent modification of SWNTs was achieved by Fmoc-amino acid-bearing PEG chains. The remarkably high amount of Fmoc-glycine-PEG, Fmoc-tryptophan-PEG, and Fmoc-cysteine-PEG complexes adsorbed onto the SWNT surface, as was assessed via thermogravimetric and UV-vis spectroscopy analyses. Furthermore, Fmoc-cysteine-PEG5000 and Fmoc-cysteine-PEG12000 complexes displayed longer suspension time in deionized water, up to 1 and 5 week, respectively, underlying the ability of these surfactants to effectively disperse SWNTs in an aqueous environment. In vitro cell viability assays on human dermal fibroblast cells also showed the low cytotoxicity of these two samples, even at high concentrations. In conclusion, synthesized nanocarriers have a great potential for drug delivery systems, with high loading capacity, and excellent complex stability in water critical for biocompatibility.
Collapse
Affiliation(s)
- Yesim Yeniyurt
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Sila Kilic
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | | | - Serdar Bozoglu
- Energy Institute, Renewable Energy Division, Istanbul Technical University, Istanbul, Turkey
| | - Mehdi Meran
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| | - Elif Baysak
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Gurkan Hizal
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Nilgun Karatepe
- Energy Institute, Renewable Energy Division, Istanbul Technical University, Istanbul, Turkey
| | - Saime Batirel
- Department of Medical Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - F. Seniha Güner
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Istanbul, Turkey
| |
Collapse
|
18
|
Zhang L, Wei W, Liu Z, Liu X, Song E, Song Y. Dual effects of fibrinogen decoration on the tuning of silica nanoparticles-induced autophagic response: The implication of sedimentation and internalization. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124467. [PMID: 33187794 DOI: 10.1016/j.jhazmat.2020.124467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Due to the blooming development of nanotechnology, the further understanding of nanomaterials-induced toxicity has been demanded. Following their introduction into a biological matrix, the surface of nanoparticles (NPs) is covered by protein layer, namely corona, which imparts a new biological identity to NPs. Here, we showed that fibrinogen (Fg), but not albumin (BSA) or hemoglobin (Hb), decoration on the surface of silica nanoparticles (SiO2 NPs) ameliorate their pro-autophagic activity in non-phagocytic cells. Surprisingly, this effect of Fg was compromised in phagocytic cells. Further mechanistic investigation suggested coronal Fg has dual effects on the tuning of SiO2 NPs-induced autophagic response. First, Fg decoration blocks SiO2 NPs sedimentation through stabilize SiO2 NPs suspension; secondly, Fg coverage inhibits SiO2 NPs' cellular internalization. These findings provided important insights into the understanding of NPs-corona complexes behaviors and indicate future directions for the investigation of corona-mediated biological activities.
Collapse
Affiliation(s)
- Lihui Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China; School of Pharmaceutical Sciences, Tongren Polytechnic College, Tongren, Guizhou, 554300, China
| | - Wei Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China
| | - Zixuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China
| | - Xuting Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Beibei District, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
19
|
Zhang Y, Zhang Y, Wu J, Liu J, Kang Y, Hu C, Feng X, Liu W, Luo H, Chen A, Chen L, Shao L. Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: interactions, mechanisms and potential therapeutic applications. J Control Release 2021; 330:945-962. [DOI: 10.1016/j.jconrel.2020.10.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
|
20
|
Pinals RL, Yang D, Rosenberg DJ, Chaudhary T, Crothers AR, Iavarone AT, Hammel M, Landry MP. Quantitative Protein Corona Composition and Dynamics on Carbon Nanotubes in Biological Environments. Angew Chem Int Ed Engl 2020; 59:23668-23677. [PMID: 32931615 PMCID: PMC7736064 DOI: 10.1002/anie.202008175] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/14/2020] [Indexed: 12/15/2022]
Abstract
When nanoparticles enter biological environments, proteins adsorb to form the "protein corona" which alters nanoparticle biodistribution and toxicity. Herein, we measure protein corona formation on DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs), a nanoparticle used widely for sensing and delivery, in blood plasma and cerebrospinal fluid. We characterize corona composition by mass spectrometry, revealing high-abundance corona proteins involved in lipid binding, complement activation, and coagulation. We investigate roles of electrostatic and entropic interactions driving selective corona formation. Lastly, we study real-time protein binding on ssDNA-SWCNTs, obtaining agreement between enriched proteins binding strongly and depleted proteins binding marginally, while highlighting cooperative adsorption mechanisms. Knowledge of protein corona composition, formation mechanisms, and dynamics informs nanoparticle translation from in vitro design to in vivo application.
