1
|
Maciel EVS, Habeck T, Meyners C, Lermyte F. Self-packed size-exclusion columns enable versatile high-throughput native, top-down, and ion mobility-mass spectrometry studies on proteins and complexes. Talanta 2025; 291:127868. [PMID: 40056653 DOI: 10.1016/j.talanta.2025.127868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Native MS (nMS) is a key structural biology technique that makes it possible to study intact proteins and their interactions. Unfortunately, non-volatile salts are incompatible with nMS, which demands a laborious desalting procedure. Non-denaturing size-exclusion chromatography (SEC) allows both rapid desalting and separation and has previously been explored for nMS automation. However, SEC at conventional scale requires rather large sample amounts as well as harsh ESI conditions, which can cause protein unfolding. Capillary LC allows softer conditions; however, the few commercially available SEC columns appropriate for this flow rate are prohibitively expensive for many laboratories. Existing protocols for packing buffer exchange columns rely on specialized equipment and/or result in columns that have limited capacity for size-based protein separation. Here, we present self-packed miniaturized SEC columns with different stationary phases and customizable dimensions. The columns, produced via slurry packing with an ordinary LC pump were used across a range of samples in several applications including nMS, top-down MS (TDMS), ligand screening, and ion mobility (IM)-MS. Native separation allowed acquisition of data from samples containing more than one protein. We acquired native TDMS data of 3 proteins in 12 min, with up to 47 % sequence coverage. IM-MS of alpha-synuclein at different charge states was measured in ca. 60 min (including calibrants), with results that match the literature. Finally, we used SEC-nMS to rapidly screen proteolysis-targeting chimera candidates and performed collision-induced unfolding (CIU) of a PROTAC-induced ternary complex. Through this work, we highlight the potential of SEC to support developments in structural MS.
Collapse
Affiliation(s)
- Edvaldo Vasconcelos Soares Maciel
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| | - Tanja Habeck
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| | - Christian Meyners
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| | - Frederik Lermyte
- Clemens Schöpf Institute, Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany.
| |
Collapse
|
2
|
Zhang T, He Y, Li C, Yao H, Zhang M, Li Y. Intelligent decoding platform for peptide sequences: SERS detection via high affinity self-assembled silver nanoparticles and machine learning analysis. Anal Chim Acta 2025; 1347:343797. [PMID: 40024661 DOI: 10.1016/j.aca.2025.343797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Peptides are compounds formed by the dehydration-condensation reaction of two or more amino acids which play an important role in the life functions of the organism. Changes in the structure of amino acids and peptides are vital for elucidating the process of disease development. However, the existing methods make it difficult to accurately recognize slight variations in peptide sequences, which becomes a difficult detection task. Therefore, the necessity of novel, accurate, comprehensive and deep strategies for peptide sequence identification is imperative. RESULTS Here, an intelligent decoding system was developed, which synthesized a substrate (Ag/BDHA) with high affinity and self-assembly capabilities by double reduction method and utilized surface-enhanced Raman scattering (SERS) to achieve label-free, high-affinity and accurate capturing of peptide sequences. The platform can recognize peptide chains with the same molecular weight but different amino acid sequences, filling the loopholes of mass spectroscopy. Interestingly, it can also distinguish peptide chains with different amino acid lengths, different amino acid positions and different amino acid mutations. And further combined with machine learning methods to simplify the output of detection results, including thermogram, confusion matrix, principal component analysis and hierarchical cluster analysis, which was more suitable for practical applications. More importantly, to explore the potential for application, real influenza A viruses were selected and analyzed and successfully identifying mutations and subtypes of viruses. SIGNIFICANCE In sum, the original, versatile and intelligent detection system based on surface-enhanced Raman scattering we proposed provides a promising method and strategy for the precise and valid analysis of different variations of peptide sequences, which is of great significance for explaining life processes, exploring disease pathogenesis, and developing innovative drugs.
Collapse
Affiliation(s)
- Ting Zhang
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China; Department of Inorganic Chemistry and Physical Chemistry, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Yingying He
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Chengming Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Huan Yao
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Mingxu Zhang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Yang Li
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China; Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland.
