1
|
Guo X, Wang J, Fan H, Tao W, Ren Z, Li X, Liu S, Zhou P, Chen Y. Computational drug repurposing in Parkinson's disease: Omaveloxolone and cyproheptadine as promising therapeutic candidates. Front Pharmacol 2025; 16:1539032. [PMID: 40264664 PMCID: PMC12011821 DOI: 10.3389/fphar.2025.1539032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Parkinson's disease (PD), a prevalent and progressive neurodegenerative disorder, currently lacks effective and satisfactory pharmacological treatments. Computational drug repurposing represents a promising and efficient strategy for drug discovery, aiming to identify new therapeutic indications for existing pharmaceuticals. Methods: We employed a drug-target network approach to computationally repurpose FDA-approved drugs from databases such as DrugBank. A literature review was conducted to select candidates not previously reported as pharmacoprotective against PD. Subsequent in vitro evaluation utilized Cell Counting Kit-8 (CCK8) assays to assess the neuroprotective effects of the selected compounds in the SH-SY5Y cell model of Parkinson's disease induced by 1-methyl-4-phenylpyridinium (MPP+). Furthermore, an in vivo mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was developed to investigate the mechanisms of action and therapeutic potential of the identified drug candidates. Results: Our approach identified 176 drug candidates, with 28 selected for their potential anti-Parkinsonian effects and lack of prior PD-related reporting. CCK8 assays showed significant neuroprotection in SH-SY5Y cells for Omaveloxolone and Cyproheptadine. In the MPTP-induced mouse model, Cyproheptadine inhibited interleukin-6 (IL-6) expression and prevented Tyrosine Hydroxylase (TH) downregulation via the MAPK/NFκB pathway, while Omaveloxolone alleviated TH downregulation, potentially through the Kelch-like ECH-associated protein 1 (KEAP1)-NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. Both drugs preserved dopaminergic neurons and improved neurological deficits in the PD model. Conclusion: This study elucidates potential drug candidates for the treatment of Parkinson's disease through the application of computational repurposing, thereby underscoring its efficacy as a drug discovery strategy.
Collapse
Affiliation(s)
- Xin Guo
- Department of Geriatric Neurology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jie Wang
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hongyang Fan
- Department of Geriatric Neurology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Wanying Tao
- Department of Critical Care Medicine, Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zijing Ren
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xingyue Li
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Suyu Liu
- Medical College, Nanjing University, Nanjing, China
| | - Peiyang Zhou
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yingzhu Chen
- Department of Geriatric Neurology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Gao Y, Liu W, Shi L, Yang P, Yang L, Zhao M, Luo L. Narirutin reduces microglia-mediated neuroinflammation by inhibiting the JAK2/STAT3 pathway in MPP +/MPTP-induced Parkinson's disease models. Exp Neurol 2025; 389:115232. [PMID: 40169108 DOI: 10.1016/j.expneurol.2025.115232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, characterized by the loss of dopaminergic neurons in the substantia nigra compacta (SNc). Although the detailed molecular mechanisms of PD remain unknown, microglia-mediated neuroinflammation undoubtedly plays a key role in disease progression. Narirutin (Nar), a major flavonoid naturally occurring in citrus fruits, has garnered considerable research attention due to its various therapeutic applications and low toxicity. However, its effects on PD remain unclear. In this study, we explored the protective effects of Nar in 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD mouse model as well as in 1-methyl-4-phenyl-pyridinium (MPP+)-induced BV2 cells. Treatment with Nar (2.0, 10.0, and 50.0 mg/kg) reduced dopaminergic neuronal loss in a dose-dependent manner and ameliorated motor impairment in PD mice. Moreover, Nar administration inhibited microglia-mediated inflammation, evidenced by decreased microglial activation in SNc and BV2 cells, and lowered levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in the serum and cells. In addition, we found that Nar exerted anti-inflammatory effects by inhibiting the JAK2/STAT3 pathway. Importantly, using molecular docking and cellular thermal shift assay, we confirmed that JAK2 was a potential binding target of Nar. Overall, Nar attenuated MPTP/MPP+-induced neuroinflammation by inhibiting the JAK2/STAT3 pathway in activated microglia, thereby preventing dopaminergic neuron loss and improving motor disorders in PD mice. Our results provide new evidence supporting that Nar is promising for PD treatment and should be considered for further clinical development.
