1
|
Hein R, Gisbert Y, Feringa BL. Multi-State Redox and Light-Driven Switching of Pseudorotaxanation and Cation Shuttling. J Am Chem Soc 2025; 147:13649-13657. [PMID: 40211805 PMCID: PMC12023027 DOI: 10.1021/jacs.5c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
The modulation of molecular recognition underpins numerous wide-ranging applications and has inspired the development of a myriad of switchable receptors, in particular photo- or redox-responsive hosts. Herein, we report a highly versatile three-state cation receptor family and switch system based on an overcrowded alkene strapped with crown ethers, which can be switched by both redox and light stimuli, thereby combining the advantages of both approaches. Specifically, the neutral switches can be quantitatively converted between anti- and syn-folded receptor geometries by irradiation, leading to the discovery of a significant increase or decrease in cation binding affinity, which was exploited to shuttle the pseudorotaxane-forming dibenzylammonium guest between the switchable crown ethers of slightly different sizes. Alternatively, two-electron oxidation to the orthogonal, dicationic, nonvolatile state completely turns off cation binding to the host, thereby ejecting the guest. Upon reduction, the metastable syn-folded state is first formed, which then thermally relaxes, resulting in a unique, autonomous, and cation-dependent multistate switching cascade.
Collapse
Affiliation(s)
- Robert Hein
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, the
Netherlands
- Organic
Chemistry Institute, University of Münster, Corrensstraße 40, Münster 48149, Germany
| | - Yohan Gisbert
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, the
Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 3, Groningen 9747 AG, the
Netherlands
| |
Collapse
|
2
|
Sahoo D, Bera A, Vennapusa SR, De S. Light-Triggered Reversible Helicity Switching of a Rotor by a Photo-Responsive Plier. Chemistry 2025; 31:e202404771. [PMID: 40052763 DOI: 10.1002/chem.202404771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
Controlling synchronized motion and transmission of molecular motion to a remotely located guest is not trivial. Here, we demonstrate a light-triggered, scissor-like conformational change in a molecular plier to reversibly alter the conformation and helical chirality of a noncovalently bound rotor. The plier comprises three building blocks: an azobenzene unit that controls the open-close motion of the plier upon light-activated isomerization from E to Z, a BINOL unit that serves as both a hinge and a chiral inducer and two pyridine moieties that can form a complex with the rotor guest. The light-induced conformational alteration of the plier was unequivocally demonstrated by 1H NMR, UV-Vis, and CD spectroscopy. The open-close motion of the plier was translated to the rotor via a 1 : 1 host-guest complex. Indeed, CD spectroscopy, NMR spectroscopy, thermal back isomerization studies, and molecular modelling confirm that the light-triggered conformational alterations of the plier can induce mechanical twisting and helicity switching in the rotor.
Collapse
Affiliation(s)
- Diptiprava Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Anshuman Bera
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Soumen De
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| |
Collapse
|
3
|
Song J, Lei H, Lin L, Sun M, Han X, Dou Z, Tian Y, Zhu G. Continuous porous aromatic framework membranes with acid-/base-induced reversible isomerization for switchable ion conductivity. Chem Sci 2025; 16:6231-6239. [PMID: 40092592 PMCID: PMC11905450 DOI: 10.1039/d4sc08389j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Stimuli-responsive ion conductor materials are highly sought after in the fields of biological systems, clean energy, and smart devices. However, it remains a huge challenge to achieve acid/base switchable ion conductors owing to their stringent requirements of structural responsive behaviors, high stability and porosity. In this study, porous aromatic frameworks (PAFs) are utilized as a favorable platform to successfully design and prepare ion conductive powders and its continuous membranes based on a commercially available pH indicator. Interestingly, these PAFs possessed structural reversibility in response to acidic and alkaline environments, followed by an apparent ion-conducting switch of about 4 orders of magnitude (from 3.36 × 10-7 S cm-1 to 4.59 × 10-3 S cm-1) under the conditions of 25 °C and 98% RH. Moreover, the continuous PAF membrane exhibited an ultrahigh ion conductivity of 7.29 × 10-1 S cm-1 after 1 mol per L NaOH treatment and good acid/base switchable cycle stability. To our knowledge, this is the first report on exploring ion-conductive porous frameworks and continuous membranes that dynamically respond to acid/base chemical stimuli. This work provides a new research strategy for the application of ion conductors as so-called "smart materials" even in extremely harsh chemical environments.