| |
Collapse
|
3
|
Liang J, Tian J, Zhang H, Li H, Chen L. Proteomics: An In-Depth Review on Recent Technical Advances and Their Applications in Biomedicine. Med Res Rev 2025. [PMID: 39789883 DOI: 10.1002/med.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Proteins hold pivotal importance since many diseases manifest changes in protein activity. Proteomics techniques provide a comprehensive exploration of protein structure, abundance, and function in biological samples, enabling the holistic characterization of overall changes in organisms. Nowadays, the breadth of emerging methodologies in proteomics is unprecedentedly vast, with constant optimization of technologies in sample processing, data collection, data analysis, and its scope of application is steadily transitioning from the bench to the clinic. Here, we offer an insightful review of the technical developments in proteomics and its applications in biomedicine over the past 5 years. We focus on its profound contributions in profiling disease spectra, discovering new biomarkers, identifying promising drug targets, deciphering alterations in protein conformation, and unearthing protein-protein interactions. Moreover, we summarize the cutting-edge technologies and potential breakthroughs in the proteomics pipeline and provide the principal challenges in proteomics. Based on these, we aspire to broaden the applicability of proteomics and inspire researchers to enhance our understanding of complex biological systems by utilizing such techniques.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jundan Tian
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Huadong Zhang
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
4
|
Opuni KFM, Ruß M, Geens R, Vocht LD, Wielendaele PV, Debuy C, Sterckx YGJ, Glocker MO. Mass spectrometry-complemented molecular modeling predicts the interaction interface for a camelid single-domain antibody targeting the Plasmodium falciparum circumsporozoite protein's C-terminal domain. Comput Struct Biotechnol J 2024; 23:3300-3314. [PMID: 39296809 PMCID: PMC11409006 DOI: 10.1016/j.csbj.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Bioanalytical methods that enable rapid and high-detail characterization of binding specificities and strengths of protein complexes with low sample consumption are highly desired. The interaction between a camelid single domain antibody (sdAbCSP1) and its target antigen (PfCSP-Cext) was selected as a model system to provide proof-of-principle for the here described methodology. Research design and methods The structure of the sdAbCSP1 - PfCSP-Cext complex was modeled using AlphaFold2. The recombinantly expressed proteins, sdAbCSP1, PfCSP-Cext, and the sdAbCSP1 - PfCSP-Cext complex, were subjected to limited proteolysis and mass spectrometric peptide analysis. ITEM MS (Intact Transition Epitope Mapping Mass Spectrometry) and ITC (Isothermal Titration Calorimetry) were applied to determine stoichiometry and binding strength. Results The paratope of sdAbCSP1 mainly consists of its CDR3 (aa100-118). PfCSP-Cext's epitope is assembled from its α-helix (aa40-52) and opposing loop (aa83-90). PfCSP-Cext's GluC cleavage sites E46 and E58 were shielded by complex formation, confirming the predicted epitope. Likewise, sdAbCSP1's tryptic cleavage sites R105 and R108 were shielded by complex formation, confirming the predicted paratope. ITEM MS determined the 1:1 stoichiometry and the high complex binding strength, exemplified by the gas phase dissociation reaction enthalpy of 50.2 kJ/mol. The in-solution complex dissociation constant is 5 × 10-10 M. Conclusions Combining AlphaFold2 modeling with mass spectrometry/limited proteolysis generated a trustworthy model for the sdAbCSP1 - PfCSP-Cext complex interaction interface.
Collapse
Affiliation(s)
- Kwabena F M Opuni
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Science, University of Ghana, P.O. Box LG43, Legon, Ghana
| | - Manuela Ruß
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Rob Geens
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Line De Vocht
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Christophe Debuy
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| |
Collapse
|
5
|
Huang Y, Tan HY, Yuan J, Mu R, Yang J, Ball K, Vijayakrishnan B, Masterson L, Kinneer K, Luheshi N, Liang M, Rosenbaum AI. Extensive Biotransformation Profiling of AZD8205, an Anti-B7-H4 Antibody-Drug Conjugate, Elucidates Pathways Underlying Its Stability In Vivo. Anal Chem 2024; 96:16525-16533. [PMID: 39392424 PMCID: PMC11503519 DOI: 10.1021/acs.analchem.4c02309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
What happens to macromolecules in vivo? What drives the structure-activity relationship and in vivo stability for antibody-drug conjugates (ADCs)? These interrelated questions are increasingly relevant due to the re-emerging importance of ADCs as an impactful therapeutic modality and the gaps that exist in our understanding of ADC structural determinants that underlie ADC in vivo stability. Complex macromolecules, such as ADCs, may undergo changes in vivo due to their intricate structure as biotransformations may occur on the linker, the payload, and/or at the modified conjugation site. Furthermore, the dissection of ADC metabolism presents a substantial analytical challenge due to the difficulty in the identification or quantification of minor changes on a large macromolecule. We employed immunocapture-LCMS methods to evaluate in vivo changes in the drug-antibody ratio (DAR) profile in four different lead ADCs. This comprehensive characterization revealed that a critical structural determinant contributing to the ADC design was the linker, and competition of the thio-succinimide hydrolysis reaction over retro-Michael deconjugation can result in superb conjugation stability in vivo. These data, in conjunction with additional factors, informed the selection of AZD8205, puxitatug samrotecan, a B7-H4-directed cysteine-conjugated ADC bearing a novel topoisomerase I inhibitor payload, with durable DAR, currently being studied in the clinic for the potential treatment of solid malignancies (NCT05123482). These results highlight the relevance of studying macromolecule biotransformation and elucidating the ADC structure-in vivo stability relationship. The comprehensive nature of this work increases our confidence in the understanding of these processes. We hope this analytical approach can inform future development of bioconjugate drug candidates.