Collapse
Affiliation(s)
- Ying Gao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Wenna Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Lei Shi
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Peng Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Luo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
3
|
Gao XD, Ding JE, Xie JX, Xu HM. Epigenetic regulation of iron metabolism and ferroptosis in Parkinson's disease: Identifying novel epigenetic targets. Acta Pharmacol Sin 2025:10.1038/s41401-025-01499-6. [PMID: 40069488 DOI: 10.1038/s41401-025-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, and emerging evidence has shown that iron deposition, ferroptosis and epigenetic modifications are implicated in the pathogenesis of PD. However, the interplay among these factors in PD has not been fully understood. In this review, we provide an overview of the current research progress on iron metabolism, ferroptosis and epigenetic alterations associated with PD. Furthermore, we present new frontiers concerning various epigenetic modifications related to iron metabolism and ferroptosis that might contribute to the pathology of PD. Notably, epigenetic modifications of iron metabolism and ferroptosis as both diagnostic and therapeutic targets in PD have been discussed. This opens new avenues for the regulation of iron homeostasis and ferroptosis in PD from epigenetic perspectives, and provides evidence for their potential implications in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiao-Die Gao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jian-E Ding
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Hua-Min Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Shen H, Yu G, Cai T, Hu K, Shang T, Luo Y, Zhu J, Bai X, Xiong Y, Xi M, Shen R. Identification of Potent Leucine-Rich Repeat Kinase 2 Inhibitors by Virtual Screening and Biological Evaluation. Chem Biol Drug Des 2025; 105:e70082. [PMID: 40047283 DOI: 10.1111/cbdd.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/22/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease but has limited medications. Targeting leucine-rich repeat kinase 2 (LRRK2) has been identified as a potential strategy for the treatment of PD. The development of LRRK2 inhibitors has attracted much interest, and various compounds have been reported with significant improvement in preclinical and clinical models. Currently, no LRRK2 inhibitor has been approved for PD intervention. Herein, we reported a virtual screening (VS) workflow combining molecular docking and molecular dynamics (MD) simulations to achieve eight compounds for further enzymatic assay. The results indicated a potent LRRK2 inhibitor 2 with IC50 values of 2.396 and 5.996 μM against LRRK2 and LRRK2 G2019S, respectively, implying the reliability of this VS approach. Combined with predicted favorable drug-like properties, this hit can be used as a starting point for further structural optimization, probably offering insight into targeting LRRK2 for PD treatment in the future.
Collapse
Affiliation(s)
- Hualiang Shen
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Shaoxing, China
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Guoqi Yu
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Tao Cai
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Shaoxing, China
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Kai Hu
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Tianbo Shang
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Shaoxing, China
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Yanjuan Luo
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Shaoxing, China
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Jiawei Zhu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Xiaoxue Bai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yicheng Xiong
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Shaoxing, China
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Shaoxing, China
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| |
Collapse
|
5
|
Zhang J, Fu Z, Wen F, Lyu P, Huang S, Cai X, Zhang Z, Zhang Y, Fan C, Man W, Sun X, Huang Y. Electroacupuncture ameliorated locomotor symptoms in MPTP-induced mice model of Parkinson's disease by regulating autophagy via Nrf2 signaling. J Neurophysiol 2025; 133:490-501. [PMID: 39745671 DOI: 10.1152/jn.00497.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/25/2025] Open
Abstract
Parkinson's disease (PD) is a prevalent and challenging neurodegenerative disorder, and may involve impaired autophagy. Nuclear factor erythroid-2-related factor 2 (Nrf2) is crucial for regulating autophagy-related genes and maintaining cellular homeostasis. Electroacupuncture (EA), a complementary and alternative therapy for PD, has gained widespread clinical application. In this study, we investigate whether EA at Baihui (GV20) and Taichong (LR3) acupoints modulates autophagy through the Nrf2 pathway, providing neuroprotection in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. Using wild-type and Nrf2 knockout (KO) mice, we examined EA's effects on dopaminergic neuron survival, α-synuclein expression, motor function and the underlying mechanisms. Results showed that EA treatment significantly reduced dopaminergic neuron loss and α-synuclein expression, and improved motor deficits while restoring autophagy, as evidenced by increased autophagy markers (Atg7, LC3II) and decreased p62 levels. Transmission electron microscopy confirmed a rise in autophagosomes and lysosomes in the MPTP + EA group. EA also enhanced nuclear Nrf2 expression and activated Nrf2 signaling. Importantly, Nrf2 KO mice did not exhibit neuroprotection or increased autophagy-related proteins following EA treatment. In conclusion, our research demonstrated that EA ameliorated defective autophagy and activated the Nrf2 signaling pathway, which collectively contribute to its neuroprotective effects against MPTP-induced neurotoxicity.NEW & NOTEWORTHY In this study, we explored the potential mechanism of electroacupuncture (EA) therapy at the GV20 and LR3 acupoints of Parkinson's disease (PD). We demonstrated EA therapy's neuroprotective effect on PD, through ameliorating defective autophagy and activating the nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway whereas the regulation of EA on autophagy was absent in Nrf2 knockout (KO) mice. Our study not only provides new insights into the therapeutic mechanisms of EA but also suggests a promising strategy for PD treatment.