Collapse
Affiliation(s)
- Jian Song
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Hengtao Lei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Lin Lin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Mengxiao Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xueyan Han
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Zilong Dou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Yuyang Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| |
Collapse
|
4
|
Farooq S, Malla JA, Nedyalkova M, Freire RVM, Mandal I, Crochet A, Salentinig S, Lattuada M, McTernan CT, Kilbinger AFM. Rapid Water Permeation by Aramid Foldamer Nanochannels With Hydrophobic Interiors. Angew Chem Int Ed Engl 2025:e202504170. [PMID: 40127140 PMCID: PMC7617624 DOI: 10.1002/anie.202504170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
Aquaporins are natural proteins that rapidly transport water across cell membranes, maintaining homeostasis, whilst strictly excluding salt. This has inspired their use in water purification and desalination, a critical emerging need. However, stability, scalability, and cost have prevented their widespread adoption in water purification membrane technologies. As such, attention has turned to the use of artificial water channels, with pore-functionalized polymers and macrocycles providing a powerful alternative. Whilst impressive rates of transport have been achieved, the combination of a scalable, high-yielding synthesis and efficient transport has not yet been reported. Herein, we report such a system, with densely functionalized channel interiors, synthesized by high-yielding living polymerization with low polydispersities, showing high salt exclusion and excellent water transport rates. Our aramid foldamers create artificial water channels with hydrophobic interiors and single-channel water permeability rates of up to 108 water molecules per second per channel, approaching the range of natural aquaporins (c. 109). We show that water transport rates closely correspond to the helical length, with the polymer that most closely matches bilayer thickness showing optimal efficacy, as supported by molecular dynamics (MD) simulations. Our work provides a basis for the scalable synthesis of next-generation artificial water channels.
Collapse
Affiliation(s)
- Saquib Farooq
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Javid Ahmad Malla
- Artificial Molecular Machinery Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK & Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, SE1 1DB, UK
| | - Miroslava Nedyalkova
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Rafael V. M. Freire
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Indradip Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Aurelien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Charlie T. McTernan
- Artificial Molecular Machinery Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK & Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, SE1 1DB, UK
| | - Andreas F. M. Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| |
Collapse
|
5
|
Mommer S, Wyrwol B, Bos JE, Kubik S, Wezenberg SJ. Light and protonation-controlled complex formation between sulfate ions and a stiff-stilbene based bis(cyclopeptide). Chem Sci 2025:d5sc00766f. [PMID: 40177314 PMCID: PMC11959293 DOI: 10.1039/d5sc00766f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Anion-ligand coordination has been used to generate a number of supramolecular structures. Of particular interest is the transformation between different types of complexes using various stimuli. While there are multiple examples where this has been achieved with metal-ligand coordination complexes through incorporation of molecular photoswitches, the same has not yet been realized with anion-ligand coordination-driven assemblies. In this study, a sulfate-binding bis(cyclopeptide) with a photoswitchable stiff-stilbene linker is presented. Its (E)- and (Z)-isomers, and the different degrees of protonation of the anion (HSO4 - vs. SO4 2-), give rise to different assembly states. The accessible products have 1 : 1, 1 : 2 and 2 : 2 host-guest stoichiometries and can be interconverted by light irradiation and acid/base addition, resulting in a highly controllable responsive system that demonstrates the potential of sulfate coordination-driven supramolecular assembly.
Collapse
Affiliation(s)
- Stefan Mommer
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Benedict Wyrwol
- Fachbereich Chemie-Organische Chemie, RPTU Kaiserslautern-Landau Erwin-Schrödinger-Str. 54 67663 Kaiserslautern Germany
| | - Jasper E Bos
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Stefan Kubik
- Fachbereich Chemie-Organische Chemie, RPTU Kaiserslautern-Landau Erwin-Schrödinger-Str. 54 67663 Kaiserslautern Germany
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
6
|
de Jong J, Wezenberg SJ. A Photoswitchable Chloride-Binding [2] Rotaxane. Chemistry 2025:e202500461. [PMID: 40095753 DOI: 10.1002/chem.202500461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Control over the binding properties of anion receptors by external stimuli can be advantageous in various applications such as extraction and transport processes. Toward a light-responsive anion receptor with high binding affinity and selectivity, a stiff-stilbene photoswitch is incorporated into the macrocycle of a mechanically interlocked, chloride-binding [2]rotaxane structure. UV-Vis and 1H NMR studies show reversible transformation between Z/E-isomers upon light irradiation, causing changes in motional dynamics and binding affinity. Photoswitching also takes place in the presence of chloride, as monitored by 1H NMR spectroscopy, which results in its concomitant uptake and release. Our results show the suitability of rotaxanes as light-responsive ion receptors, which could serve as prototypes for supramolecular pumps.
Collapse
Affiliation(s)
- Jorn de Jong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
7
|
Konopka M, Halgreen L, Dascalu AE, Chvojka M, Valkenier H. Controlling the transmembrane transport of chloride by dynamic covalent chemistry with azines. Chem Sci 2025; 16:3509-3515. [PMID: 39877820 PMCID: PMC11770589 DOI: 10.1039/d4sc08580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
Stimuli-responsive transmembrane ion transport has become a prominent area of research due to its fundamental importance in cellular processes and potential therapeutic applications. Commonly used stimuli include pH, light, and reduction or oxidation agents. This paper presents the use of dynamic covalent chemistry to activate and modulate the transmembrane transport of chloride in liposomes. An active chloride transporter was obtained in situ within the lipid bilayer by dynamic azine metathesis. The transport activity was further tuned by changing the structure of the added azines, while the dynamic covalent chemistry could be activated by lowering the pH. This dynamic covalent chemistry opens a new approach towards controlling transmembrane transport.