Collapse
Affiliation(s)
- Yue Huang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Hui Yin Tan
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jiaqi Yuan
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Ruipeng Mu
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Junyan Yang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Kathryn Ball
- Clinical
Pharmacology and Quantitative Pharmacology, Clinical Pharmacology
and Safety Sciences, R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | | | - Luke Masterson
- TTD,
Oncology R&D, AstraZeneca, London E1 2AX, United Kingdom
| | - Krista Kinneer
- Translational
Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Nadia Luheshi
- Oncology
R&D, AstraZeneca, Cambridge CB2 8PA, United
Kingdom
| | - Meina Liang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Anton I. Rosenbaum
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| |
Collapse
|
6
|
Cheng J, Wang H, Zhang Y, Wang X, Liu G. Advances in crosslinking chemistry and proximity-enabled strategies: deciphering protein complexes and interactions. Org Biomol Chem 2024; 22:7549-7559. [PMID: 39192765 DOI: 10.1039/d4ob01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Mass spectrometry, coupled with innovative crosslinking techniques to decode protein conformations and interactions through uninterrupted signal connections, has undergone remarkable progress in recent years. It is crucial to develop selective crosslinking reagents that minimally disrupt protein structure and dynamics, providing insights into protein network regulation and biological functions. Compared to traditional crosslinkers, new bifunctional chemical crosslinkers exhibit high selectivity and specificity in connecting proximal amino acid residues, resulting in stable molecular crosslinked products. The conjugation with specific amino acid residues like lysine, cysteine, arginine and tyrosine expands the XL-MS toolbox, enabling more precise modeling of target substrates and leading to improved data quality and reliability. Another emerging crosslinking method utilizes unnatural amino acids (UAAs) derived from proximity-enabled reactivity with specific amino acids or sulfur-fluoride exchange (SuFEx) reactions with nucleophilic residues. These UAAs are genetically encoded into proteins for the formation of specific covalent bonds. This technique combines the benefits of genetic encoding for live cell compatibility with chemical crosslinking, providing a valuable method for capturing transient and weak protein-protein interactions (PPIs) for mapping PPI coordinates and improving the pharmacological properties of proteins. With continued advancements in technology and applications, crosslinking mass spectrometry is poised to play an increasingly significant role in guiding our understanding of protein dynamics and function in the future.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| |
Collapse
|
7
|
Wang CR, McFarlane LO, Pukala TL. Exploring snake venoms beyond the primary sequence: From proteoforms to protein-protein interactions. Toxicon 2024; 247:107841. [PMID: 38950738 DOI: 10.1016/j.toxicon.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Lewis O McFarlane
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
8
|
Jiang Y, Zhang X, Nie H, Fan J, Di S, Fu H, Zhang X, Wang L, Tang C. Dissecting diazirine photo-reaction mechanism for protein residue-specific cross-linking and distance mapping. Nat Commun 2024; 15:6060. [PMID: 39025860 PMCID: PMC11258254 DOI: 10.1038/s41467-024-50315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
While photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, unambiguous identification of cross-linked residues hinders data interpretation to the same level that has been achieved with chemical cross-linking (CXL). We address this challenge by developing an in-line system with systematic modulation of light intensity and irradiation time, which allows for a quantitative evaluation of diazirine photolysis and photo-reaction mechanism. Our results reveal a two-step pathway with mainly sequential generation of diazo and carbene intermediates. Diazo intermediate preferentially targets buried polar residues, many of which are inaccessible with known CXL probes for their limited reactivity. Moreover, we demonstrate that tuning light intensity and duration enhances selectivity towards polar residues by biasing diazo-mediated cross-linking reactions over carbene ones. This mechanistic dissection unlocks the full potential of PXL, paving the way for accurate distance mapping against protein structures and ultimately, unveiling protein dynamic behaviors.
Collapse
Affiliation(s)
- Yida Jiang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xinghe Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jianxiong Fan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shuangshuang Di
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hui Fu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiu Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lijuan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
9
|
Wagner WJ, Gross ML. Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta. MASS SPECTROMETRY REVIEWS 2024; 43:782-825. [PMID: 36224716 PMCID: PMC10090239 DOI: 10.1002/mas.21814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein-inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein-inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein-inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.