Collapse
Affiliation(s)
- Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiyi Fu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Feng Wen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Peilin Lyu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Shengtao Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaowen Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhinan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Ying Zhang
- Department of Ultrasonic Diagnosis, General Hospital of Southern Theater Command of PLA, Guangzhou, People's Republic of China
| | - Chun Fan
- League Committee, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xiaomin Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Wang L, Yao Y, Xie B, Lei M, Li Y, Shi J, Yu L, Zhou W, Sang Y, Kong L, Liu H, Qiu J. Nanoelectrode-Mediated Extracellular Electrical Stimulation Directing Dopaminergic Neuronal Differentiation of Stem Cells for Improved Parkinson's Disease Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409745. [PMID: 39703114 DOI: 10.1002/adma.202409745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by the dysfunction and death of dopaminergic neurons. Neural-stem-cell (NSC)-based therapy is a promising approach for the treatment of PD but its therapeutic performance is limited by low efficiency of differentiation of NSCs to dopaminergic neurons. Although electrical stimulation can promote neuronal differentiation, it is not verified whether it can induce the NSCs to specifically differentiate into dopaminergic neurons. Meanwhile, it is a great challenge to precisely apply electrical stimulation to dynamically migrating NSCs after transplantation. Here, electrochemically exfoliated graphene nanosheets are designed to anchor to the membrane of NSCs to serve as wireless nanoelectrodes. After anchoring to the cell membrane, these nanoelectrodes are able to migrate together with the cells and precisely apply extracellular electrical stimulation to the receptors or ion transport channels on the membrane of transplanted cells under alternating magnetic field. The nanoelectrode-mediated electrical stimulation induces 38.46% of the NSCs to specifically differentiate into dopaminergic neurons, while the percentage is only 5.82% for NSCs without the nanoelectrode stimulation. Transplantation of NSCs anchored with the nanoelectrodes effectively improves the recovery of the motor and memory ability of PD mice under alternating magnetic field within 2 weeks.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuan Yao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Bojun Xie
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Ming Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yiwei Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jiaming Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Liyang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
7
|
Razavi SM, Esmaealzadeh N, Ataei M, Afshari N, Saleh M, Amini Y, Hasrati S, Ghazizadeh Hashemi F, Mortazavi A, Mohaghegh Shalmani L, Abdolghaffari AH. The effects of ursodeoxycholic acid on Parkinson's disease, a mechanistic review of the recent evidence. Metab Brain Dis 2025; 40:115. [PMID: 39891787 DOI: 10.1007/s11011-025-01542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
INTRODUCTION Parkinson`s disease stands as the second-most widespread neurodegenerative disorder. Parkinson`s disease is relentless in progression and irreversible in nature, for which there is no cure. Therapies are only used to attenuate motor symptoms. As Parkinson`s disease is primarily defined by degeneration of dopaminergic neurons in the substantia nigra, and considering that neuroinflammation and mitochondrial dysfunction in these neurons are key factors contributing to disease progression, alternative therapies should aim to preserve healthy mitochondria. Method. Eligible studies on the effect of Ursodeoxycholic acid (UDCA) on Parkinson`s disease were collected from PubMed, Google Scholar, Scopus, Web of Science and Cochrane library for clinical, in-vivo, and in-vitro studies. Result. UDCA and its taurine conjugate (TUDCA), which are endogenous bile acids, have exhibited neuroprotective potential in various neurological conditions, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, in both animal experimental models and clinical investigations. This is attributed to three significant properties, in addition to their capability to cross the blood-brain barrier. First, their anti-inflammatory properties are manifested through the reduction of significant inflammatory factors such as tumor necrosis factor-α, interleukin 1β and other related elements. Second, their antioxidant property is marked by an increase in the expression of superoxide dismuthase, glutathione peroxidase and other antioxidant enzymes. The third property is the antiapoptotic activity, characterized by decreased caspase-3 activity and lower expression of pro-apoptotic Bax in the striatum. Conclusion. Based on this comprehensive review, UDCA and TUDCA have the potential to be considered as a therapeutic agent in the management of the Parkinson's disease.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazyar Ataei
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nadia Afshari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Moloud Saleh
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasaman Amini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sadaf Hasrati
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Abolghasem Mortazavi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., P. O. Box: 19419-33111, Tehran, Iran.