Collapse
Affiliation(s)
- Marcin Konopka
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Lau Halgreen
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Anca-Elena Dascalu
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| | - Matúš Chvojka
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
- Department of Chemistry and RECETOX Faculty of Science, Masaryk University Brno 62500 Czech Republic
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP165/64 B-1050 Brussels Belgium
| |
Collapse
|
8
|
Jia C, Luo D, Zhou J, Xie X, Yuen In Lam H, Li P, Mu Y, Zeng Z, Ren C. Engineered Reactive Oxygen Species (ROS)-Responsive Artificial H +/Cl - Ion Channels for Targeted Cancer Treatment. Angew Chem Int Ed Engl 2025; 64:e202419800. [PMID: 39620598 DOI: 10.1002/anie.202419800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Reactive oxygen species (ROS)-responsive ion channels regulate the ion flow across the membranes in response to alterations in the cellular redox state, playing a crucial role in cellular adaptation to oxidative stress. Despite their significance, replicating ROS-responsive functionality in artificial ion channels remains elusive. In this study, we introduce a novel class of artificial H+/Cl- ion channels activatable by elevated ROS levels in cancer cells. ROS-induced decaging of the phenylboronate group triggers the rapid release of the channel-forming units, leading to self-assembly of the H-bonded cascades facilitating the synergistic transport of H+ and Cl- ions, with H+/Cl- ion transport selectivity of 7.7. Upon activation, ROS-C-Cl exhibits significant apoptotic activity against human breast cancer cells, achieving an IC50 of 2.8 μM, comparable to that of paclitaxel. Exploiting the intrinsic oxidative microenvironment of cancer cells, along with the enhanced oxidative stress arising from H+/Cl- co-transport, ROS-C-Cl demonstrates exceptional selectivity in targeting cancer cells with a selectivity index of 10.2 over normal breast cells, outperforming that of paclitaxel by 19.4 folds.
Collapse
Affiliation(s)
- Chunyan Jia
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| | - Daoxin Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| | - Jin Zhou
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
| | - Xiaopan Xie
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| | - Hilbert Yuen In Lam
- School of Biological Sciences, Nanyang Technological University 60 Nanyang Drive, Singapore 637551, Singapore
| | - Pengzhe Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University 60 Nanyang Drive, Singapore 637551, Singapore
| | - Zhiping Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
| | - Changliang Ren
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, School of Pharmaceutical Sciences, Xiamen University Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University Shenzhen, Guangdong 518057, China
| |
Collapse
|
9
|
de Jong J, Siegler MA, Wezenberg SJ. A photoswitchable [2]catenane receptor. Chem Commun (Camb) 2025; 61:2548-2551. [PMID: 39812449 PMCID: PMC11734587 DOI: 10.1039/d4cc05934d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
A [2]catenane-based receptor functionalized with stiff-stilbene can be reversibly switched with 340/385 nm light between its Z- and E-isomers, which leads to a considerable change in chloride binding affinity. Photoisomerization in the presence of chloride allows for in situ on demand guest uptake and release.
Collapse
Affiliation(s)
- Jorn de Jong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
10
|
Bos JE, Duindam N, Kock TJF, Siegler MA, Wezenberg SJ. Control of Bilayer Transport through a Photoswitchable Membrane-Stiffening Agent. Angew Chem Int Ed Engl 2025; 64:e202420232. [PMID: 39661481 DOI: 10.1002/anie.202420232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
The mobility of proteins in the bilayer membrane is affected by (local) changes in lipid environment, which is important to their biological functioning. Artificial molecular systems that-to some extent-imitate tasks of membrane-embedded proteins are increasingly developed, however, they are usually controlled through responsive units in their core structure. Here we present an alternative approach based on an amphiphilic stiff-stilbene derivative that enables control of membrane fluidity by light. The fluidity increase upon E-to-Z isomerization is shown to enhance the activity of known synthetic anion transporters as a result of a higher mobility. The photoisomerization process is studied by UV/Vis and 1H NMR spectroscopy in solution and in POPC vesicles, where the light-induced changes in fluidity and hence, activity of anion transporters, are monitored by fluorescence spectroscopy. Dynamic light-scattering (DLS) and cryo-EM studies show that vesicle integrity is not impaired by photoswitching. Our work introduces a versatile approach to control solute transport by carrier molecules. Moreover, the photocontrol over membrane fluidity and, with that, mobility could eventually be used for directed motion, which we expect to be key in achieving active transport in the future.