Collapse
Affiliation(s)
- Wesley J Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Kang WY, Mondal A, Bonney JR, Perez A, Prentice BM. Structural Elucidation of Ubiquitin via Gas-Phase Ion/Ion Cross-Linking Reactions Using Sodium-Cationized Reagents Coupled with Infrared Multiphoton Dissociation. Anal Chem 2024; 96:8518-8527. [PMID: 38711366 PMCID: PMC11161031 DOI: 10.1021/acs.analchem.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Accurate structural determination of proteins is critical to understanding their biological functions and the impact of structural disruption on disease progression. Gas-phase cross-linking mass spectrometry (XL-MS) via ion/ion reactions between multiply charged protein cations and singly charged cross-linker anions has previously been developed to obtain low-resolution structural information on proteins. This method significantly shortens experimental time relative to conventional solution-phase XL-MS but has several technical limitations: (1) the singly deprotonated N-hydroxysulfosuccinimide (sulfo-NHS)-based cross-linker anions are restricted to attachment at neutral amine groups of basic amino acid residues and (2) analyzing terminal cross-linked fragment ions is insufficient to unambiguously localize sites of linker attachment. Herein, we demonstrate enhanced structural information for alcohol-denatured A-state ubiquitin obtained from an alternative gas-phase XL-MS approach. Briefly, singly sodiated ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS) cross-linker anions enable covalent cross-linking at both ammonium and amine groups. Additionally, covalently modified internal fragment ions, along with terminal b-/y-type counterparts, improve the determination of linker attachment sites. Molecular dynamics simulations validate experimentally obtained gas-phase conformations of denatured ubiquitin. This method has identified four cross-linking sites across 8+ ubiquitin, including two new sites in the N-terminal region of the protein that were originally inaccessible in prior gas-phase XL approaches. The two N-terminal cross-linking sites suggest that the N-terminal half of ubiquitin is more compact in gas-phase conformations. By comparison, the two C-terminal linker sites indicate the signature transformation of this region of the protein from a native to a denatured conformation. Overall, the results suggest that the solution-phase secondary structures of the A-state ubiquitin are conserved in the gas phase. This method also provides sufficient sensitivity to differentiate between two gas-phase conformers of the same charge state with subtle structural variations.
Collapse
Affiliation(s)
| | - Arup Mondal
- Department of Chemistry, University of Florida
| | | | | | | |
Collapse
|
11
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 PMCID: PMC11996003 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M. Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | | |
Collapse
|
12
|
Ito T, Tojo Y, Fujii M, Nishino K, Kosako H, Shinohara Y. Insights into the Mechanism of Catalytic Activity of Plasmodium Parasite Malate-Quinone Oxidoreductase. ACS OMEGA 2024; 9:21647-21657. [PMID: 38764661 PMCID: PMC11097338 DOI: 10.1021/acsomega.4c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Plasmodium malate-quinone oxidoreductase (MQO) is a membrane flavoprotein catalyzing the oxidation of malate to oxaloacetate and the reduction of quinone to quinol. Recently, using a yeast expression system, we demonstrated that MQO, expressed in place of mitochondrial malate dehydrogenase (MDH), contributes to the TCA cycle and the electron transport chain in mitochondria, making MQO attractive as a promising drug target in Plasmodium malaria parasites, which lack mitochondrial MDH. However, there is little information on the structure of MQO and its catalytic mechanism, information that will be required to develop novel drugs. Here, we investigated the catalytic site of P. falciparum MQO (PfMQO) using our yeast expression system. We generated a model structure for PfMQO with the AI tool AlphaFold and used protein footprinting by acetylation with acetic anhydride to analyze the surface topology of the model, confirming the computational prediction to be reasonably accurate. Moreover, a putative catalytic site, which includes a possible flavin-binding site, was identified by this combination of protein footprinting and structural prediction model. This active site was analyzed by site-directed mutagenesis. By measuring enzyme activity and protein expression levels in the PfMQO mutants, we showed that several residues at the active site are essential for enzyme function. In addition, a single substitution mutation near the catalytic site resulted in enhanced sensitivity to ferulenol, an inhibitor of PfMQO that competes with malate for binding to the enzyme. This strongly supports the notion that the substrate binds to the proposed catalytic site. Then, the location of the catalytic site was demonstrated by structural comparison with a homologous enzyme. Finally, we used our results to propose a mechanism for the catalytic activity of MQO by reference to the mechanism of action of structurally or functionally homologous enzymes.
Collapse
Affiliation(s)
- Takeshi Ito
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Graduate
School of Pharmaceutical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Yuma Tojo
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Faculty
of Pharmaceutical Sciences, Tokushima University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Minori Fujii
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Faculty
of Pharmaceutical Sciences, Tokushima University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Kohei Nishino
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Hidetaka Kosako
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| | - Yasuo Shinohara
- Institute
of Advanced Medical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
- Graduate
School of Pharmaceutical Sciences, Tokushima
University, 3-18 Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
13
|
Lai C, Tang Z, Liu Z, Luo P, Zhang W, Zhang T, Zhang W, Dong Z, Liu X, Yang X, Wang F. Probing the functional hotspots inside protein hydrophobic pockets by in situ photochemical trifluoromethylation and mass spectrometry. Chem Sci 2024; 15:2545-2557. [PMID: 38362424 PMCID: PMC10866368 DOI: 10.1039/d3sc05106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Due to the complex high-order structures and interactions of proteins within an aqueous solution, a majority of chemical functionalizations happen on the hydrophilic sites of protein external surfaces which are naturally exposed to the solution. However, the hydrophobic pockets inside proteins are crucial for ligand binding and function as catalytic centers and transporting tunnels. Herein, we describe a reagent pre-organization and in situ photochemical trifluoromethylation strategy to profile the functional sites inside the hydrophobic pockets of native proteins. Unbiased mass spectrometry profiling was applied for the characterization of trifluoromethylated sites with high sensitivity. Native proteins including myoglobin, trypsin, haloalkane dehalogenase, and human serum albumin have been engaged in this mild photochemical process and substantial hydrophobic site-specific and structure-selective trifluoromethylation substitutes are obtained without significant interference to their bioactivity and structures. Sodium triflinate is the only reagent required to functionalize the unprotected proteins with wide pH-range tolerance and high biocompatibility. This "in-pocket" activation model provides a general strategy to modify the potential binding pockets and gain essential structural insights into the functional hotspots inside protein hydrophobic pockets.
