1
|
Pallardy M, Bechara R, Whritenour J, Mitchell-Ryan S, Herzyk D, Lebrec H, Merk H, Gourley I, Komocsar WJ, Piccotti JR, Balazs M, Sharma A, Walker DB, Weinstock D. Drug hypersensitivity reactions: review of the state of the science for prediction and diagnosis. Toxicol Sci 2024; 200:11-30. [PMID: 38588579 PMCID: PMC11199923 DOI: 10.1093/toxsci/kfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Drug hypersensitivity reactions (DHRs) are a type of adverse drug reaction that can occur with different classes of drugs and affect multiple organ systems and patient populations. DHRs can be classified as allergic or non-allergic based on the cellular mechanisms involved. Whereas nonallergic reactions rely mainly on the innate immune system, allergic reactions involve the generation of an adaptive immune response. Consequently, drug allergies are DHRs for which an immunological mechanism, with antibody and/or T cell, is demonstrated. Despite decades of research, methods to predict the potential for a new chemical entity to cause DHRs or to correctly attribute DHRs to a specific mechanism and a specific molecule are not well-established. This review will focus on allergic reactions induced by systemically administered low-molecular weight drugs with an emphasis on drug- and patient-specific factors that could influence the development of DHRs. Strategies for predicting and diagnosing DHRs, including potential tools based on the current state of the science, will also be discussed.
Collapse
Affiliation(s)
- Marc Pallardy
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Orsay, 91400, France
| | - Rami Bechara
- Université Paris-Saclay, INSERM, CEA, Center for Research in Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB), Le Kremlin Bicêtre, 94270, France
| | - Jessica Whritenour
- Pfizer Worldwide Research, Development and Medical, Groton, Connecticut 06340, USA
| | - Shermaine Mitchell-Ryan
- The Health and Environmental Science Institute, Immunosafety Technical Committee, Washington, District of Columbia 20005, USA
| | - Danuta Herzyk
- Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Herve Lebrec
- Amgen Inc., Translational Safety and Bioanalytical Sciences, South San Francisco, California 94080, USA
| | - Hans Merk
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, 52062, Germany
| | - Ian Gourley
- Janssen Research & Development, LLC, Immunology Clinical Development, Spring House, Pennsylvania 19002, USA
| | - Wendy J Komocsar
- Immunology Business Unit, Eli Lilly and Company, Indianapolis, Indiana 46225, USA
| | | | - Mercedesz Balazs
- Genentech, Biochemical and Cellular Pharmacology, South San Francisco, California 94080, USA
| | - Amy Sharma
- Pfizer, Drug Safety Research & Development, New York 10017, USA
| | - Dana B Walker
- Novartis Institute for Biomedical Research, Preclinical Safety-Translational Immunology and Clinical Pathology, Cambridge, Massachusetts 02139, USA
| | - Daniel Weinstock
- Janssen Research & Development, LLC, Preclinical Sciences Translational Safety, Spring House, Pennsylvania 19002, USA
| |
Collapse
|
2
|
Thomson P, Hammond S, Naisbitt DJ. Pathology of drug hypersensitivity reactions and mechanisms of immune tolerance. Clin Exp Allergy 2022; 52:1379-1390. [PMID: 36177544 DOI: 10.1111/cea.14235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 01/26/2023]
Abstract
Immune-mediated type IV adverse drug reactions are idiosyncratic in nature, generally not related to the primary or secondary pharmacology of the drug. Due to their complex nature and rarity, these iatrogenic reactions are seldom predicted or encountered during preclinical/early clinical development stages, and often precipitate upon exposure to wider populations (i.e. phase III onwards). They confer a burden on the healthcare sector in both a clinical and financial sense presenting a severe impediment to the drug discovery and development process. Research over the past 50 years has improved our understanding of these reactions markedly as both in vitro and in vivo studies have placed the role of the immune system, in particular; drug-responsive T cells, firmly in the spotlight as the mediators of these reactions. Indeed, the role of different populations of T cells in adverse events and the interaction of drug molecules with HLA proteins expressed on the surface of antigen-presenting cells is of considerable interest. Herein, this review examines the pathways of immune-mediated adverse events including the various T cell subtypes implicated and the mechanisms of T cell activation. Additionally, we address the enigma of immunological tolerance and explore the role tolerance plays in determination of susceptibility to such adverse events even in individuals carrying immunogenic liabilities.