Collapse
Affiliation(s)
- Rebecca L. Pinals
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Darwin Yang
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Daniel J. Rosenberg
- D.J. Rosenberg Graduate Group in Biophysics University of California, Berkeley Berkeley, California 94720, United States
- D.J. Rosenberg, Dr. M. Hammel Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| | - Tanya Chaudhary
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Andrew R. Crothers
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- Dr. A.T. Iavarone, Professor M.P. Landry California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley, California 94720, United States
| | - Michal Hammel
- D.J. Rosenberg, Dr. M. Hammel Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley, California 94720, United States
| | - Markita P. Landry
- R.L. Pinals, D. Yang, T. Chaudhary, A.R. Crothers, Professor M.P. Landry Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley, California 94720, United States
- Dr. A.T. Iavarone, Professor M.P. Landry California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley, California 94720, United States
- Professor M.P. Landry Innovative Genomics Institute (IGI) Berkeley, California 94720, United States
- Professor M.P. Landry Chan-Zuckerberg Biohub San Francisco, California 94158, United States
| |
Collapse
|
21
|
Sapkota KP, Hassan MM, Shrestha S, Hanif MA, Islam MA, Akter J, Abbas HG, Hahn JR. Heterojunction formation between copper(II) oxide nanoparticles and single-walled carbon nanotubes to enhance antibacterial performance. Int J Pharm 2020; 590:119937. [PMID: 33011252 DOI: 10.1016/j.ijpharm.2020.119937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
We delineate the excellent bactericidal efficacy of stable heterojunction nanocomposites composed of single-walled carbon nanotubes (SWCNTs) and copper(II) oxide (CuO) synthesized via facile recrystallization and calcination. The bactericidal effectiveness of the fabricated nanocomposites was examined using the standard broth-dilution method and the growth-inhibition-zone analysis method, in which bacteria cultured in an incubator in tryptic soy broth medium were subjected to the prepared samples. The bactericidal activity of all of the as-synthesized samples is evident in both methods, displaying a substantial decrease in bacterial colonies and resulting in clear inhibition zones, respectively. Among the CuO-SWCNT nanocomposites, the sample subjected to calcination at 500 °C for 5 h was found to exhibit the best performance against Staphylococcus aureus and Escherichia coli, forming inhibition zones 182% and 162% larger than those formed by pure CuO, respectively.
Collapse
Affiliation(s)
- Kamal Prasad Sapkota
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, South Korea; Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44618, Nepal
| | - Md Mehedi Hassan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University, Jeonju 54907, South Korea
| | - Sita Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Md Abu Hanif
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Md Akherul Islam
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jeasmin Akter
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Hafiz Ghulam Abbas
- Department of Nanoscience and Nanotechnology, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jae Ryang Hahn
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, South Korea; Department of Nanoscience and Nanotechnology, Jeonbuk National University, Jeonju 54896, South Korea; Textile Engineering, Chemistry and Science, North Carolina State University, 2401 Research Dr., Raleigh, NC 27695-8301, USA
| |
Collapse
|
22
|
Pinals RL, Yang D, Rosenberg DJ, Chaudhary T, Crothers AR, Iavarone AT, Hammel M, Landry MP. Quantitative Protein Corona Composition and Dynamics on Carbon Nanotubes in Biological Environments. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rebecca L. Pinals
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Darwin Yang
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Daniel J. Rosenberg
- Graduate Group in Biophysics University of California, Berkeley Berkeley California 94720 USA
- Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Tanya Chaudhary
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Andrew R. Crothers
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley California 94720 USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering University of California, Berkeley Berkeley California 94720 USA
- California Institute for Quantitative Biosciences, QB3 University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94720 USA
- Chan-Zuckerberg Biohub San Francisco California 94158 USA
| |
Collapse
|
23
|
Park SJ. Protein-Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles. Int J Nanomedicine 2020; 15:5783-5802. [PMID: 32821101 PMCID: PMC7418457 DOI: 10.2147/ijn.s254808] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (NPs) are highly potent tools for the diagnosis of diseases and specific delivery of therapeutic agents. Their development and application are scientifically and industrially important. The engineering of NPs and the modulation of their in vivo behavior have been extensively studied, and significant achievements have been made in the past decades. However, in vivo applications of NPs are often limited by several difficulties, including inflammatory responses and cellular toxicity, unexpected distribution and clearance from the body, and insufficient delivery to a specific target. These unfavorable phenomena may largely be related to the in vivo protein-NP interaction, termed "protein corona." The layer of adsorbed proteins on the surface of NPs affects the biological behavior of NPs and changes their functionality, occasionally resulting in loss-of-function or gain-of-function. The formation of a protein corona is an intricate process involving complex kinetics and dynamics between the two interacting entities. Structural changes in corona proteins have been reported in many cases after their adsorption on the surfaces of NPs that strongly influence the functions of NPs. Thus, understanding of the conformational changes and unfolding process of proteins is very important to accelerate the biomedical applications of NPs. Here, we describe several protein corona characteristics and specifically focus on the conformational fluctuations in corona proteins induced by NPs.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon21936, Korea
| |
Collapse
|
24
|
Li Y, Lee JS. Insights into Characterization Methods and Biomedical Applications of Nanoparticle-Protein Corona. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3093. [PMID: 32664362 PMCID: PMC7412248 DOI: 10.3390/ma13143093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NPs) exposed to a biological milieu will strongly interact with proteins, forming "coronas" on the surfaces of the NPs. The protein coronas (PCs) affect the properties of the NPs and provide a new biological identity to the particles in the biological environment. The characterization of NP-PC complexes has attracted enormous research attention, owing to the crucial effects of the properties of an NP-PC on its interactions with living systems, as well as the diverse applications of NP-PC complexes. The analysis of NP-PC complexes without a well-considered approach will inevitably lead to misunderstandings and inappropriate applications of NPs. This review introduces methods for the characterization of NP-PC complexes and investigates their recent applications in biomedicine. Furthermore, the review evaluates these characterization methods based on comprehensive critical views and provides future perspectives regarding the applications of NP-PC complexes.