Collapse
Affiliation(s)
- Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiyao Tang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Pan Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Wenxiang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Tingting Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenhao Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Dong
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xinyuan Liu
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xueming Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
14
|
Huangfu S, Yu X, Sun Z, Jiang B, Chen H. Chemical reagents for the enrichment of modified peptides in MS-based identification. Chem Commun (Camb) 2024; 60:1509-1516. [PMID: 38224214 DOI: 10.1039/d3cc05260e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Chemical reagents with special groups as enrichable handles have empowered the ability to label and enrich modified peptides. Here is an overview of different chemical reagents with affinity tags to isolate labeled peptides and the latest developments of enrichment strategies. Biotin is the most used affinity tag due to its high interaction with avidin. To decrease the unfavorable influence of biotin for its poor efficiency in ionization and fragmentation in downstream MS analysis, cleavable moieties were installed between the reactive groups and biotin to release labeled peptides from the biotin. To minimize the steric hindrance of biotin, a two-step method was developed, for which alkyne- or azide-tagged linkers were firstly used to label peptides and then biotin was installed through click chemistry. Recently, new linkers using a small phosphonic acid as the affinity tag for IMAC or TiO2 enrichment have been developed and successfully used to isolate chemically labeled peptides in XL-MS. A stable P-C instead of P-O bond was introduced to linkers to differentiate labeled and endogenous phosphopeptides. Furthermore, a membrane-permeable phosphonate-containing reagent was reported, which facilitated the study of living systems. Taking a cue from classic chemical reactions, stable metal-complex intermediates, including cobalt and palladium complexes, have been developed as peptide purification systems. Advanced enrichment strategies have also been proposed, such as the two-stage IMAC enrichment method and biotin-based two-step reaction strategy, allowing the reduction of unwanted peptides and improvements for the analysis of specific labeled peptides. Finally, future trends in the area are briefly discussed.
Collapse
Affiliation(s)
- Shangwei Huangfu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Xianqiang Yu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Ziyu Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| |
Collapse
|
15
|
Wan C, Zhang Y, Wang J, Xing Y, Yang D, Luo Q, Liu J, Ye Y, Liu Z, Yin F, Wang R, Li Z. Traceless Peptide and Protein Modification via Rational Tuning of Pyridiniums. J Am Chem Soc 2024; 146:2624-2633. [PMID: 38239111 DOI: 10.1021/jacs.3c11864] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Herein, we report a versatile reaction platform for tracelessly cleavable cysteine-selective peptide/protein modification. This platform offers highly tunable and predictable conjugation and cleavage by rationally estimating the electron effect on the nucleophilic halopyridiniums. Cleavable peptide stapling, antibody conjugation, enzyme masking/de-masking, and proteome labeling were achieved based on this facile pyridinium-thiol-exchange protocol.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yichi Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jinpeng Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun Xing
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510230, China
| | - Qinhong Luo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
16
|
Westphall MS, Lee KW, Salome AZ, Coon JJ, Grant T. Mass spectrometers as cryoEM grid preparation instruments. Curr Opin Struct Biol 2023; 83:102699. [PMID: 37703606 PMCID: PMC11019453 DOI: 10.1016/j.sbi.2023.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
Structure determination by single-particle cryoEM has matured into a core structural biology technique. Despite many methodological advancements, most cryoEM grids are still prepared using the plunge-freezing method developed ∼40 years ago. Embedding samples in thin films and exposing them to the air-water interface often leads to sample damage and preferential orientation of the particles. Using native mass spectrometry to create cryoEM samples, potentially avoids these problems and allows the use of mass spectrometry sample isolation techniques during EM grid creation. We review the recent publications that have demonstrated protein complexes can be ionized, flown through the mass spectrometer, gently landed onto EM grids, imaged, and reconstructed in 3D. Although many uncertainties and challenges remain, the combination of cryoEM and MS has great potential.