Collapse
Affiliation(s)
- Paul Thomson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Sean Hammond
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.,ApconiX, Alderley Park, Alderley Edge, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Han J, Pan C, Tang X, Li Q, Zhu Y, Zhang Y, Liang A. Hypersensitivity reactions to small molecule drugs. Front Immunol 2022; 13:1016730. [PMID: 36439170 PMCID: PMC9684170 DOI: 10.3389/fimmu.2022.1016730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2024] Open
Abstract
Drug hypersensitivity reactions induced by small molecule drugs encompass a broad spectrum of adverse drug reactions with heterogeneous clinical presentations and mechanisms. These reactions are classified into allergic drug hypersensitivity reactions and non-allergic drug hypersensitivity reactions. At present, the hapten theory, pharmacological interaction with immune receptors (p-i) concept, altered peptide repertoire model, and altered T-cell receptor (TCR) repertoire model have been proposed to explain how small molecule drugs or their metabolites induce allergic drug hypersensitivity reactions. Meanwhile, direct activation of mast cells, provoking the complement system, stimulating or inhibiting inflammatory reaction-related enzymes, accumulating bradykinin, and/or triggering vascular hyperpermeability are considered as the main factors causing non-allergic drug hypersensitivity reactions. To date, many investigations have been performed to explore the underlying mechanisms involved in drug hypersensitivity reactions and to search for predictive and preventive methods in both clinical and non-clinical trials. However, validated methods for predicting and diagnosing hypersensitivity reactions to small molecule drugs and deeper insight into the relevant underlying mechanisms are still limited.
Collapse
Affiliation(s)
- Jiayin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Line J, Thomson P, Naisbitt DJ. Pathology of T-cell-mediated drug hypersensitivity reactions and impact of tolerance mechanisms on patient susceptibility. Curr Opin Allergy Clin Immunol 2022; 22:226-233. [PMID: 35779063 DOI: 10.1097/aci.0000000000000834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW T-cell-mediated drug hypersensitivity is responsible for significant morbidity and mortality, and represents a substantial clinical concern. The purpose of this article is to focus on T-cell reactions and discuss recent advances in disease pathogenesis by exploring the impact of tolerance mechanisms in determining susceptibility in genetically predisposed patients. RECENT FINDINGS Certain drugs preferentially activate pathogenic T cells that have defined pathways of effector function. Thus, a critical question is what extenuating factors influence the direction of immune activation. A large effort has been given towards identifying phenotypic (e.g., infection) or genotypic (e.g., human leukocyte antigen) associations which predispose individuals to drug hypersensitivity. However, many individuals expressing known risk factors safely tolerate drug administration. Thus, mechanistic insight is needed to determine what confers this tolerance. Herein, we discuss recent clinical/mechanistic findings which indicate that the direction in which the immune system is driven relies upon a complex interplay between co-stimulatory/co-regulatory pathways which themselves depend upon environmental inputs from the innate immune system. SUMMARY It is becoming increasingly apparent that tolerance mechanisms impact on susceptibility to drug hypersensitivity. As the field moves forward it will be interesting to discover whether active tolerance is the primary response to drug exposure, with genetic factors such as HLA acting as a sliding scale, influencing the degree of regulation required to prevent clinical reactions in patients.
