1
|
Frydrych A, Frankowski M, Jurowski K. The toxicological analysis of problematic and sophisticated elements (Ni, Cr, and Se) in Food for Special Medical Purposes (FSMP) using in pharmacotherapy and clinical nutrition for oncological patients available in Polish pharmacies. Food Chem Toxicol 2024; 192:114930. [PMID: 39147355 DOI: 10.1016/j.fct.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
This study focuses on FSMPs for oncologic patients, specifically analyzing the toxicological profiles of nickel (Ni), chromium (Cr), and selenium (Se) within these products available in Polish pharmacies. The presence of these elements was quantified using inductively coupled plasma mass spectrometry (ICP-MS). Results indicated variations in the concentrations of Ni, Cr, and Se across different FSMP samples, with some products exceeding the acceptable limits set by regulatory guidelines. The study highlights the potential health risks associated with nickel exposure, including dermatitis and carcinogenesis, and the complex roles of chromium and selenium, which can be both beneficial and harmful depending on their levels. Our findings reveal significant variability in the elemental content across different FSMP products, i.e.: Ni: 0.155-25.488 μg/portion, Cr: 0.076-28.726 μg/portion and Se: 0.083-20.304 μg/portion). Notably, selenium levels in FSMPs showed considerable discrepancies compared to manufacturers' declarations, averaging only about 20% of the stated values. Regulatory assessments based on the Acceptable Daily Intake (ADI) and Permitted Daily Exposure (PDE) descriptors indicated that the estimated weekly intake of Ni, Cr, and Se from these FSMPs did not exceed the provisional tolerable weekly intake (PTWI) values. However, the highest Ni content was 30.58% of the PTWI, raising concerns about potential health risks, including dermatitis and carcinogenesis. The results for Cr underscored the necessity for careful monitoring due to its potential toxic effects. Selenium, despite its essential role, showed levels inadequate to meet the Recommended Dietary Allowance (RDA), potentially impacting its intended health benefits.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland
| | - Marcin Frankowski
- Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland; Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
| |
Collapse
|
2
|
Ben Khemis I, Aouaini F, Knani S, Saad Al-Mugren K, Ben Lamine A. Microscopic and macroscopic analysis of hexavalent chromium adsorption on polypyrrole-polyaniline@rice husk ash adsorbent using statistical physics modeling. Heliyon 2024; 10:e37061. [PMID: 39319120 PMCID: PMC11419908 DOI: 10.1016/j.heliyon.2024.e37061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/15/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
This paper contributed with new findings to understand and characterize a heavy metal adsorption on a composite adsorbent. The synthesized polypyrrole-polyaniline@rice husk ash (PPY-PANI@RHA) was prepared and used as an adsorbent for the removal of hexavalent chromium Cr(VI). The adsorption isotherms of Cr(VI) ions on PPY-PANI@RHA were experimentally determined at pH 2, and at different adsorption temperatures (293, 303, and 313 K). Multi-layer model developed using statistical physics formalism was applied to theoretically analyze and characterize the different interactions and ion exchanges during the adsorption process for the elimination of this toxic metal from aqueous solutions, and to attribute new physicochemical interpretation of the process of adsorption. The physicochemical structures and properties of the synthesized PPY-PANI@RHA were characterized via Fourier transform infrared spectroscopy (FTIR). Fitting findings showed that the mechanism of adsorption of Cr(VI) on PPY-PANI@RHA was a multi-ionic mechanism, where one binding site may be occupied by one and two ions. It may also be noticed that the temperature augmentation generated the activation of more functional groups of the composite adsorbent, facilitating the interactions of metal ions with the binding sites and the access to smaller pore. The energetic characterization suggested that the mechanism of adsorption of the investigated systems was exothermic and Cr(VI) ions were physisorbed on PPY-PANI@RHA surface via electrostatic interaction, reduction of Cr(VI) to Cr(III), hydrogen bonding, and ion exchange. Overall, the utilization of the theory of statistical physics provided fruitful and profounder analysis of the adsorption mechanism. The estimation of the pore size distribution (PSD) of the polypyrrole-polyaniline@rice husk ash using the statistical physics approach was considered stereographic characterization of the adsorbent (here PPY-PANI@RHA was globally a meso-porous adsorbent). Lastly, the mechanism of Cr(VI) removal from wastewater using PPY-PANI@RHA as adsorbent was macroscopically investigated via the estimation of three thermodynamic functions.