Collapse
Affiliation(s)
- Jasper E Bos
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Nol Duindam
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Thomas J F Kock
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD-21218, USA
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The, Netherlands
| |
Collapse
|
11
|
Cvrtila I, Otto S. Emergent Behavior of a Photoswitchable Solute in a Biphasic Solvent System. Chemistry 2024; 30:e202403157. [PMID: 39429129 DOI: 10.1002/chem.202403157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Due to thermal E/Z isomerization, hydrazones in solution typically exist in thermodynamic equilibria between their isomers. Irradiation of such solutions leads to photostationary states that may differ from the equilibrium distribution. Operating such switchable hydrazones in a biphasic system of two immiscible solvents introduces three new degrees of freedom: the E/Z equilibrium in the second solvent and two equilibria for distribution of each of the isomers between the solvents. Irradiation of such a system can be performed in three different ways - the first solvent only, the second solvent only, and both solvents at once - all yielding distinct outcomes. Depending on the choice of materials and the mode of irradiation, such setup may lead to different emergent behaviors that are not immediately intuitive, including net cyclic transport or the accumulation of one photoswitched product in one of the phases, beyond what is reachable by irradiating a simple solution of the same photoswitch.
Collapse
Affiliation(s)
- Ivica Cvrtila
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
12
|
Mao L, Hou S, Shi L, Guo J, Zhu B, Sun Y, Chang J, Xin P. Synthetic anion channels: achieving precise mimicry of the ion permeation pathway of CFTR in an artificial system. Chem Sci 2024; 16:371-377. [PMID: 39620072 PMCID: PMC11605520 DOI: 10.1039/d4sc06893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), a naturally occurring anion channel essential for numerous biological processes, possesses a positively charged ion conduction pathway within its transmembrane domain, which serves as the core module for promoting the movement of anions across cell membranes. In this study, we developed novel artificial anion channels by rebuilding the positively charged ion permeation pathway of the CFTR in artificial systems. These synthetic molecules can be efficiently inserted into lipid bilayers to form artificial ion channels, which exhibit a preference for anions during the transmembrane transport process. More importantly, the positively charged amino acid residues located in the ion permeation pathway of these artificial channels can promote the transmembrane transport of anions through electrostatic interactions, which is consistent with the mechanism of anion transmembrane transport achieved by CFTR.
Collapse
Affiliation(s)
- Linlin Mao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Shuaimin Hou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Linlin Shi
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University Macao 999078 China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| |
Collapse
|
13
|
Giri M, Guchhait T. A Synopsis on CO 2 Capture by Synthetic Hydrogen Bonding Receptors. Chempluschem 2024; 89:e202400405. [PMID: 39104329 DOI: 10.1002/cplu.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Carbon dioxide (CO2) is one of the most abundant greenhouse gases in Earth's atmosphere and responsible for global warming. Therefore, aerial CO2 capture and sequestration has become a major task for human community. Though several adsorbents for CO2 including activated carbon, zeolites, metal-organic frameworks (MOFs), and other surface-modified porous materials are well developed, the supramolecular approaches using synthetic hydrogen-bonding receptors are less explored. This review article highlights the synthetic development of various artificial receptors and their properties toward fixation of aerial CO2 as carbonate (CO3 2-), bicarbonate (HCO3 -), or carbamate (-NHCOO-/>NCOO-) ions, induced by excess fluoride (F-) or hydroxide (OH-) ions as their tetrabutylammonium salts. The utilization of encapsulated carbonate/bicarbonate/carbamate complexes in anion exchange metathesis for separation of oxyanions from aqueous solutions are also discussed. In addition, the release of CO2 and regeneration of receptor molecules are described in a number of occasions. Most importantly, the formation of anion complexes as crystalline materials in solid-state is described in terms of supramolecular chemistry and correlated with their solution-state properties. Finally, the types of receptors containing various functional groups are scrutinized in CO2 uptake, storage, and release processes and hints of endeavours for future research are delineated.
