1
|
Patel J, Roy H, Chintamaneni PK, Patel R, Bohara R. Advanced Strategies in Enhancing the Hepatoprotective Efficacy of Natural Products: Integrating Nanotechnology, Genomics, and Mechanistic Insights. ACS Biomater Sci Eng 2025; 11:2528-2549. [PMID: 40211874 PMCID: PMC12076289 DOI: 10.1021/acsbiomaterials.5c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 05/13/2025]
Abstract
Liver disorders like hepatitis, cirrhosis, and hepatocellular carcinoma present a significant global health challenge, with high morbidity and mortality rates. Key factors contributing to liver disorders include inflammation, oxidative stress, and apoptosis. Due to their multifaceted action, natural compounds are promising candidates for mitigating liver-related disorders. Research studies revealed the antioxidant, anti-inflammatory, and detoxifying properties of natural compounds like curcumin, glycyrrhizin, and silymarin and their potential for liver detoxification and protection. With advancements in nanotechnology in drug delivery, natural compounds have improved stability and targetability, thereby enhancing their bioavailability and therapeutic efficiency. Further, recent advancements in genomics and an increased understanding of genetic factors influencing liver disorders and the hepatoprotective effects of natural agents made way for personalized medicine. Moreover, combinatorial therapy with natural products, synthetic drugs, or other natural agents has improved therapeutic outcomes. Even though clinical trials have confirmed the efficiency of natural compounds as hepatoprotective agents, several challenges remain unanswered in their translation to clinical practice. Therefore, it is logical to integrate natural compounds with nanotechnology and genomics to further advance hepatoprotection. This review gives an overview of the substantial progress made in the field of hepatoprotection, with specific emphasis on natural compounds and their integration with nanotechnology and genomics. This provides valuable insights for future research and innovations in developing therapeutic strategies for liver disorders.
Collapse
Affiliation(s)
- Jitendra Patel
- Datta
Meghe College of Pharmacy, Datta Meghe Institute
of Higher Education (Deemed to be University), Sawangi (Meghe), Wardha 442001, Maharashtra, India
| | - Harekrishna Roy
- Department
of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri 522503, Andhra Pradesh, India
| | - Pavan Kuma Chintamaneni
- Department
of Pharmaceutics, GITAM School of Pharmacy, GITAM Deemed to be University, Hyerabad 502329, Telangana, India
| | - Rukmani Patel
- Department
of Chemistry, Bharati University Durg, Durg 491001, Chhattisgarh, India
| | | |
Collapse
|
2
|
Dobariya P, Xie W, Rao SP, Xie J, Seelig DM, Vince R, Lee MK, More SS. Deletion of Glyoxalase 1 Exacerbates Acetaminophen-Induced Hepatotoxicity in Mice. Antioxidants (Basel) 2024; 13:648. [PMID: 38929087 PMCID: PMC11200933 DOI: 10.3390/antiox13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Acetaminophen (APAP) overdose triggers a cascade of intracellular oxidative stress events, culminating in acute liver injury. The clinically used antidote, N-acetylcysteine (NAC), has a narrow therapeutic window, and early treatment is essential for a satisfactory therapeutic outcome. For more versatile therapies that can be effective even at late presentation, the intricacies of APAP-induced hepatotoxicity must be better understood. Accumulation of advanced glycation end products (AGEs) and the consequent activation of the receptor for AGEs (RAGE) are considered one of the key mechanistic features of APAP toxicity. Glyoxalase 1 (Glo-1) regulates AGE formation by limiting the levels of methylglyoxal (MEG). In this study, we studied the relevance of Glo-1 in the APAP-mediated activation of RAGE and downstream cell death cascades. Constitutive Glo-1-knockout mice (GKO) and a cofactor of Glo-1, ψ-GSH, were used as tools. Our findings showed elevated oxidative stress resulting from the activation of RAGE and hepatocyte necrosis through steatosis in GKO mice treated with high-dose APAP compared to wild-type controls. A unique feature of the hepatic necrosis in GKO mice was the appearance of microvesicular steatosis as a result of centrilobular necrosis, rather than the inflammation seen in the wild type. The GSH surrogate and general antioxidant ψ-GSH alleviated APAP toxicity irrespective of the Glo-1 status, suggesting that oxidative stress is the primary driver of APAP toxicity. Overall, the exacerbation of APAP hepatotoxicity in GKO mice suggests the importance of this enzyme system in antioxidant defense against the initial stages of APAP overdose.