Collapse
Affiliation(s)
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
25
|
Safe Administration of Carbon Nanotubes by Intravenous Pathway in BALB/c Mice. NANOMATERIALS 2020; 10:nano10020400. [PMID: 32102423 PMCID: PMC7075304 DOI: 10.3390/nano10020400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 01/09/2023]
Abstract
Carbon nanotubes (CNTs) are nanomaterials with multiple possible uses as drug carriers or in nanovaccine development. However, the toxicity of CNTs administered intravenously in in vivo models has not been fully described to date. This work aimed to evaluate the toxic effect of pristine multi-walled CNTs (UP-CNTs), purified (P-CNTs), or CNTs functionalized with fluorescein isothiocyanate (FITC-CNTs) administered by intravenous injection in BALB/c mice. Biochemical and histopathological parameters were analyzed at 1, 14, 29, and 60 days post-exposure. Pristine CNTs were the most toxic nanoparticles in comparison with P-CNTs or FITC-CNTs, increasing serum AST (≈ 180%), ALT (≈ 300%), and LDH (≈ 200%) levels at one day post-exposure. The urea/creatinine ratio suggested pre-renal injury at the 14th day accompanied of extensive lesions in kidneys, lungs, and liver. Biochemical and histological findings in mice exposed to P-CNTs had not significant differences compared to the controls. A lower toxic effect was detected in animals exposed to FITC-CNTs which was attributable to FITC toxicity. These results demonstrate that the purification process of CNTs reduces in vivo toxicity, and that toxicity in functionalized CNTs is dependent on the functionalized compound. Therefore, P-CNTs are postulated as potential candidates for safe biomedical applications using an intravenous pathway.
Collapse
|
26
|
Pinals RL, Yang D, Lui A, Cao W, Landry MP. Corona Exchange Dynamics on Carbon Nanotubes by Multiplexed Fluorescence Monitoring. J Am Chem Soc 2020; 142:1254-1264. [PMID: 31887029 PMCID: PMC10493162 DOI: 10.1021/jacs.9b09617] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Noncovalent adsorption of DNA on nanoparticles has led to their widespread implementation as gene delivery tools and optical probes. Yet, the behavior and stability of DNA-nanoparticle complexes once applied in biomolecule-rich, in vivo environments remains unpredictable, whereby biocompatibility testing usually occurs in serum. Here, we demonstrate time-resolved measurements of exchange dynamics between solution-phase and adsorbed corona-phase DNA and protein biomolecules on single-walled carbon nanotubes (SWCNTs). We capture real-time binding of fluorophore-labeled biomolecules, utilizing the SWCNT surface as a fluorescence quencher, and apply this corona exchange assay to study protein corona dynamics on ssDNA-SWCNT-based dopamine sensors. We study exchange of two blood proteins, albumin and fibrinogen, adsorbing to and competitively displacing (GT)6 vs (GT)15 ssDNA from ssDNA-SWCNTs. We find that (GT)15 binds to SWCNTs with a higher affinity than (GT)6 and that fibrinogen interacts with ssDNA-SWCNTs more strongly than albumin. Albumin and fibrinogen cause a 52.2% and 78.2% attenuation of the dopamine nanosensor response, coinciding with 0.5% and 3.7% desorption of (GT)6, respectively. Concurrently, the total surface-adsorbed fibrinogen mass is 168% greater than that of albumin. Binding profiles are fit to a competitive surface exchange model which recapitulates the experimental observation that fibrinogen has a higher affinity for SWCNTs than albumin, with a fibrinogen on-rate constant 1.61-fold greater and an off-rate constant 0.563-fold smaller than that of albumin. Our methodology presents a generic route to assess real-time corona exchange on nanoparticles in solution phase and more broadly motivates testing of nanoparticle-based technologies in blood plasma rather than the more ubiquitously tested serum conditions.