| |
Collapse
|
8
|
Cong H, Hu J, Wang J, Chang B, Li R, Cui X, Zhang C, Ji H, Lin C, Tang J, Liu J. Bromocriptine mesylate-loaded nanoparticles co-modified with low molecular weight protamine and lactoferrin for enhanced nose-to-brain delivery in Parkinson's disease treatment. Int J Pharm 2025; 669:125054. [PMID: 39667592 DOI: 10.1016/j.ijpharm.2024.125054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Parkinson's disease confronts challenges in drug delivery due to the blood-brain barrier. Intranasal delivery bypasses the blood-brain barrier for improved drug bioavailability, yet narrow nasal space and brief retention time hinder clinical applicability. We conducted a Bromocriptine Mesylate-loaded PLGA nanoparticles co-modified with low molecular weight protamine (LMWP) and lactoferrin (Lf) (LMWP/Lf-BCM-NPs) for nose-to-brain delivery. The resulting LMWP/Lf-BCM-NPs were uniform spheres with an average size of 248.53 ± 16.25 nm and zeta potential of -2.63 ± 0.74 mV. Fourier transform infrared spectroscopy confirmed LMWP and Lf attachment. The co-modified nanoparticles showed improving cellular transport and good viability. The LMWP/Lf-BCM-NPs showed increased brain targeting efficiency in mice. In haloperidol-induced Parkinson mouse models, the LMWP/Lf-BCM-NPs showed increased brain targeting efficiency, enhanced behavioral regulatory effects, enhanced antioxidant effects and neuroprotection effects. This study paves the way for a novel, non-invasive brain-targeted therapy, offering a promising avenue for Parkinson's disease clinical treatment.
Collapse
Affiliation(s)
- Huijing Cong
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jing Hu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jing Wang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Baiyu Chang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Rongtao Li
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xinran Cui
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chenghao Zhang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongyu Ji
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Congcong Lin
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jingling Tang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Jiaxin Liu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
9
|
Wang Q, Zhu H, Deng L, Xu S, Xie W, Li M, Wang R, Tie L, Zhan L, Yu G. Spatial Transcriptomics: Biotechnologies, Computational Tools, and Neuroscience Applications. SMALL METHODS 2025:e2401107. [PMID: 39760243 DOI: 10.1002/smtd.202401107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/22/2024] [Indexed: 01/07/2025]
Abstract
Spatial transcriptomics (ST) represents a revolutionary approach in molecular biology, providing unprecedented insights into the spatial organization of gene expression within tissues. This review aims to elucidate advancements in ST technologies, their computational tools, and their pivotal applications in neuroscience. It is begun with a historical overview, tracing the evolution from early image-based techniques to contemporary sequence-based methods. Subsequently, the computational methods essential for ST data analysis, including preprocessing, cell type annotation, spatial clustering, detection of spatially variable genes, cell-cell interaction analysis, and 3D multi-slices integration are discussed. The central focus of this review is the application of ST in neuroscience, where it has significantly contributed to understanding the brain's complexity. Through ST, researchers advance brain atlas projects, gain insights into brain development, and explore neuroimmune dysfunctions, particularly in brain tumors. Additionally, ST enhances understanding of neuronal vulnerability in neurodegenerative diseases like Alzheimer's and neuropsychiatric disorders such as schizophrenia. In conclusion, while ST has already profoundly impacted neuroscience, challenges remain issues such as enhancing sequencing technologies and developing robust computational tools. This review underscores the transformative potential of ST in neuroscience, paving the way for new therapeutic insights and advancements in brain research.