Collapse
Affiliation(s)
- Prakashkumar Dobariya
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Swetha Pavani Rao
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Davis M. Seelig
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, MN 55108, USA;
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| | - Michael K. Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA;
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (P.D.); (W.X.); (S.P.R.); (J.X.); (R.V.)
| |
Collapse
|
3
|
Liu JY, Sayes CM. Modeling mixtures interactions in environmental toxicology. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104380. [PMID: 38309542 DOI: 10.1016/j.etap.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
In the environment, organisms are exposed to mixtures of different toxicants, which may interact in ways that are difficult to predict when only considering each component individually. Adapting and expanding tools from pharmacology, the toxicology field uses analytical, graphical, and computational methods to identify and quantify interactions in multi-component mixtures. The two general frameworks are concentration addition, where components have similar modes of action and their effects sum together, or independent action, where components have dissimilar modes of action and do not interact. Other interaction behaviors include synergism and antagonism, where the combined effects are more or less than the additive sum of individual effects. This review covers foundational theory, methods, an in-depth survey of original research from the past 20 years, current trends, and future directions. As humans and ecosystems are exposed to increasingly complex mixtures of environmental contaminants, analyzing mixtures interactions will continue to become a more critical aspect of toxicological research.
Collapse
Affiliation(s)
- James Y Liu
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| |
Collapse
|
4
|
Yang B, Ding X, Zhang Z, Li J, Fan S, Lai J, Su R, Wang X, Wang B. Visualization of production and remediation of acetaminophen-induced liver injury by a carboxylesterase-2 enzyme-activatable near-infrared fluorescent probe. Talanta 2024; 269:125418. [PMID: 37988783 DOI: 10.1016/j.talanta.2023.125418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Acetaminophen (APAP) overdose, also known as APAP poisoning, may directly result in hepatic injury, acute liver failure and even death. Nowadays, APAP-induced liver injury (AILI) has become an urgent public health issue in the developing world so the early accurate diagnosis and the revelation of underlying molecular mechanism of AILI are of great significance. As a major detoxifying organ, liver is responsible for metabolizing chemical substances, in which human carboxylesterase-2 (CES2) is present. Hence, we chose CES2 as an effective biomarker for evaluating AILI. By developing a CES2-activatable and water-soluble fluorescent probe PFQ-E with superior affinity (Km = 5.9 μM), great sensitivity (limit of detection = 1.05 ng/mL), near-infrared emission (655 nm) and large Stokes shift (135 nm), activity and distribution of CES2 in cells were determined or imaged effectively. More importantly, the APAP-induced hepatotoxicity and the underlying molecular mechanism of pathogenesis of AILI were investigated by measuring the "light-up" response of PFQ-E towards endogenous CES2 in vivo for the first time. Based on the superior performance of the probe PFQ-E for sensing CES2, we believe that it has broad potential in clinical diagnosis and therapy response evaluation of AILI.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China; College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiangdong Ding
- China-Japan Union Hospital, Jilin University, Changchun, 130012, China
| | - Zhimin Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shengyu Fan
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jinyu Lai