Collapse
Affiliation(s)
- Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Kenneth W Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Austin Z Salome
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Morgridge Institute for Research, 330 N Orchard Street, Madison, WI 53706, United States.
| | - Timothy Grant
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Morgridge Institute for Research, 330 N Orchard Street, Madison, WI 53706, United States.
| |
Collapse
|
17
|
Petrotchenko EV, Nascimento EM, Witt JM, Borchers CH. Determination of Protein Monoclonal-Antibody Epitopes by a Combination of Structural Proteomics Methods. J Proteome Res 2023; 22:3096-3102. [PMID: 37526474 PMCID: PMC10476242 DOI: 10.1021/acs.jproteome.3c00159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 08/02/2023]
Abstract
Structural proteomics techniques are useful for the determination of protein interaction interfaces. Each technique provides orthogonal structural information on the structure and the location of protein interaction sites. Here, we have characterized a monoclonal antibody epitope for a protein antigen by a combination of differential photoreactive surface modification (SM), cross-linking (CL), differential hydrogen-deuterium exchange (HDX), and epitope extraction/excision. We found that experimental data from different approaches agree with each other in determining the epitope of the monoclonal antibody on the protein antigens using the HIV-1 p24-mAb E complex as an illustrative example. A combination of these multiple structural proteomics approaches results in a detailed picture of the interaction of the proteins and increases confidence in the determination of the final structure of the protein interaction interface. Data are available via ProteomeXchange with identifier PXD040902.
Collapse
Affiliation(s)
- Evgeniy V. Petrotchenko
- Segal
Cancer Proteomics Centre, Lady Davis Institute for Medical Research,
Jewish General Hospital, McGill University, Quebec H3T 1E2, Canada
| | | | - Jody Melton Witt
- Grifols
Diagnostic Solutions, Emeryville, California 94608, United States
| | - Christoph H. Borchers
- Segal
Cancer Proteomics Centre, Lady Davis Institute for Medical Research,
Jewish General Hospital, McGill University, Quebec H3T 1E2, Canada
- Gerald
Bronfman Department of Oncology, McGill
University, Montreal, Quebec H3T 1E2, Canada
- Department
of Pathology, McGill University, Montréal, Quebec H3A 2B4, Canada
- Segal
Cancer Centre, Lady Davis Institute for Medical Research, Jewish General
Hospital, Montréal, Quebec H3T 1E2, Canada
- Division
of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1, Canada
| |
Collapse
|
18
|
Mathay M, Keller A, Bruce JE. Studying Protein-Ligand Interactions by Protein Denaturation and Quantitative Cross-Linking Mass Spectrometry. Anal Chem 2023; 95:9432-9436. [PMID: 37307416 PMCID: PMC10848897 DOI: 10.1021/acs.analchem.2c04501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, several mass spectrometry methods have utilized protein structural stability for the quantitative study of protein-ligand engagement. These protein-denaturation approaches, which include thermal proteome profiling (TPP) and stability of proteins from rates of oxidation (SPROX), evaluate ligand-induced denaturation susceptibility changes with a MS-based readout. The different techniques of bottom-up protein-denaturation methods each have their own advantages and challenges. Here, we report the combination of protein-denaturation principles with quantitative cross-linking mass spectrometry using isobaric quantitative protein interaction reporter technologies. This method enables the evaluation of ligand-induced protein engagement through analysis of cross-link relative ratios across chemical denaturation. As a proof of concept, we found ligand-stabilized cross-linked lysine pairs in well-studied bovine serum albumin and ligand bilirubin. These links map to the known binding sites Sudlow Site I and subdomain IB. We propose that protein denaturation and qXL-MS can be combined with similar peptide-level quantification approaches, like SPROX, to increase the coverage information profiled for facilitating protein-ligand engagement efforts.
Collapse
Affiliation(s)
- Martin Mathay
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
19
|
Veenstra BT, Veenstra TD. Proteomic applications in identifying protein-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:1-48. [PMID: 38220421 DOI: 10.1016/bs.apcsb.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
There are many things that can be used to characterize a protein. Size, isoelectric point, hydrophobicity, structure (primary to quaternary), and subcellular location are just a few parameters that are used. The most important feature of a protein, however, is its function. While there are many experiments that can indicate a protein's role, identifying the molecules it interacts with is probably the most definitive way of determining its function. Owing to technology limitations, protein interactions have historically been identified on a one molecule per experiment basis. The advent of high throughput multiplexed proteomic technologies in the 1990s, however, made identifying hundreds and thousands of proteins interactions within single experiments feasible. These proteomic technologies have dramatically increased the rate at which protein-protein interactions (PPIs) are discovered. While the improvement in mass spectrometry technology was an early driving force in the rapid pace of identifying PPIs, advances in sample preparation and chromatography have recently been propelling the field. In this chapter, we will discuss the importance of identifying PPIs and describe current state-of-the-art technologies that demonstrate what is currently possible in this important area of biological research.