Collapse
Affiliation(s)
- Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongyuan Zhu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Deng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenqin Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rui Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liang Tie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
10
|
Yao H, Tong W, Song Y, Li R, Xiang X, Cheng W, Zhou Y, He Y, Yang Y, Liu Y, Li S, Jin L. Exercise training upregulates CD55 to suppress complement-mediated synaptic phagocytosis in Parkinson's disease. J Neuroinflammation 2024; 21:246. [PMID: 39342308 PMCID: PMC11439226 DOI: 10.1186/s12974-024-03234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
The primary pathological change in Parkinson's disease (PD) is the progressive degeneration of dopaminergic neurons in the substantia nigra. Additionally, excessive microglial activation and synaptic loss are also typical features observed in PD samples. Exercise trainings have been proven to improve PD symptoms, delay the disease progression as well as affect excessive microglial synaptic phagocytosis. In this study, we established a mouse model of PD by injecting mouse-derived α-synuclein preformed fibrils (M-α-syn PFFs) into the substantia nigra, and demonstrated that treadmill exercise inhibits microglial activation and synaptic phagocytosis in striatum. Using RNA-Seq and proteomics, we also found that PD involves excessive activation of the complement pathway which is closely related to over-activation of microglia and abnormal synaptic function. More importantly, exercise training can inhibit complement levels and complement-mediated microglial phagocytosis of synapses. It is probably triggered by CD55, as we observed that CD55 in the striatum significantly increased after exercise training and up-regulation of that molecule rescued motor deficits of PD mice, accompanied with reduced microglial synaptic phagocytosis in the striatum. This research elucidated the interplay among microglia, complement, and synapses, and analyzed the effects of exercise training on these factors. Our work also suggested CD55 as a complement-relevant candidate molecule for developing therapeutic strategies of PD.
Collapse
Affiliation(s)
- Hongkai Yao
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weifang Tong
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Ruoyu Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xuerui Xiang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Wen Cheng
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunjiao Zhou
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yijing He
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yunxi Liu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Dorogan M, Namballa HK, Harding WW. Natural Product-Inspired Dopamine Receptor Ligands. J Med Chem 2024; 67:12463-12484. [PMID: 39038276 PMCID: PMC11320586 DOI: 10.1021/acs.jmedchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Due to their evolutionary bias as ligands for biologically relevant drug targets, natural products offer a unique opportunity as lead compounds in drug discovery. Given the involvement of dopamine receptors in various physiological and behavioral functions, they are linked to numerous diseases and disorders such as Parkinson's disease, schizophrenia, and substance use disorders. Consequently, ligands targeting dopamine receptors hold considerable therapeutic and investigative promise. As this perspective will highlight, dopamine receptor targeting natural products play a pivotal role as scaffolds with unique and beneficial pharmacological properties, allowing for natural product-inspired drug design and lead optimization. As such, dopamine receptor targeting natural products still have untapped potential to aid in the treatment of disorders and diseases related to central nervous system (CNS) and peripheral nervous system (PNS) dysfunction.
Collapse
Affiliation(s)
- Michael Dorogan
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Hari K. Namballa
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
| | - Wayne W. Harding
- Department
of Chemistry, Hunter College, City University
of New York, 695 Park
Avenue, New York, New York 10065, United States
- Program
in Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United States
- Program
in Chemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016, United
States
| |
Collapse
|
12
|
Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. An Update on the Nitrogen Heterocycle Compositions and Properties of U.S. FDA-Approved Pharmaceuticals (2013-2023). J Med Chem 2024; 67:11622-11655. [PMID: 38995264 DOI: 10.1021/acs.jmedchem.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This Perspective is a continuation of our analysis of U.S. FDA-approved small-molecule drugs (1938-2012) containing nitrogen heterocycles. In this study we report drug structure and property analyses of 321 unique new small-molecule drugs approved from January 2013 to December 2023 as well as information about frequency of important heteroatoms such as sulfur and fluorine and key small nitrogen substituents (CN and NO2). The most notable change is an incredible increase in drugs containing at least one nitrogen heterocycle─82%, compared to 59% from preceding decades─as well as a significant increase in the number of nitrogen heterocycles per drug. Pyridine has claimed the #1 high-frequency nitrogen heterocycle occurrence spot from piperidine (#2), with pyrimidine (#5), pyrazole (#6), and morpholine (#9) being the big top 10 climbers. Also notable is high number of fused nitrogen heterocycles, apparently driven largely by newly approved cancer drugs.