Collapse
Affiliation(s)
- Ismahene Ben Khemis
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019, Monastir, Tunisia
| | - Fatma Aouaini
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Salah Knani
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Kholoud Saad Al-Mugren
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019, Monastir, Tunisia
| |
Collapse
|
3
|
Tao WB, Xiong J, Yuan BF. Site-specific quantification of Adenosine-to-Inosine RNA editing by Endonuclease-Mediated qPCR. Bioorg Med Chem 2024; 110:117837. [PMID: 39013280 DOI: 10.1016/j.bmc.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
RNA molecules contain diverse modified nucleobases that play pivotal roles in numerous biological processes. Adenosine-to-inosine (A-to-I) RNA editing, one of the most prevalent RNA modifications in mammalian cells, is linked to a multitude of human diseases. To unveil the functions of A-to-I RNA editing, accurate quantification of inosine at specific sites is essential. In this study, we developed an endonuclease-mediated cleavage and real-time fluorescence quantitative PCR method for A-to-I RNA editing (EM-qPCR) to quantitatively analyze A-to-I RNA editing at a single site. By employing this method, we successfully quantified the levels of A-to-I RNA editing on various transfer RNA (tRNA) molecules at position 34 (I34) in mammalian cells with precision. Subsequently, this method was applied to tissues from sleep-deprived mice, revealing a notable alteration in the levels of I34 between sleep-deprived and control mice. The proposed method sets a precedent for the quantitative analysis of A-to-I RNA editing at specific sites, facilitating a deeper understanding of the biological implications of A-to-I RNA editing.
Collapse
Affiliation(s)
- Wan-Bing Tao
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Jun Xiong
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China; Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, PR China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, PR China.
| |
Collapse
|
4
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhou X, Gao S, Yue M, Zhu S, Liu Q, Zhao XE. Recent advances in analytical methods of oxidative stress biomarkers induced by environmental pollutant exposure. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Verghese M, Wilkinson E, He Y. Role of RNA modifications in carcinogenesis and carcinogen damage response. Mol Carcinog 2023; 62:24-37. [PMID: 35560957 PMCID: PMC9653521 DOI: 10.1002/mc.23418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/26/2022] [Indexed: 02/03/2023]
Abstract
The field of epitranscriptomics encompasses the study of post-transcriptional RNA modifications and their regulatory enzymes. Among the numerous RNA modifications, N6 -methyladenosine (m6 A) has been identified as the most common internal modification of messenger RNA (mRNA). Although m6 A modifications were first discovered in the 1970s, advances in technology have revived interest in this field, driving an abundance of research into the role of RNA modifications in various biological processes, including cancer. As analogs to epigenetic modifications, RNA modifications also play an important role in carcinogenesis by regulating gene expression post-transcriptionally. A growing body of evidence suggests that carcinogens can modulate RNA modifications to alter the expression of oncogenes or tumor suppressors during cellular transformation. Additionally, the expression and activity of the enzymes that regulate RNA modifications can be dysregulated and contribute to carcinogenesis, making these enzymes promising targets of drug discovery. Here we summarize the roles of RNA modifications during carcinogenesis induced by exposure to various environmental carcinogens, with a main focus on the roles of the most widely studied m6 A mRNA methylation.
Collapse
Affiliation(s)
- Michelle Verghese
- Department of Medicine, Section of DermatologyUniversity of ChicagoChicagoIllinoisUSA
- Pritzker School of MedicineUniversity of ChicagoChicagoIllinoisUSA
| | - Emma Wilkinson
- Department of Medicine, Section of DermatologyUniversity of ChicagoChicagoIllinoisUSA
- Committee on Cancer BiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Yu‐Ying He
- Department of Medicine, Section of DermatologyUniversity of ChicagoChicagoIllinoisUSA
- Committee on Cancer BiologyUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
7
|
Ding JH, Chen MY, Xie NB, Xie C, Xiong N, He JG, Wang J, Guo C, Feng YQ, Yuan BF. Quantitative and site-specific detection of inosine modification in RNA by acrylonitrile labeling-mediated elongation stalling. Biosens Bioelectron 2023; 219:114821. [PMID: 36279821 DOI: 10.1016/j.bios.2022.114821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
Abstract
RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Inosine is one of the most prevalent modifications in RNA and dysregulation of inosine is correlated with many human diseases. Herein, we established an acrylonitrile labeling-mediated elongation stalling (ALES) method for quantitative and site-specific detection of inosine in RNA from biological samples. In ALES method, inosine is selectively cyanoethylated with acrylonitrile to form N1-cyanoethylinosine (ce1I) through a Michael addition reaction. The N1-cyanoethyl group of ce1I compromises the hydrogen bond between ce1I and other nucleobases, leading to the stalling of reverse transcription at original inosine site. This specific property of stalling at inosine site could be evaluated by subsequent real-time quantitative PCR (qPCR). With the proposed ALES method, we found the significantly increased level of inosine at position Chr1:63117284 of Ino80dos RNA of multiple tissues from sleep-deprived mice compared to the control mice. This is the first report on the investigation of inosine modification in sleep-deprived mice, which may open up new direction for deciphering insomnia from RNA modifications. In addition, we found the decreased level of inosine at GluA2 Q/R site (Chr4:157336723) in glioma tissues, indicating the decreased level of inosine at GluA2 Q/R site may serve as potential indicator for the diagnosis of glioma. Taken together, the proposed ALES method is capable of quantitative and site-specific detection of inosine in RNA, which provides a valuable tool to uncover the functions of inosine in human diseases.