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Rui Su
- College of Chemistry, Jilin University, Changchun, 130012, China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Bo Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China; College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Dobariya P, Xie W, Rao SP, Xie J, Seelig DM, Vince R, Lee MK, More SS. Deletion of Glyoxalase 1 exacerbates acetaminophen-induced hepatotoxicity in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572856. [PMID: 38187538 PMCID: PMC10769331 DOI: 10.1101/2023.12.21.572856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Acetaminophen (APAP) overdose triggers a cascade of intracellular oxidative stress events culminating in acute liver injury. The clinically used antidote, N-acetylcysteine (NAC) has a narrow therapeutic window and early treatment is essential for satisfactory therapeutic outcome. For more versatile therapies that can be effective even at late-presentation, the intricacies of APAP-induced hepatotoxicity must be better understood. Accumulation of advanced glycation end-products (AGEs) and consequent activation of the receptor for AGEs (RAGE) are considered one of the key mechanistic features of APAP toxicity. Glyoxalase-1 (Glo-1) regulates AGE formation by limiting the levels of methylglyoxal (MEG). In this study, we studied the relevance of Glo-1 in APAP mediated activation of RAGE and downstream cell-death cascades. Constitutive Glo-1 knockout mice (GKO) and a cofactor of Glo-1, ψ-GSH, were employed as tools. Our findings show elevated oxidative stress, activation of RAGE and hepatocyte necrosis through steatosis in GKO mice treated with high-dose APAP compared to wild type controls. A unique feature of the hepatic necrosis in GKO mice is the appearance of microvesicular steatosis as a result of centrilobular necrosis, rather than inflammation seen in wild type. The GSH surrogate and general antioxidant, ψ-GSH alleviated APAP toxicity irrespective of Glo-1 status, suggesting that oxidative stress being the primary driver of APAP toxicity. Overall, exacerbation of APAP hepatotoxicity in GKO mice suggests the importance of this enzyme system in antioxidant defense against initial stages of APAP overdose.
Collapse
Affiliation(s)
- Prakashkumar Dobariya
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Swetha Pavani Rao
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Davis M. Seelig
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, Minnesota 55108, USA
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Michael K. Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
6
|
Kotańska M, Marcinkowska M, Kuder KJ, Walczak M, Bednarski M, Siwek A, Kołaczkowski M. Metabolic and cardiovascular benefits and risks of 4-hydroxy guanabenz hydrochloride: α 2-adrenoceptor and trace amine-associated receptor 1 ligand. Pharmacol Rep 2023; 75:1211-1229. [PMID: 37624466 PMCID: PMC10539439 DOI: 10.1007/s43440-023-00518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND α2-adrenoceptor ligands have been investigated as potential therapeutic agents for the treatment of obesity. Our previous studies have shown that guanabenz reduces the body weight of obese rats, presumably through its anorectic action. This demonstrates an additional beneficial effect on selected metabolic parameters, including glucose levels. The purpose of this present research was to determine the activity of guanabenz's metabolite-4-hydroxy guanabenz hydrochloride (4-OH-Guanabenz). METHODS We performed in silico analyses, involving molecular docking to targets of specific interest as well as other potential biological targets. In vitro investigations were conducted to assess the selectivity profile of 4-OH-Guanabenz binding to α-adrenoceptors, along with intrinsic activity studies involving α2-adrenoceptors and trace amine-associated receptor 1 (TAAR1). Additionally, the effects of 4-OH-Guanabenz