Collapse
Affiliation(s)
- James Line
- Department of Pharmacology and Therapeutics, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
5
|
Hammond S, Olsson-Brown A, Grice S, Naisbitt DJ. Does immune checkpoint inhibitor therapy increase the frequency of adverse reactions to concomitant medications? Clin Exp Allergy 2022; 52:600-603. [PMID: 35338535 PMCID: PMC9311166 DOI: 10.1111/cea.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Sean Hammond
- Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK.,ApconiX, Alderley Park, Alderley Edge, UK
| | - Anna Olsson-Brown
- Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Sophie Grice
- Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Dean J Naisbitt
- Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Cornaby C, Schmitz JL, Weimer ET. Next-generation sequencing and clinical histocompatibility testing. Hum Immunol 2021; 82:829-837. [PMID: 34521569 DOI: 10.1016/j.humimm.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022]
Abstract
Histocompatibility testing is essential for donor identification and risk assessment in solid organ and hematopoietic stem cell transplant. Additionally, it is useful for identifying donor specific alleles for monitoring donor specific antibodies in post-transplant patients. Next-generation sequence (NGS) based human leukocyte antigen (HLA) typing has improved many aspects of histocompatibility testing in hematopoietic stem cell and solid organ transplant. HLA disease association testing and research has also benefited from the advent of NGS technologies. In this review we discuss the current impact and future applications of NGS typing on clinical histocompatibility testing for transplant and non-transplant purposes.
Collapse
Affiliation(s)
- Caleb Cornaby
- McLendon Clinical Laboratories, UNC Health, Chapel Hill, NC, USA
| | - John L Schmitz
- McLendon Clinical Laboratories, UNC Health, Chapel Hill, NC, USA; Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Eric T Weimer
- McLendon Clinical Laboratories, UNC Health, Chapel Hill, NC, USA; Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Hertzman RJ, Deshpande P, Gibson A, Phillips EJ. Role of pharmacogenomics in T-cell hypersensitivity drug reactions. Curr Opin Allergy Clin Immunol 2021; 21:327-334. [PMID: 34039850 PMCID: PMC8243836 DOI: 10.1097/aci.0000000000000754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW An update of the pharmacogenetic risk factors associated with T-cell-mediated delayed hypersensitivity reactions. RECENT FINDINGS Recent HLA associations relevant to our understanding of immunopathogenesis and clinical practice include HLA-B∗13:01 with co-trimoxazole-induced SCAR, and HLA-A∗32:01 with vancomycin-DRESS, for which an extended HLA class II haplotype is implicated in glycopeptide antibiotic cross-reactivity. Hypoactive variants of ERAP1, an enzyme-trimming peptide prior to HLA loading, are now associated with protection from abacavir-hypersensitivity in HLA-B∗57:01+ patients, and single-cell sequencing has defined the skin-restricted expansion of a single, public and drug-reactive dominant TCR across patients with HLA-B∗15:02-restricted carbamazepine-induced SJS/TEN. More recent strategies for the use of HLA and other risk factors may include risk-stratification, early diagnosis, and diagnosis in addition to screening. SUMMARY HLA is necessary but insufficient as a risk factor for the development of most T-cell-mediated reactions. Newly emerged genetic and ecological risk factors, combined with HLA-restricted response, align with underlying immunopathogenesis and drive towards enhanced strategies to improve positive-predictive and negative-predictive values. With large population-matched cohorts, genetic studies typically focus on populations that have been readily accessible to research studies, but it is now imperative to address similar risk in globally relevant and understudied populations.
Collapse
Affiliation(s)
- Rebecca J Hertzman
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Bechara R, Feray A, Pallardy M. Drug and Chemical Allergy: A Role for a Specific Naive T-Cell Repertoire? Front Immunol 2021; 12:653102. [PMID: 34267746 PMCID: PMC8276071 DOI: 10.3389/fimmu.2021.653102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023] Open
Abstract
Allergic reactions to drugs and chemicals are mediated by an adaptive immune response involving specific T cells. During thymic selection, T cells that have not yet encountered their cognate antigen are considered naive T cells. Due to the artificial nature of drug/chemical-T-cell epitopes, it is not clear whether thymic selection of drug/chemical-specific T cells is a common phenomenon or remains limited to few donors or simply does not exist, suggesting T-cell receptor (TCR) cross-reactivity with other antigens. Selection of drug/chemical-specific T cells could be a relatively rare event accounting for the low occurrence of drug allergy. On the other hand, a large T-cell repertoire found in multiple donors would underline the potential of a drug/chemical to be recognized by many donors. Recent observations raise the hypothesis that not only the drug/chemical, but also parts of the haptenated protein or peptides may constitute the important structural determinants for antigen recognition by the TCR. These observations may also suggest that in the case of drug/chemical allergy, the T-cell repertoire results from particular properties of certain TCR to recognize hapten-modified peptides without need for previous thymic selection. The aim of this review is to address the existence and the role of a naive T-cell repertoire in drug and chemical allergy. Understanding this role has the potential to reveal efficient strategies not only for allergy diagnosis but also for prediction of the immunogenic potential of new chemicals.