Collapse
Affiliation(s)
- Monalisa Giri
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha, 752054, India
| | - Tapas Guchhait
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha, 752054, India
| |
Collapse
|
14
|
Cvetnić M, Cindro N, Bregović N, Tomišić V. Thermodynamics of Anion Binding by (Thio)ureido-calix[4]arene Derivatives in Acetonitrile. ACS PHYSICAL CHEMISTRY AU 2024; 4:773-786. [PMID: 39634652 PMCID: PMC11613299 DOI: 10.1021/acsphyschemau.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024]
Abstract
In this work, we developed (thio)ureido-calix[4]arene derivatives and thoroughly explored their anion-binding properties in acetonitrile. A series of anions, including important inorganic ones (Cl-, HSO4 -, H2PO4 -, and HP2O7 3-) and several ever-present carboxylates (acetate, benzoate, and fumarate), were studied. All systems were investigated by several methods (NMR, ITC, and UV) used in a synergistic fashion, providing their comprehensive thermodynamic description. Acidities of the receptors were determined prior to the anion-binding studies and considered in the data-handling procedures. Complexes of various stoichiometries were detected and the driving force for their formation elucidated. The correlation of the anion structural features and H-bond acceptor properties with the stoichiometries and complexation thermodynamics parameters was rationalized. Generally, stability of the complexes followed the trend defined by the basicity of anions. Thiourea and urea analogues exhibited similar affinities for anion binding except for the H2PO4 - and HP2O7 3-, which interacted with the thiourea analogue more strongly. The hosts endowed with 4 (thio)urea groups formed species containing two receptor molecules bridged by a fumarate or hydrogen pyrophosphate anion. Thermodynamic information provided in this work is applicable in further design of supramolecular systems, whereas the presented approach to data handling will aid researchers when dealing with multiple coexisting equilibria.
Collapse
Affiliation(s)
- Marija Cvetnić
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nikola Cindro
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nikola Bregović
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Vladislav Tomišić
- Department of Chemistry, Faculty of
Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Zhang D, Chang W, Shen J, Zeng H. Aromatic foldamer-derived transmembrane transporters. Chem Commun (Camb) 2024; 60:13468-13491. [PMID: 39466066 DOI: 10.1039/d4cc04388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This review is the first to focus on transmembrane transporters derived from aromatic foldamers, with most studies reported over the past decade. These foldamers have made significant strides in mimicking the essential functions of natural ion channel proteins. With their aromatic backbones rigidified by intramolecular hydrogen bonds or differential repulsive forces, this innovative family of molecules stands out for its structural diversity and functional adaptability. They achieve efficient and selective ion and molecule transport across lipid bilayers via carefully designed helical structures and tunable large cavities. Recent developments in this field highlight the transformative potential of foldamers in therapeutic applications and biomaterial engineering. Key advances include innovative molecular engineering strategies that enable highly selective ion transport by fine-tuning structural and functional attributes. Specific modifications to macrocyclic or helical foldamer structures have allowed precise control over ion selectivity and transport efficiency, with notable selectivity for K+, Li+, H+ and water molecules. Although challenges remain, future directions may focus on more innovative molecular designs, optimizing synthetic methods, improving membrane transport properties, integrating responsive designs that adapt to environmental stimuli, and fostering interdisciplinary collaborations. By emphasizing the pivotal role of aromatic foldamers in modern chemistry, this review aims to inspire further development, offering new molecular toolboxes and strategies to address technological and biological challenges in chemistry, biology, medicine, and materials science.
Collapse
Affiliation(s)
- Danyang Zhang
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Wenju Chang
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Jie Shen
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| |
Collapse
|
16
|
Bos J, Siegler MA, Wezenberg SJ. Activity Control of a Synthetic Transporter by Photodynamic Modulation of Membrane Mobility and Incorporation. J Am Chem Soc 2024; 146:31085-31093. [PMID: 39485737 PMCID: PMC11565646 DOI: 10.1021/jacs.4c10952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Artificial transmembrane transport systems are receiving a great deal of attention for their potential therapeutic application. A major challenge is to switch their activity in response to environmental stimuli, which has been achieved mostly by modulating the binding affinity. We demonstrate here that the activity of a synthetic anion transporter can be controlled through changes in the membrane mobility and incorporation. The transporters─equipped with azobenzene photoswitches─poorly incorporate into the bilayer membrane as their thermally stable (E,E,E)-isomers, but incorporation is triggered by UV irradiation to give the (Z)-containing isomers. The latter isomers, however, are found to have a lower mobility and are therefore the least active transporters. This opposite effect of E-Z isomerization on transport capability offers unique photocontrol as is demonstrated by in situ irradiation studies during the used transport assays. These results help to understand the behavior of artificial transporters in a bilayer and are highly important to future designs, with new modes of biological activity and with the possibility to direct motion, which may be crucial toward achieving active transport.
Collapse
Affiliation(s)
- Jasper
E. Bos
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Sander J. Wezenberg
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
17
|
Zawada B, Chmielewski MJ. A photocaged, pH-sensitive anion transporter with AND logic dual-stimuli activation. Org Biomol Chem 2024; 22:7143-7147. [PMID: 39162147 DOI: 10.1039/d4ob00801d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A pH-switchable anion transporter 1 was photocaged with two photolabile groups to enhance spatiotemporal control over its chloride transport activity. Simultaneous application of light irradiation and acidic pH restores the activity of 1, while either stimulus alone results in no or very low activity. The double activation strategy described herein has potential to yield more selectively cytotoxic anionophores for future medical applications.
Collapse
Affiliation(s)
- Bartłomiej Zawada
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Poland.