on the body weight of rats and selected metabolic parameters were evaluated using the diet-induced obesity model. Basic safety and pharmacokinetic parameters were also examined. RESULTS 4-OH-guanabenz is a partial agonist of α2A-adrenoceptor. The calculated EC50 value for it is 316.3 nM. It shows weak agonistic activity at TAAR1 too. The EC50 value for 4-OH-Guanabenz calculated after computer simulation is 330.6 µM. Its primary mode of action is peripheral. The penetration of 4-OH-Guanabenz into the brain is fast (tmax = 15 min), however, with a low maximum concentration of 64.5 ng/g. 4-OH-Guanabenz administered ip at a dose of 5 mg/kg b.w. to rats fed a high-fat diet causes a significant decrease in body weight (approximately 14.8% compared to the baseline weight before treatment), reduces the number of calories consumed by rats, and decreases plasma glucose and triglyceride levels. CONCLUSIONS The precise sequence of molecular events within the organism, linking the impact of 4-OH-Guanabenz on α2A-adrenoceptor and TAAR1 with weight reduction and the amelioration of metabolic disturbances, remains an unresolved matter necessitating further investigation. Undoubtedly, the fact that 4-OH-Guanabenz is a metabolite of a well-known drug has considerable importance, which is beneficial from an economic point of view and towards its further development as a drug candidate.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil J. Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- Adamed Pharma Ltd, Czosnów, Poland
| |
Collapse
|
7
|
Xie W, Jiang R, Xie J, Vince R, More SS. Geometric Isomer of Guanabenz Confers Hepatoprotection to a Murine Model of Acetaminophen Toxicity. Chem Res Toxicol 2023; 36:1071-1080. [PMID: 37348131 PMCID: PMC10355191 DOI: 10.1021/acs.chemrestox.3c00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 06/24/2023]
Abstract
Overdose of acetaminophen, a widely used antipyretic and analgesic drug, is one of the leading causes of drug-induced acute liver injury in the United States and worldwide. Phase-I metabolism of acetaminophen generates the toxic N-acetyl-p-benzoquinone imine (NAPQI) intermediate. Reactions of NAPQI with a wide range of biomolecules cause increased oxidative stress, endoplasmic reticulum (ER) stress, inflammation, and mitochondrial dysfunction, some of the cellular events contributing toward liver toxicity. Previously, we evaluated the potential of an FDA-approved, ER stress-modulating antihypertensive drug, Wytensin (trans-guanabenz, E-GA), as an antidote for acetaminophen hepatotoxicity. E-GA prevented elevation of the liver enzyme alanine aminotransferase (ALT), even when administered up to 6 h after acetaminophen overdose, and exhibited synergistic analgesic interactions. However, the commercially available guanabenz exists solely as a trans-isomer and suffers from sedative side effects resulting from the inhibition of central α2A-adrenergic receptors in locus coeruleus. Here, we studied the utility of the relatively unexplored cis-isomer of guanabenz as a treatment option for acetaminophen-induced liver toxicity. cis(Z)-Guanabenz acetate (Z-GA) lacks interaction with α2A-adrenoreceptors and is thus devoid of sedative, blood-pressure-lowering side effects of E-GA. Treatment of mice with Z-GA (10 mg/kg) before acetaminophen overdose and up to 6 h post APAP administration prevented liver injury and suppressed the elevation of serum ALT levels. Mechanistically, hepatoprotective effects of both isomers are similar and partly attributed to attenuation of the ER stress and oxidative stress in the liver. The results of this study suggest that Z-GA may be a safer, effective antidote for the clinical management of acute liver injury resulting from acetaminophen overdose. It also raises a tantalizing possibility of a prophylactic combination of the geometric isomer of the approved drug guanabenz with acetaminophen in a clinical setting.