Collapse
Affiliation(s)
- Jiang-Hui Ding
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Meng-Yuan Chen
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Neng-Bin Xie
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Conghua Xie
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Nanxiang Xiong
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Jin-Gang He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yu-Qi Feng
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Bi-Feng Yuan
- School of Public Health, College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, 430071, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
8
|
Wang Z, Yang C. Epigenetic and epitranscriptomic mechanisms of chromium carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:241-265. [PMID: 36858774 PMCID: PMC10565670 DOI: 10.1016/bs.apha.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hexavalent chromium [Cr(VI)], a Group I carcinogen classified by the International Agency for Research on Cancer (IARC), represents one of the most common occupational and environmental pollutants. The findings from human epidemiological and laboratory animal studies show that long-term exposure to Cr(VI) causes lung cancer and other cancer. Although Cr(VI) is a well-recognized carcinogen, the mechanism of Cr(VI) carcinogenesis has not been well understood. Due to the fact that Cr(VI) undergoes a series of metabolic reductions once entering cells to generate reactive Cr metabolites and reactive oxygen species (ROS) causing genotoxicity, Cr(VI) is generally considered as a genotoxic carcinogen. However, more and more studies have demonstrated that acute or chronic Cr(VI) exposure also causes epigenetic dysregulations including changing DNA methylation, histone posttranslational modifications and regulatory non-coding RNA (microRNA and long non-coding RNA) expressions. Moreover, emerging evidence shows that Cr(VI) exposure is also capable of altering cellular epitranscriptome. Given the increasingly recognized importance of epigenetic and epitranscriptomic dysregulations in cancer initiation and progression, it is believed that Cr(VI) exposure-caused epigenetic and epitranscriptomic changes could play important roles in Cr(VI) carcinogenesis. The goal of this chapter is to review the epigenetic and epitranscriptomic effects of Cr(VI) exposure and discuss their roles in Cr(VI) carcinogenesis. Better understanding the mechanism of Cr(VI) carcinogenesis may identify new molecular targets for more efficient prevention and treatment of cancer resulting from Cr(VI) exposure.
Collapse
Affiliation(s)
- Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
9
|
Chen JJ, You XJ, Li L, Xie NB, Ding JH, Yuan BF, Feng YQ. Single-Base Resolution Detection of Adenosine-to-Inosine RNA Editing by Endonuclease-Mediated Sequencing. Anal Chem 2022; 94:8740-8747. [PMID: 35678728 DOI: 10.1021/acs.analchem.2c01226] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA molecules contain diverse modifications that play crucial roles in a wide variety of biological processes. Adenosine-to-inosine (A-to-Ino) RNA editing is one of the most prevalent modifications among all types of RNA. Abnormal A-to-InoRNA editing has been demonstrated to be associated with many human diseases. Identification of A-to-Ino editing sites is indispensable to deciphering their biological roles. Herein, by employing the unique property of human endonuclease V (hEndoV), we proposed a hEndoV-mediated sequencing (hEndoV-seq) method for the single-base resolution detection of A-to-InoRNA editing sites. In this approach, the terminal 3'OH of RNA is first blocked by 3'-deoxyadenosine (3'-deoxy-A). Specific cleavage of Ino sites by hEndoV protein produces new terminal 3'OH, which can be identified by sequencing analysis, and therefore offers the site-specific detection of Ino in RNA. The principle of hEndoV-seq is straightforward and the analytical procedure is simple. No chemical reaction is involved in the sequencing library preparation. The whole procedure in hEndoV-seq is carried out under mild conditions and RNA is not prone to degradation. Taken together, the proposed hEndoV-seq method is capable of site-specific identification of A-to-Ino editing in RNA, which provides a valuable tool for elucidating the functions of A-to-Ino editing in RNA.