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Poland.
| |
Collapse
|
18
|
Singh A, Torres-Huerta A, Meyer F, Valkenier H. Anion transporters based on halogen, chalcogen, and pnictogen bonds: towards biological applications. Chem Sci 2024:d4sc04644g. [PMID: 39268212 PMCID: PMC11385378 DOI: 10.1039/d4sc04644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Motivated by their potential biological applications, anion receptors are increasingly explored as transmembrane transporters for anions. The vast majority of the reported anion transporters rely on hydrogen bonding to interact with the anions. However, in recent decades, halogen, chalcogen, and pnictogen bonding, collectively referred to as sigma-hole interactions, have received increasing attention. Most research efforts on these interactions have focused on crystal engineering, anion sensing, and organocatalysis. In recent years, however, these sigma-hole interactions have also been explored more widely in synthetic anion transporters. This perspective shows why synthetic transporters are promising candidates for biological applications. We provide a comprehensive review of the compounds used to transport anions across membranes, with a particular focus on how the binding atoms and molecular design affect the anion transport activity and selectivity. Few cell studies have been reported for these transporters based on sigma-hole interactions and we highlight the critical need for further biological studies on the toxicity, stability, and deliverability of these compounds to explore their full potential in biological applications, such as the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Anurag Singh
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| | - Aaron Torres-Huerta
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| | - Franck Meyer
- Université libre de Bruxelles (ULB), Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy Boulevard du Triomphe 1050 Brussels Belgium
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems Avenue F. Roosevelt 50, CP165/64 1050 Brussels Belgium
| |
Collapse
|
19
|
Deng S, Li Z, Yuan L, Shen J, Zeng H. Light-Powered Propeller-like Transporter for Boosted Transmembrane Ion Transport. NANO LETTERS 2024; 24:10750-10758. [PMID: 39177063 DOI: 10.1021/acs.nanolett.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Membrane-active molecular machines represent a recently emerging, yet important line of expansion in the field of artificial transmembrane transporters. Their hitherto demonstrated limited types (molecular swing, ion fishers, shuttlers, rotors, etc.) certainly call for new inspiring developments. Here, we report a very first motorized ion-transporting carrier-type transporter, i.e., a modularly tunable, light-powered propeller-like transporter derived from Feringa's molecular motor for consistently boosting transmembrane ion transport under continuous UV light irradiation. Based on the EC50 values, the molecular propeller-mediated ion transport activities under UV light irradiation for 300 s are 2.31, 1.74, 2.29, 2.80, and 2.92 times those values obtained without irradiation for Li+, Na+, K+, Rb+, and Cs+ ions, respectively, with EC50 value as low as 0.71 mol % for K+ ion under light irradiation.
Collapse
Affiliation(s)
- Shaowen Deng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lin Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
20
|
Kar MK, Mahata R, Srimayee S, Haloi N, Kumar R, Lindahl E, Santra MK, Manna D. β-Carboline-based light and pH dual stimuli-responsive ion transporters induce cancer cell death. Chem Commun (Camb) 2024; 60:8419-8422. [PMID: 39028297 DOI: 10.1039/d4cc02232g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Light and pH dual-responsive ion transporters offer better applicability for cancer due to higher tunability and low cytotoxicity. Herein, we demonstrate the development of pH-responsive β-carboline-based ionophores and photocleavable-linker appended β-carboline-based proionophores to facilitate the controlled transport of Cl- across membranes, leading to apoptotic and autophagic cancer cell death.
Collapse
Affiliation(s)
- Mrinal Kanti Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Rumpa Mahata
- National Centre for Cell Science, Maharashtra, 411007, India
| | - Soumya Srimayee
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Nandan Haloi
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23, Solna, SE-17165, Sweden
- Department of Biochemistry and Biophysics, Science for Life, Laboratory, Stockholm University, Tomtebodavägen 23, Solna, SE-17165, Sweden
| | - Rahul Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23, Solna, SE-17165, Sweden
- Department of Biochemistry and Biophysics, Science for Life, Laboratory, Stockholm University, Tomtebodavägen 23, Solna, SE-17165, Sweden
| | | | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India
| |
Collapse
|
21
|
Shao B, Fu H, Aprahamian I. A molecular anion pump. Science 2024; 385:544-549. [PMID: 39088617 DOI: 10.1126/science.adp3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024]
Abstract
Pumping ions against a concentration gradient through protein-based transporters is a cornerstone of numerous biological processes. Mimicking this function by using artificial receptors remains a daunting challenge, mainly because of the difficulties in balancing between the requirement for high binding affinities and precise and on-demand ion capture and release properties. We report a trimeric hydrazone photoswitch-based receptor that converts light energy into work by actively transporting chloride anion against a gradient through a dichloromethane liquid membrane, functioning as a molecular pump. The system manifests ease of synthesis, bistability, excellent photoswitching properties, and superb ON-OFF binding properties (difference of up to six orders of magnitude).