Collapse
Affiliation(s)
- Wei Xie
- Center for Drug Design, College
of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Jiashu Xie
- Center for Drug Design, College
of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Vince
- Center for Drug Design, College
of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S. More
- Center for Drug Design, College
of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Luo G, Huang L, Zhang Z. The molecular mechanisms of acetaminophen-induced hepatotoxicity and its potential therapeutic targets. Exp Biol Med (Maywood) 2023; 248:412-424. [PMID: 36670547 DOI: 10.1177/15353702221147563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acetaminophen (APAP), a widely used antipyretic and analgesic drug in clinics, is relatively safe at therapeutic doses; however, APAP overdose may lead to fatal acute liver injury. Currently, N-acetylcysteine (NAC) is clinically used as the main antidote for APAP poisoning, but its therapeutic effect remains limited owing to rapid disease progression and the general diagnosis of advanced poisoning. As is well known, APAP-induced hepatotoxicity (AIH) is mainly caused by the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), and the toxic mechanisms of AIH are complicated. Several cellular processes are involved in the pathogenesis of AIH, including liver metabolism, mitochondrial oxidative stress and dysfunction, sterile inflammation, endoplasmic reticulum stress, autophagy, and microcirculation dysfunction. Mitochondrial oxidative stress and dysfunction are the major cellular events associated with APAP-induced liver injury. Many biomolecules involved in these biological processes are potential therapeutic targets for AIH. Therefore, there is an urgent need to comprehensively clarify the molecular mechanisms underlying AIH and to explore novel therapeutic strategies. This review summarizes the various cellular events involved in AIH and discusses their potential therapeutic targets, with the aim of providing new ideas for the treatment of AIH.
Collapse
Affiliation(s)
- Guangwen Luo
- Jinhua Municipal Central Hospital, Jinhua 321000, China
| | - Lili Huang
- Ningbo Medical Center Lihuili Hospital, Ningbo 315040, China
| | - Zhaowei Zhang
- Jinhua Municipal Central Hospital, Jinhua 321000, China
| |
Collapse
|
9
|
Singh A, Gupta P, Tiwari S, Mishra A, Singh S. Guanabenz mitigates the neuropathological alterations and cell death in Alzheimer's disease. Cell Tissue Res 2022; 388:239-258. [PMID: 35195784 DOI: 10.1007/s00441-021-03570-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) pathology is characterized by cognitive impairment, increased acetylcholinesterase (AChE) activity, and impaired neuronal communication. Clinically, AChE inhibitors are being used to treat AD patients; however, these remain unable to prevent the disease progression. Therefore, further development of new therapeutic molecules is required having broad spectrum effects on AD-related various neurodegenerative events. Since repurposing is a quick mode to search the therapeutic molecules; henceforth, this study was conducted to evaluate the anti-Alzheimer activity of drug guanabenz which is already in use for the management of high blood pressure in clinics. The study was performed employing both cellular and rat models of AD along with donepezil as reference drug. Guanabenz treatment in both the experimental models showed significant protection against AD-specific behavioral and pathological indicators like AChE activity, tau phosphorylation, amyloid precursor protein, and memory retention. In conjunction, guanabenz also attenuated the AD-related oxidative stress, impaired mitochondrial functionality (MMP, cytochrome-c translocation, ATP level, and mitochondrial complex I activity), endoplasmic reticulum stress (GRP78, GADD153, cleaved caspase-12), neuronal apoptosis (Bcl-2, Bax, cleaved caspase-3), and DNA fragmentation. In conclusion, findings suggested the panoptic protective effect of guanabenz on disease-related multiple degenerative markers and signaling. Furthermore, clinical trial may shed light and expedite the availability of new therapeutic anti-Alzheimer's molecule for the wellbeing of AD patients.