Collapse
Affiliation(s)
- Rebecca L Pinals
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Darwin Yang
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Alison Lui
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Wendy Cao
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
- Innovative Genomics Institute (IGI) , Berkeley , California 94720 , United States
- California Institute for Quantitative Biosciences, QB3 , University of California at Berkeley , Berkeley , California 94720 , United States
- Chan-Zuckerberg Biohub , San Francisco , California 94158 , United States
| |
Collapse
|
27
|
Affiliation(s)
- Munishwar Nath Gupta
- Former Professor, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
28
|
Kobos L, Shannahan J. Biocorona‐induced modifications in engineered nanomaterial–cellular interactions impacting biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1608. [PMID: 31788989 DOI: 10.1002/wnan.1608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Lisa Kobos
- School of Health Sciences College of Human and Health Sciences, Purdue University West Lafayette Indiana
| | - Jonathan Shannahan
- School of Health Sciences College of Human and Health Sciences, Purdue University West Lafayette Indiana
| |
Collapse
|
29
|
Keshavan S, Calligari P, Stella L, Fusco L, Delogu LG, Fadeel B. Nano-bio interactions: a neutrophil-centric view. Cell Death Dis 2019; 10:569. [PMID: 31358731 PMCID: PMC6662811 DOI: 10.1038/s41419-019-1806-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Neutrophils are key components of the innate arm of the immune system and represent the frontline of host defense against intruding pathogens. However, neutrophils can also cause damage to the host. Nanomaterials are being developed for a multitude of different purposes and these minute materials may find their way into the body through deliberate or inadvertent exposure; understanding nanomaterial interactions with the immune system is therefore of critical importance. However, whereas numerous studies have focused on macrophages, less attention is devoted to nanomaterial interactions with neutrophils, the most abundant leukocytes in the blood. We discuss the impact of engineered nanomaterials on neutrophils and how neutrophils, in turn, may digest certain carbon-based materials such as carbon nanotubes and graphene oxide. We also discuss the role of the corona of proteins adsorbed onto the surface of nanomaterials and whether nanomaterials are sensed as pathogens by cells of the immune system.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Calligari
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
30
|
Zhao X, Chang S, Long J, Li J, Li X, Cao Y. The toxicity of multi-walled carbon nanotubes (MWCNTs) to human endothelial cells: The influence of diameters of MWCNTs. Food Chem Toxicol 2019; 126:169-177. [PMID: 30802478 DOI: 10.1016/j.fct.2019.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Abstract
The biological applications of multi-walled carbon nanotubes (MWCNTs) may lead to their exposure to human blood vessels, but the influence of their physicochemical properties on toxicity to endothelial cells is incompletely known. Here, human umbilical vein endothelial cells (HUVECs) were exposed to three commercially available MWCNTs, namely XFM4, XFM22, and XFM34 (diameters XFM4 < XFM22 < XFM34), to understand the possible role of their diameter on toxicity. Based on the same mass concentration, XFM4 induced significantly higher level of cytotoxicity than the other two MWCNTs, and HUVECs internalized more XFM4. Cytokine release, monocyte adhesion, and intracellular reactive oxygen species levels were significantly induced only after XFM4 treatment. The exposure to XFM4 significantly reduced the expression of autophagic genes autophagy-related 7 (ATG7), autophagy-related 12 (ATG12), and beclin 1 (BECN1) and increased the expression of endoplasmic reticulum (ER) stress genes DNA damage inducible transcript 3 (DDIT3) and X-box binding protein 1 spliced (XBP-1s). Moreover, the modulation of autophagy-ER stress by chemicals resulted in a significant increase in the cytotoxicity of XFM4 but had minimal impact on the cytotoxicity of XFM34. These data indicate that the diameter of MWCNTs may influence their toxicity to HUVECs, probably through autophagy dysfunction and ER stress.
Collapse
Affiliation(s)
- Xuqi Zhao
- College of Animal Science, Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Shiwei Chang
- College of Animal Science, Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jimin Long
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xianqiang Li
- College of Animal Science, Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China.
| | - Yi Cao
- College of Animal Science, Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production and Construction Corps, Tarim University, Xinjiang, People's Republic of China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|