Collapse
Affiliation(s)
- Baihao Shao
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Heyifei Fu
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
22
|
Johnson TG, Sadeghi-Kelishadi A, Langton MJ. Length dependent reversible off-on activation of photo-switchable relay anion transporters. Chem Commun (Camb) 2024; 60:7160-7163. [PMID: 38910566 DOI: 10.1039/d4cc02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A homologous series of azobenzene-derived photo-switchable ion relay transporters is reported. We reveal that both the length and geometry of the relay strongly affect transport rate, allowing the relative activity of the E and Z isomers to be reversed and hence the wavelengths of light used for on and off switching to be exchanged.
Collapse
Affiliation(s)
- Toby G Johnson
- Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | |
Collapse
|
23
|
Ahmad M, Johnson TG, Flerin M, Duarte F, Langton MJ. Responsive Anionophores with AND Logic Multi-Stimuli Activation. Angew Chem Int Ed Engl 2024; 63:e202403314. [PMID: 38517056 DOI: 10.1002/anie.202403314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Artificial ion transport systems have emerged as an important class of compounds that promise applications in chemotherapeutics as anticancer agents or to treat channelopathies. Stimulus-responsive systems that offer spatiotemporally controlled activity for targeted applications remain rare. Here we utilize dynamic hydrogen bonding interactions of a 4,6-dihydroxy-isophthalamide core to generate a modular platform enabling access to stimuli-responsive ion transporters that can be activated in response to a wide variety of external stimuli, including light, redox, and enzymes, with excellent OFF-ON activation profiles. Alkylation of the two free hydroxyl groups with stimulus-responsive moieties locks the amide bonds through intramolecular hydrogen bonding and hence makes them unavailable for anion binding and transport. Triggering using a particular stimulus to cleave both cages reverses the hydrogen bonding arrangement, to generate a highly preorganized anion binding cavity for efficient transmembrane transport. Integration of two cages that are responsive to orthogonal stimuli enables multi-stimuli activation, where both stimuli are required to trigger transport in an AND logic process. Importantly, the strategy provides a facile method to post-functionalize the highly active transporter core with a variety of stimulus-responsive moieties for targeted activation with multiple triggers.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Toby G Johnson
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Martin Flerin
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Matthew J Langton
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
24
|
Jurek P, Szymański MP, Szumna A. Remote control of anion binding by CH-based receptors. Chem Commun (Camb) 2024; 60:3417-3420. [PMID: 38441137 DOI: 10.1039/d3cc06038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We show that the substitution of tetra(benzimidazole)resorcin[4]arenes with electron withdrawing groups on the upper rim enhances anion binding at the opposite edge by more than three orders of magnitude. Moreover, selective anion binding at either the OH/NH or CH binding sites is demonstrated.
Collapse
Affiliation(s)
- Paulina Jurek
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Marek P Szymański
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Agnieszka Szumna
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
25
|
de Jong J, Siegler MA, Wezenberg SJ. A Photoswitchable Macrocycle Controls Anion-Templated Pseudorotaxane Formation and Axle Relocalization. Angew Chem Int Ed Engl 2024; 63:e202316628. [PMID: 38059917 DOI: 10.1002/anie.202316628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Important biological processes, such as signaling and transport, are regulated by dynamic binding events. The development of artificial supramolecular systems in which binding between different components is controlled could help emulate such processes. Herein, we describe stiff-stilbene-containing macrocycles that can be switched between (Z)- and (E)-isomers by light, as demonstrated by UV/Vis and 1 H NMR spectroscopy. The (Z)-isomers can be effectively threaded by pyridinium halide axles to give pseudorotaxane complexes, as confirmed by 1 H NMR titration studies and single-crystal X-ray crystallography. The overall stability of these complexes can be tuned by varying the templating counteranion. However, upon light-induced isomerization to the (E)-isomer, the threading capability is drastically reduced. The axle component, in addition, can form a heterodimeric complex with a secondary isophthalamide host. Therefore, when all components are combined, light irradiation triggers axle exchange between the macrocycle and this secondary host, which has been monitored by 1 H NMR spectroscopy and simulated computationally.
Collapse
Affiliation(s)
- Jorn de Jong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
26
|
Johnson TG, Langton MJ. Molecular Machines For The Control Of Transmembrane Transport. J Am Chem Soc 2023; 145:27167-27184. [PMID: 38062763 PMCID: PMC10740008 DOI: 10.1021/jacs.3c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Nature embeds some of its molecular machinery, including ion pumps, within lipid bilayer membranes. This has inspired chemists to attempt to develop synthetic analogues to exploit membrane confinement and transmembrane potential gradients, much like their biological cousins. In this perspective, we outline the various strategies by which molecular machines─molecular systems in which a nanomechanical motion is exploited for function─have been designed to be incorporated within lipid membranes and utilized to mediate transmembrane ion transport. We survey molecular machines spanning both switches and motors, those that act as mobile carriers or that are anchored within the membrane, mechanically interlocked molecules, and examples that are activated in response to external stimuli.