Collapse
Affiliation(s)
- Juan-Juan Chen
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xue-Jiao You
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| | - Lin Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neng-Bin Xie
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
10
|
Chen MY, Gui Z, Chen KK, Ding JH, He JG, Xiong J, Li JL, Wang J, Yuan BF, Feng YQ. Adolescent alcohol exposure alters DNA and RNA modifications in peripheral blood by liquid chromatography-tandem mass spectrometry analysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Wang L, Bayanbold K, Zhao L, Wang Y, Adamcakova-Dodd A, Thorne PS, Yang H, Jiang BH, Liu LZ. Redox sensitive miR-27a/b/Nrf2 signaling in Cr(VI)-induced carcinogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151118. [PMID: 34718002 PMCID: PMC9387726 DOI: 10.1016/j.scitotenv.2021.151118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 05/27/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a well-known carcinogen that can cause several types of cancer including lung cancer. NF-E2-related factor 2 (Nrf2), the redox sensitive transcription factor, can protect normal cells from a variety of toxicants and carcinogens by inducing the expression of cellular protective genes and maintaining redox balance. However, Nrf2 also protects cancer cells from radio- and chemo-therapies and facilitates cancer progression. Although Cr(VI) treatment has been demonstrated to upregulate Nrf2 expression, the mechanisms for Nrf2 regulation upon chronic Cr(VI) exposure remain to be elucidated. We found that Nrf2 was upregulated in BEAS-2B cells exposed to Cr(VI) from 1 to 5 months, and also in Cr(VI)-induced transformed (Cr-T) cells with Cr(VI) treatment for 6 months. We showed that KEAP1, the classic negative regulator of Nrf2, was downregulated after Cr(VI) exposure for 4 months, suggesting that Nrf2 induction by Cr(VI) treatment is through KEAP1 decrease at late stage. To further decipher the mechanisms of Nrf2 upregulation at early stage of Cr(VI) exposure, we demonstrated that miR-27a and miR-27b were redox sensitive miRNAs, since reactive oxygen species (ROS) scavengers induced miR-27a/b expression. After Cr(VI) exposure for 1 month, the expression levels of miR-27a/b was dramatically decreased. The changes of miR-27a/b and their target Nrf2 were confirmed in vivo by mouse model intranasally exposed to Cr(VI) for 12 weeks. Nrf2 was a direct target of miR-27a/b, which acted as tumor suppressors in vitro and in vivo to inhibit tumorigenesis and cancer development of Cr-T cells. The results suggested that the inhibition of miR-27a/b was responsible for Nrf2 upregulation at both early stage and late stage of Cr(VI) exposure. This novel regulation of Nrf2 upon chronic Cr(VI) exposure through redox-regulated miR-27a/b will provide potential targets for preventing and treating Cr(VI)-induced carcinogenesis in the future.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States; Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Khaliunaa Bayanbold
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Lei Zhao
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yifang Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hushan Yang
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Cruz J, Lemos B. Post-transcriptional diversity in riboproteins and RNAs in aging and cancer. Semin Cancer Biol 2021; 76:292-300. [PMID: 34474152 PMCID: PMC8627441 DOI: 10.1016/j.semcancer.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Post-transcriptional (PtscM) and post-translational (PtrnM) modifications of nucleotides and amino acids are covalent modifications able to change physio-chemical properties of RNAs and proteins. In the ribosome, the adequate assembly of rRNAs and ribosomal protein subunits in the nucleolus ensures suitable translational activity, with protein synthesis tuned according to intracellular demands of energy production, replication, proliferation, and growth. Disruption in the regulatory control of PtscM and PtrnM can impair ribosome biogenesis and ribosome function. Ribosomal impairment may, in turn, impact the synthesis of proteins engaged in functions as varied as telomere maintenance, apoptosis, and DNA repair, as well as intersect with mitochondria and telomerase activity. These cellular processes often malfunction in carcinogenesis and senescence. Here we discuss regulatory mechanisms of PtscMs and PtrnMs on ribosomal function. We also address chemical modification in rRNAs and their impacts on cellular metabolism, replication control, and senescence. Further, we highlight similarities and differences of PtscMs and PtrnMs in ribosomal intermediates during aging and carcinogenesis. Understanding these regulatory mechanisms may uncover critical steps for the development of more efficient oncologic and anti-aging therapies.