Collapse
Affiliation(s)
- Christopher M Marshall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - John G Federice
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Chloe N Bell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Philip B Cox
- Discovery Research, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Wang ZH, Huang DQ, Wang P, Yang L, You Y, Zhao JQ, Zhang YP, Yuan WC. Synthesis of 6/5/3-Fused Tricyclic Scaffolds via Multistep Cascade Cyclization of α-Aryl Vinylsulfoniums with para-Quinamines and para-Quinols. Org Lett 2024; 26:5905-5910. [PMID: 38980194 DOI: 10.1021/acs.orglett.4c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Herein, we present a straightforward approach to access hydroindoline-5-one-based 6/5/3-fused polycyclic ring structures through multistep cascade reactions involving α-aryl vinylsulfoniums and para-quinamines. The reactions proceed smoothly under mild conditions to deliver the desired products in generally good isolated yields. This protocol is also applicable to the cascade cycloaddition reactions of α-aryl vinylsulfoniums and para-quinols, effectively generating complex tricyclic scaffolds. In addition, the scale-up synthesis and further derivatizations demonstrate the potential synthetic application of the protocol.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Dong-Qun Huang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ping Wang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- College of Food and Biological Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
14
|
Borsato G, Carnio F, Lunardon S, Moletta M, Pavan G, Terrin F, Scarso A, Plotegher N, Fabris F. A β-Glucosyl Sterol Probe for in situ Fluorescent Labelling in Neuronal Cells to Investigate Neurodegenerative Diseases. Chemistry 2024; 30:e202400778. [PMID: 38770991 DOI: 10.1002/chem.202400778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
A β-glucosyl sterol probe bearing a terminal alkyne moiety for fluorescent tagging enables the investigation of the neuronal and intracellular localization of this class of compounds involved in neurodegenerative diseases. The compound showed localization in the neuronal cells, with marked differences in the uptake and metabolism leading to enhanced persistence with respect to the un-glycosylated sterol analogue. In addition, a different impact was observed towards lysosomes, with the simple sterol probe showing the enlargement of the lysosome structures, while the β-glucosyl sterol was less capable to alter the morphology of this specific organelle.
Collapse
Affiliation(s)
- Giuseppe Borsato
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Francesco Carnio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Sara Lunardon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Mattia Moletta
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Giulio Pavan
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Francesca Terrin
- Dipartimento di Biologia, Università degli Studi di Padova, viale G. Colombo 3, 35131, Padova, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Nicoletta Plotegher
- Dipartimento di Biologia, Università degli Studi di Padova, viale G. Colombo 3, 35131, Padova, Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| |
Collapse
|
15
|
Wang ZH, Fu XH, Li Q, You Y, Yang L, Zhao JQ, Zhang YP, Yuan WC. Recent Advances in the Domino Annulation Reaction of Quinone Imines. Molecules 2024; 29:2481. [PMID: 38893357 PMCID: PMC11173866 DOI: 10.3390/molecules29112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Quinone imines are important derivatives of quinones with a wide range of applications in organic synthesis and the pharmaceutical industry. The attack of nucleophilic reagents on quinone imines tends to lead to aromatization of the quinone skeleton, resulting in both the high reactivity and the unique reactivity of quinone imines. The extreme value of quinone imines in the construction of nitrogen- or oxygen-containing heterocycles has attracted widespread attention, and remarkable advances have been reported recently. This review provides an overview of the application of quinone imines in the synthesis of cyclic compounds via the domino annulation reaction.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Xiao-Hui Fu
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Qun Li
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu 611730, China;
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Lei Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (X.-H.F.); (Y.Y.); (L.Y.); (J.-Q.Z.); (Y.-P.Z.)