Collapse
Affiliation(s)
- Abhishek Singh
- Division of Toxicology and Experimental Medicine, Department of Neurosciences and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow-226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parul Gupta
- Division of Toxicology and Experimental Medicine, Department of Neurosciences and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow-226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, Department of Neurosciences and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow-226031, UP, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, Department of Neurosciences and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow-226031, UP, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
10
|
Xie J, Jiang R, Xie W, Cao B, More SS. LC-MS/MS determination of guanabenz E/Z isomers and its application to in vitro and in vivo DMPK profiling studies. J Pharm Biomed Anal 2021; 205:114331. [PMID: 34455203 DOI: 10.1016/j.jpba.2021.114331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
Endoplasmic reticulum (ER) stress underlies a variety of disorders involving inflammation, such as diabetes, neurodegenerative diseases. Guanabenz acetate (Wytensin®, GA), a clinically approved antihypertensive drug, efficiently counteracts ER stress. The entirety of clinically used GA is the E-isomer, while the Z-isomer is known to lack significant hypotensive properties. We recently discovered that the Z-isomer retains anti-ER stress activity. Coupled with its lack of sedative effects, (Z)-GA is well positioned as a potential therapeutic for a host of ER stress-related disorders. We set forth to characterize the metabolism and pharmacokinetics (DMPK) of (Z)-GA in vitro and in vivo. Toward this end, a reliable and sensitive LC-MS/MS method for simultaneous determination of the (E)- and (Z)-guanabenz was developed. Chromatographic separation of the isomers was achieved on a C18 reverse phase column with a gradient elution. Tandem mass spectrometric detection was conducted using an AB Sciex 5500 QTrap mass spectrometer with positive electrospray ionization. Full validation of the method was performed in mouse plasma with a simple and low plasma volume protein precipitation procedure. The method demonstrated good linearity, reproducibility, and accuracy over a range of 0.5-1000 nM with minimal matrix effect and excellent extraction efficiency. In addition, the developed method was successfully applied to DMPK studies of the GA isomers in vitro and in vivo. Results of these studies revealed for the first time that the DMPK profile of (Z)-guanabenz is distinct from that of (E)-guanabenz, with higher apparent volume of distribution (Vd) and clearance, presumably due to lower plasma protein binding.
Collapse
Affiliation(s)
- Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Rongrong Jiang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bin Cao
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Wang Y, Tian L, Wang Y, Zhao T, Khan A, Wang Y, Cao J, Cheng G. Protective effect of Que Zui tea hot-water and aqueous ethanol extract against acetaminophen-induced liver injury in mice via inhibition of oxidative stress, inflammation, and apoptosis. Food Funct 2021; 12:2468-2480. [PMID: 33650604 DOI: 10.1039/d0fo02894k] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tender leaves and buds of Vaccinium dunalianum Wight have been traditionally processed as folk tea, known as Que Zui tea (QT), with a wide range of benefits to humans. In this study, Que Zui tea hot-water extract (QTW) and aqueous-ethanol extract (QTE) were tested for their effectiveness to alleviate acetaminophen (APAP)-induced liver damage. QTW and QTE significantly inhibited the alanine aminotransaminase, aspartate aminotransaminase, tumor necrosis factor-α, interleukin-6, and interleukin-1β levels in the serum. Both extracts also ameliorated pathological damage and inhibited oxidative stress in the liver of APAP-induced mice. In addition, QTW and QTE activated the nuclear erythroid related factor 2 signal pathway, and inhibited mitogen-activated protein kinase activation. QTW and QTE also suppressed hepatocyte apoptosis by improvement of Bcl-2/Bax and inhibition of caspase-3 and caspase-9 expression. The results demonstrated that QTW and QTE could effectively protect APAP hepatotoxicity, which might be attributed to their antioxidant, anti-inflammatory and anti-apoptosis activities.
Collapse
Affiliation(s)
- Yongpeng Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Luh LM, Bertolotti A. Potential benefit of manipulating protein quality control systems in neurodegenerative diseases. Curr Opin Neurobiol 2020; 61:125-132. [PMID: 32199101 DOI: 10.1016/j.conb.2020.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
The deposition of proteins of abnormal conformation is one of the major hallmarks of the common neurodegenerative diseases including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, frontotemporal dementia, and prion diseases. Protein quality control systems have evolved to protect cells and organisms against the harmful consequences of abnormally folded proteins that are constantly produced in small amounts. Mutations in rare inherited forms of neurodegenerative diseases have provided compelling evidence that failure of protein quality control systems can drive neurodegeneration. With extensive knowledge of these systems, and the notion that protein quality control may decline with age, many laboratories are now focussing on manipulating these evolutionarily optimized defence mechanisms to reduce the protein misfolding burden for therapeutic benefit.
Collapse
Affiliation(s)
- Laura M Luh
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|