Collapse
Affiliation(s)
- Benjamin T Veenstra
- Department of Math and Sciences, Cedarville University, Cedarville, OH, United States
| | - Timothy D Veenstra
- School of Pharmacy, Cedarville University, Cedarville, OH, United States.
| |
Collapse
|
20
|
Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Int J Mol Sci 2023; 24:7842. [PMID: 37175549 PMCID: PMC10178479 DOI: 10.3390/ijms24097842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Protein-protein interfaces play fundamental roles in the molecular mechanisms underlying pathophysiological pathways and are important targets for the design of compounds of therapeutic interest. However, the identification of binding sites on protein surfaces and the development of modulators of protein-protein interactions still represent a major challenge due to their highly dynamic and extensive interfacial areas. Over the years, multiple strategies including structural, computational, and combinatorial approaches have been developed to characterize PPI and to date, several successful examples of small molecules, antibodies, peptides, and aptamers able to modulate these interfaces have been determined. Notably, peptides are a particularly useful tool for inhibiting PPIs due to their exquisite potency, specificity, and selectivity. Here, after an overview of PPIs and of the commonly used approaches to identify and characterize them, we describe and evaluate the impact of chemical peptide libraries in medicinal chemistry with a special focus on the results achieved through recent applications of this methodology. Finally, we also discuss the role that this methodology can have in the framework of the opportunities, and challenges that the application of new predictive approaches based on artificial intelligence is generating in structural biology.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), Strada Statale 14 km 163.5, Basovizza, 34149 Triese, Italy;
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| |
Collapse
|
21
|
Reid DJ, Thibert S, Zhou M. Dissecting the structural heterogeneity of proteins by native mass spectrometry. Protein Sci 2023; 32:e4612. [PMID: 36851867 PMCID: PMC10031758 DOI: 10.1002/pro.4612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
A single gene yields many forms of proteins via combinations of posttranscriptional/posttranslational modifications. Proteins also fold into higher-order structures and interact with other molecules. The combined molecular diversity leads to the heterogeneity of proteins that manifests as distinct phenotypes. Structural biology has generated vast amounts of data, effectively enabling accurate structural prediction by computational methods. However, structures are often obtained heterologously under homogeneous states in vitro. The lack of native heterogeneity under cellular context creates challenges in precisely connecting the structural data to phenotypes. Mass spectrometry (MS) based proteomics methods can profile proteome composition of complex biological samples. Most MS methods follow the "bottom-up" approach, which denatures and digests proteins into short peptide fragments for ease of detection. Coupled with chemical biology approaches, higher-order structures can be probed via incorporation of covalent labels on native proteins that are maintained at the peptide level. Alternatively, native MS follows the "top-down" approach and directly analyzes intact proteins under nondenaturing conditions. Various tandem MS activation methods can dissect the intact proteins for in-depth structural elucidation. Herein, we review recent native MS applications for characterizing heterogeneous samples, including proteins binding to mixtures of ligands, homo/hetero-complexes with varying stoichiometry, intrinsically disordered proteins with dynamic conformations, glycoprotein complexes with mixed modification states, and active membrane protein complexes in near-native membrane environments. We summarize the benefits, challenges, and ongoing developments in native MS, with the hope to demonstrate an emerging technology that complements other tools by filling the knowledge gaps in understanding the molecular heterogeneity of proteins.
Collapse
Affiliation(s)
- Deseree J. Reid
- Chemical and Biological Signature SciencesPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Stephanie Thibert
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Mowei Zhou
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| |
Collapse
|
22
|
Mass spectrometric insights into protein aggregation. Essays Biochem 2023; 67:243-253. [PMID: 36636963 PMCID: PMC10070474 DOI: 10.1042/ebc20220103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
Protein aggregation is now recognized as a generic and significant component of the protein energy landscape. Occurring through a complex and dynamic pathway of structural interconversion, the assembly of misfolded proteins to form soluble oligomers and insoluble aggregates remains a challenging topic of study, both in vitro and in vivo. Since the etiology of numerous human diseases has been associated with protein aggregation, and it has become a field of increasing importance in the biopharmaceutical industry, the biophysical characterization of protein misfolded states and their aggregation mechanisms continues to receive increased attention. Mass spectrometry (MS) has firmly established itself as a powerful analytical tool capable of both detection and characterization of proteins at all levels of structure. Given inherent advantages of biological MS, including high sensitivity, rapid timescales of analysis, and the ability to distinguish individual components from complex mixtures with unrivalled specificity, it has found widespread use in the study of protein aggregation, importantly, where traditional structural biology approaches are often not amenable. The present review aims to provide a brief overview of selected MS-based approaches that can provide a range of biophysical descriptors associated with protein conformation and the aggregation pathway. Recent examples highlight where this technology has provided unique structural and mechanistic understanding of protein aggregation.
Collapse
|
23
|
The increasing role of structural proteomics in cyanobacteria. Essays Biochem 2022; 67:269-282. [PMID: 36503929 PMCID: PMC10070481 DOI: 10.1042/ebc20220095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Cyanobacteria, also known as blue–green algae, are ubiquitous organisms on the planet. They contain tremendous protein machineries that are of interest to the biotechnology industry and beyond. Recently, the number of annotated cyanobacterial genomes has expanded, enabling structural studies on known gene-coded proteins to accelerate. This review focuses on the advances in mass spectrometry (MS) that have enabled structural proteomics studies to be performed on the proteins and protein complexes within cyanobacteria. The review also showcases examples whereby MS has revealed critical mechanistic information behind how these remarkable machines within cyanobacteria function.