Collapse
Affiliation(s)
- Rami Bechara
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexia Feray
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Marc Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| |
Collapse
|
9
|
Hammond S, Thomson P, Meng X, Naisbitt D. In-Vitro Approaches to Predict and Study T-Cell Mediated Hypersensitivity to Drugs. Front Immunol 2021; 12:630530. [PMID: 33927714 PMCID: PMC8076677 DOI: 10.3389/fimmu.2021.630530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
Mitigating the risk of drug hypersensitivity reactions is an important facet of a given pharmaceutical, with poor performance in this area of safety often leading to warnings, restrictions and withdrawals. In the last 50 years, efforts to diagnose, manage, and circumvent these obscure, iatrogenic diseases have resulted in the development of assays at all stages of a drugs lifespan. Indeed, this begins with intelligent lead compound selection/design to minimize the existence of deleterious chemical reactivity through exclusion of ominous structural moieties. Preclinical studies then investigate how compounds interact with biological systems, with emphasis placed on modeling immunological/toxicological liabilities. During clinical use, competent and accurate diagnoses are sought to effectively manage patients with such ailments, and pharmacovigilance datasets can be used for stratification of patient populations in order to optimise safety profiles. Herein, an overview of some of the in-vitro approaches to predict intrinsic immunogenicity of drugs and diagnose culprit drugs in allergic patients after exposure is detailed, with current perspectives and opportunities provided.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
- ApconiX, Alderley Park, Alderley Edge, United Kingdom
| | - Paul Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Dean Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Ayuso P, García-Martín E, Agúndez JAG. Variability of the Genes Involved in the Cellular Redox Status and Their Implication in Drug Hypersensitivity Reactions. Antioxidants (Basel) 2021; 10:antiox10020294. [PMID: 33672092 PMCID: PMC7919686 DOI: 10.3390/antiox10020294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse drug reactions are a major cause of morbidity and mortality. Of the great diversity of drugs involved in hypersensitivity drug reactions, the most frequent are non-steroidal anti-inflammatory drugs followed by β-lactam antibiotics. The redox status regulates the level of reactive oxygen and nitrogen species (RONS). RONS interplay and modulate the action of diverse biomolecules, such as inflammatory mediators and drugs. In this review, we address the role of the redox status in the initiation, as well as in the resolution of inflammatory processes involved in drug hypersensitivity reactions. We summarize the association findings between drug hypersensitivity reactions and variants in the genes that encode the enzymes related to the redox system such as enzymes related to glutathione: Glutathione S-transferase (GSTM1, GSTP, GSTT1) and glutathione peroxidase (GPX1), thioredoxin reductase (TXNRD1 and TXNRD2), superoxide dismutase (SOD1, SOD2, and SOD3), catalase (CAT), aldo-keto reductase (AKR), and the peroxiredoxin system (PRDX1, PRDX2, PRDX3, PRDX4, PRDX5, PRDX6). Based on current evidence, the most relevant candidate redox genes related to hypersensitivity drug reactions are GSTM1, TXNRD1, SOD1, and SOD2. Increasing the understanding of pharmacogenetics in drug hypersensitivity reactions will contribute to the development of early diagnostic or prognosis tools, and will help to diminish the occurrence and/or the severity of these reactions.
Collapse
Affiliation(s)
- Pedro Ayuso
- Correspondence: ; Tel.: +34-927257000 (ext. 51038)
| | | | | |
Collapse
|