Collapse
Affiliation(s)
- Jurandir Cruz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 01246, Brazil
| | - Bernardo Lemos
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Site-specific quantification of 5-carboxylcytosine in DNA by chemical conversion coupled with ligation-based PCR. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Abstract
Epigenetic modifications have gained attention since they can be potentially changed with environmental stimuli and can be associated with adverse health outcomes. Epitranscriptome field has begun to attract attention with several aspects since RNA modifications have been linked with critical biological processes and implicated in diseases. Several RNA modifications have been identified as reversible indicating the dynamic features of modification which can be altered by environmental cues. Currently, we know more than 150 RNA modifications in different organisms and on different bases which are modified by various chemical groups. RNA editing, which is one of the RNA modifications, occurs after transcription, which results in RNA sequence different from its corresponding DNA sequence. Emerging evidence reveals the functions of RNA editing as well as the association between RNA editing and diseases. However, the RNA editing field is beginning to grow up and needs more empirical evidence in regard to disease and toxicology. Thus, this review aims to provide the current evidence-based studies on RNA editing modifying genes for genotoxicity and cancer. The review presented the association between environmental xenobiotics exposure and RNA editing modifying genes and focused on the association between the expression of RNA editing modifying genes and cancer. Furthermore, we discussed the future directions of scientific studies in the area of RNA modifications, especially in the RNA editing field, and provided a knowledge-based framework for further studies.
Collapse
Affiliation(s)
- Akin Cayir
- Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
15
|
Cheng MY, Tao WB, Yuan BF, Feng YQ. Methods for isolation of messenger RNA from biological samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:289-298. [PMID: 33300893 DOI: 10.1039/d0ay01912g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RNA molecules contain many chemical modifications that can regulate a variety of biological processes. Messenger RNA (mRNA) molecules are critical components in the central dogma of molecular biology. The discovery of reversible chemical modifications in eukaryotic mRNA brings forward a new research field in RNA modification-mediated regulation of gene expression. The modifications in mRNA generally exist in low abundance. The use of highly pure mRNA is critical for the confident identification of new modifications as well as for the accurate quantification of existing modifications in mRNA. In addition, isolation of highly pure mRNA is the first step in many biological research studies. Therefore, the methods for isolating highly pure mRNA are important for mRNA-based downstream studies. A variety of methods for isolating mRNA have been developed in the past few decades and new methods continuously emerge. This review focuses on the methodologies and protocols for isolating mRNA populations. In addition, we discuss the advantages and limitations of these methods. We hope this paper will provide a general view of mRNA isolation strategies and facilitate studies that involve mRNA modifications and functions.
Collapse
Affiliation(s)
- Ming-Yu Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | | | | | | |
Collapse
|
16
|
Detecting Internal N7-Methylguanosine mRNA Modifications by Differential Enzymatic Digestion Coupled with Mass Spectrometry Analysis. Methods Mol Biol 2021; 2298:247-259. [PMID: 34085250 DOI: 10.1007/978-1-0716-1374-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent discovery of reversible chemical modifications on mRNA has opened a new era of post-transcriptional gene regulation in eukaryotes. Among these modifications identified in eukaryotic mRNA, N7-methylguanosine (m7G) is unique owing to its presence in the 5' cap structure. Recently, it has been reported that m7G also exists internally in mRNA. Here, we describe a protocol of combining differential enzymatic digestion with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis to detect internal m7G modification in mRNA. This protocol can also be used to quantify the level of m7G at both the 5' cap and internal positions of mRNA.
Collapse
|
17
|
Chemical labeling – Assisted mass spectrometry analysis for sensitive detection of cytidine dual modifications in RNA of mammals. Anal Chim Acta 2020; 1098:56-65. [DOI: 10.1016/j.aca.2019.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/13/2019] [Accepted: 11/10/2019] [Indexed: 12/15/2022]
|
18
|
Ding JH, Ma CJ, Chen MY, Chen B, Yuan BF, Feng YQ. Quantification and Single-Base Resolution Analysis of N1-Methyladenosine in mRNA by Ligation-Assisted Differentiation. Anal Chem 2020; 92:2612-2619. [DOI: 10.1021/acs.analchem.9b04454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiang-Hui Ding
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Cheng-Jie Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Meng-Yuan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Bei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
19
|
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry and Sauvage Center for Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|