Collapse
|
24
|
Borotto NB, Richards TK. Rapid Online Oxidation of Proteins and Peptides via Electrospray-Accelerated Ozonation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2078-2086. [PMID: 36194498 DOI: 10.1021/jasms.2c00182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mass spectrometry-based analyses of protein conformation continue to grow in utilization due their speed, low sample requirements, and applicability to most protein systems. These techniques typically rely on chemical derivatization of proteins and as with all label-based analyses must ensure the integrity of the protein conformation throughout the duration of the labeling reaction. Hydroxyl radical footprinting of proteins and the recently developed fast fluoroalkylation of proteins attempt to bypass this consideration via rapid reactions that occur on time scales faster than protein folding, but they often require microfluidic setups or electromagnetic radiation sources. In this work, we demonstrate that ozonation of proteins and peptides, which normally occurs in the second to minute time scales, can be accelerated to the submillisecond to millisecond time scale with an electrospray ionization source. This rapid ozonation results in selective labeling of tryptophan and methionine residues. When applied to cytochrome C and carbonic anhydrase, this labeling technique is sensitive to solution conditions and correlates with solution-phase analyses of conformation. While significant work is still needed to characterize this fast chemical labeling strategy, it requires no complicated sample handling, electromagnetic radiation sources, or microfluidic systems outside of the electrospray source and may represent a facile alternative to other rapid labeling technologies that are utilized today.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | | |
Collapse
|
25
|
Prabhu GRD, Yang TH, Shiu RT, Witek HA, Urban PL. Scanning pH-metry for Observing Reversibility in Protein Folding. Biochemistry 2022; 61:2377-2389. [PMID: 36251331 DOI: 10.1021/acs.biochem.2c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the main factors affecting protein structure in solution is pH. Traditionally, to study pH-dependent conformational changes in proteins, the concentration of the H+ ions is adjusted manually, complicating real-time analyses, hampering dynamic pH regulation, and consequently leading to a limited number of tested pH levels. Here, we present a programmable device, a scanning pH-meter, that can automatically generate different types of pH ramps and waveforms in a solution. A feedback loop algorithm calculates the required flow rates of the acid/base titrants, allowing one, for example, to generate periodic pH sine waveforms to study the reversibility of protein folding by fluorescence spectroscopy. Interestingly, for some proteins, the fluorescence intensity profiles recorded in such a periodically oscillating pH environment display hysteretic behavior indicating an asymmetry in the sequence of the protein unfolding/refolding events, which can most likely be attributed to their distinct kinetics. Another useful application of the scanning pH-meter concerns coupling it with an electrospray ionization mass spectrometer to observe pH-induced structural changes in proteins as revealed by their varying charge-state distributions. We anticipate a broad range of applications of the scanning pH-meter developed here, including protein folding studies, determination of the optimum pH for achieving maximum fluorescence intensity, and characterization of fluorescent dyes and other synthetic materials.
Collapse
Affiliation(s)
- Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu300093, Taiwan
| | - Tzu-Hsin Yang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| | - Ruei-Tzung Shiu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| | - Henryk A Witek
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu300093, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Sec 2, Kuang-Fu Road, Hsinchu300044, Taiwan
| |
Collapse
|
26
|
Tang S, Chen X, Ke Y, Wang F, Yan X. Voltage-Controlled Divergent Cascade of Electrochemical Reactions for Characterization of Lipids at Multiple Isomer Levels Using Mass Spectrometry. Anal Chem 2022; 94:12750-12756. [PMID: 36087069 PMCID: PMC10386884 DOI: 10.1021/acs.analchem.2c02375] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cascading divergent reactions in a single system is highly desirable for their intrinsic efficiency and potential to achieve multilevel structural characterization of complex biomolecules. In this work, two electrochemical reactions, interfacial electro-epoxidation and cobalt anodic corrosion, are divergently cascaded in nanoelectrospray (nESI) and can be switched at different voltages. We applied these reactions to lipid identification at multiple isomer levels using mass spectrometry (MS), which remains a great challenge in structural lipidomics. The divergent cascade reactions in situ derivatize lipids to produce epoxidized lipids and cobalt-adducted lipids at different voltages. These lipids are then fragmented upon low-energy collision-induced dissociation (CID), generating diagnostic fragments to indicate C═C locations and sn-positions that cannot be achieved by the low-energy CID of native lipids. We have demonstrated that lipid structural isomers show significantly different profiles in the analysis of healthy and cancerous mouse prostate samples using this strategy. The application of divergent cascade reactions in lipid identification allows the four-in-one analysis of lipid headgroups, fatty acyl chains, C═C locations, and sn-positions simply by tuning the nESI voltages within a single experiment. This feature as well as its low sample consumption, no need for an extra apparatus, and quantitative analysis capability show its great potential in lipidomics.
Collapse
Affiliation(s)
- Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Yuepeng Ke
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Fen Wang
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|