Collapse
Affiliation(s)
- Toby G. Johnson
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| | - Matthew J. Langton
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| |
Collapse
|
27
|
Nieland E, Voss J, Schmidt BM. Photoresponsive Supramolecular Cages and Macrocycles. Chempluschem 2023; 88:e202300353. [PMID: 37638597 DOI: 10.1002/cplu.202300353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The utilisation of light to achieve precise manipulation and control over the structure and function of supramolecular assemblies has emerged as a highly promising approach in the development of complex, configurable, or multifunctional systems and nanoscopic machine-like entities. In this minireview, we highlight recent examples of self-assembled and covalently bound cages and macrocycles with a focus on the external and internal functionalisation of a structure with a photoswitchable unit or the embedment of a photoswitch into the framework of a structure. Functionalising the interior or exterior of a supramolecular cage or macrocycle with a photoresponsive group enables control over different properties, such as guest binding or assembly in the solid-state, while the overall shape of the assembly often undergoes no significant change. By directly integrating a photoswitchable unit into the framework of a supramolecular structure, the isomerisation can either induce a geometry change, the disassembly, or the disassembly and reassembly of the structure. Historical and recent examples covered in this review are based on azobenzene, diarylethene, stilbene photoswitches, or alkene motors that were incorporated into macrocycles and cages constructed by metal-organic, dynamic covalent, or covalent bonds.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Jona Voss
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
28
|
Liu G, Tian C, Fan X, Dang Y, Qin J, Liu L, Cao Z, Jiang S. Dual-Stimulus-Driven Dynamically Controllable [3]Rotaxane with Tunable Organic Room-Temperature Phosphorescence. Org Lett 2023. [PMID: 38019050 DOI: 10.1021/acs.orglett.3c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A dual-stimulus-driven stiff-stilbene-based dynamic [3]rotaxane has been facilely developed using the threading-stoppering strategy and exhibits reversible shuttling motions and bidirectional rotations upon encountering acid-base and distinct light stimulations, respectively. Herein, the two dibenzo-24-crown-8 macrocycles can undergo reversible switching motion between two different stations along the axle suffered from acid-base stimulation, and simultaneously, the two rotaxanes can also perform cis-trans rotations upon irradiation with distinct light. In other words, the constructed rotaxanes can conduct two modes of regular motions without interference. Interestingly, reciprocating switching motion of the rings along the axle enabled the rotaxanes to exhibit controllable and reversible photoisomerization speed, conversion yield, and quantum yield. Crucially, these rotaxanes also manifest adjustable solid-state organic room-temperature phosphorescence (RTP) and photoluminescence stimulated by dual factors (acid-base and diverse light), which are further applied in information encryption and anticounterfeiting. The presented study provides an instructive way for precisely boosting photoisomerization performances and the fabrication of dual-stimuli-induced molecular machines with functions of two-mode mechanical motions and controllable pure organic RTP switches.
Collapse
Affiliation(s)
- Guoxing Liu
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Changming Tian
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Xinhui Fan
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Yuli Dang
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Jieqiong Qin
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Lijie Liu
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Zhanqi Cao
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Song Jiang
- College of Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| |
Collapse
|
29
|
Xiong S, Zhang Y, Jiang Y, Wang F, Zhou W, Li A, Zhang Q, Wang Q, He Q. Photo-controllable binding and release of HP 2O 73- using an azobenzene based smart macrocycle. Chem Commun (Camb) 2023; 59:12994-12997. [PMID: 37830230 DOI: 10.1039/d3cc03608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Herein, we describe the design and synthesis of an unusual azobenzene-bearing macrocycle 1, whose trans isomer was found able to 100% transform into its cis configuration under photoirradiation, for selectively recognizing HP2O73- with reversibly photo-controllable binding and release properties.
Collapse
Affiliation(s)
- Shenglun Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Yunqi Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Fei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Wei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Qinpeng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Qiuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, P. R. China.
| |
Collapse
|
30
|
Ahmad M, Gartland SA, Langton MJ. Photo- and Redox-Regulated Transmembrane Ion Transporters. Angew Chem Int Ed Engl 2023; 62:e202308842. [PMID: 37478126 DOI: 10.1002/anie.202308842] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023]
Abstract
Synthetic supramolecular ion transporters find applications as potential therapeutics and as tools for engineering functional membranes. Stimuli-responsive systems enable external control over transport, which is necessary for targeted activation. The Minireview provides an overview of current approaches to developing stimuli-responsive ion transport systems, including channels and mobile carriers, that can be controlled using photo or redox inputs.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Shaun A Gartland
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|