| |
Collapse
|
16
|
Sequeira L, Benfeito S, Fernandes C, Lima I, Peixoto J, Alves C, Machado CS, Gaspar A, Borges F, Chavarria D. Drug Development for Alzheimer's and Parkinson's Disease: Where Do We Go Now? Pharmaceutics 2024; 16:708. [PMID: 38931832 PMCID: PMC11206728 DOI: 10.3390/pharmaceutics16060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases characterized by the gradual loss of neurons, culminating in the decline of cognitive and/or motor functions. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs and represent an enormous burden both in terms of human suffering and economic cost. The available therapies for AD and PD only provide symptomatic and palliative relief for a limited period and are unable to modify the diseases' progression. Over the last decades, research efforts have been focused on developing new pharmacological treatments for these NDs. However, to date, no breakthrough treatment has been discovered. Hence, the development of disease-modifying drugs able to halt or reverse the progression of NDs remains an unmet clinical need. This review summarizes the major hallmarks of AD and PD and the drugs available for pharmacological treatment. It also sheds light on potential directions that can be pursued to develop new, disease-modifying drugs to treat AD and PD, describing as representative examples some advances in the development of drug candidates targeting oxidative stress and adenosine A2A receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Borges
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
17
|
Yao JY, Li L, Xu JX, Liu YH, Shi J, Yu XQ, Kong QQ, Li K. Real-Time Monitoring of Tyrosine Hydroxylase Activity with a Ratiometric Fluorescent Probe. Anal Chem 2024; 96:7082-7090. [PMID: 38652135 DOI: 10.1021/acs.analchem.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Parkinson's disease (PD) represents the second most widespread neurodegenerative disease, and early monitoring and diagnosis are urgent at present. Tyrosine hydroxylase (TH) is a key enzyme for producing dopamine, the levels of which can serve as an indicator for assessing the severity and progression of PD. This renders the specific detection and visualization of TH a strategically vital way to meet the above demands. However, a fluorescent probe for TH monitoring is still missing. Herein, three rationally designed wash-free ratiometric fluorescent probes were proposed. Among them, TH-1 exhibited ideal photophysical properties and specific dual-channel bioimaging of TH activity in SH-SY5Y nerve cells. Moreover, the probe allowed for in vivo imaging of TH activity in zebrafish brain and living striatal slices of mice. Overall, the ratiometric fluorescent probe TH-1 could serve as a potential tool for real-time monitoring of PD in complex biosystems.
Collapse
Affiliation(s)
- Jia-Yi Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Lu Li
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ji-Xuan Xu
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jing Shi
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Qing-Quan Kong
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
18
|
Li L, Chen Z, Hao C. Neuroprotective effects of polyphyllin VI against rotenone-induced toxicity in SH-SY5Y cells. Brain Res 2024; 1830:148824. [PMID: 38417654 DOI: 10.1016/j.brainres.2024.148824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND A substantial body of evidence is drawing connections between Parkinson's disease (PD) and the phenomena of oxidative stress and mitochondrial dysfunction. Polyphyllin VI (PPVI), an active compound found in Rhizoma Paridis-commonly known as Chonglou (CL) in China, has been identified for its various pharmacological properties, including anti-tumor and anti-inflammatory effects. OBJECTIVE In the present study, an in vitro model of PD was established by treating SH-SY5Y cells with rotenone (ROT), to evaluate the potential neuroprotective effects of polyphyllin VI and its underlying mechanism. METHODS SH-SY5Y cells were treated with ROT to establish an in vitro model of PD. The effects of polyphyllin VI on cell viability were assessed using the resazurin assay. Cell morphology was examined using a microscope. The YO-PRO-1/PI was used to detect apoptosis. Mito-Tracker Red CMXRos, Mito-Tracker Green, and JC-1 were used to detect the effects of polyphyllin Ⅵ on mitochondrial viability, morphology, and function. Oxidative stress-related marker detection kits were used to identify the effects of polyphyllin VI on oxidative stress. Western blot analysis was employed to investigate the signaling pathways associated with neuroprotection. RESULTS PPVI increased ROT-induced SH-SY5Y cell viability and improved ROT-induced cellular morphological changes. PPVI ameliorated ROT-induced oxidative stress status, and attenuated mitochondrial function and morphological changes. PPVI may exert neuroprotective effects through FOXO3α/CREB1/DJ-1-related signaling pathways. CONCLUSION These preliminary findings suggested that PPVI possesses neuroprotective attributes in vitro, and it may be a potential candidate for PD treatment. However, extensive research is necessary to fully understand the mechanisms of PPVI and its effectiveness both in vitro and in vivo.
Collapse
Affiliation(s)
- Lanxin Li
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhengqian Chen
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cui Hao
- Medical Research Center, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
19
|
Oláh J, Norris V, Lehotzky A, Ovádi J. Perspective Strategies for Interventions in Parkinsonism: Remedying the Neglected Role of TPPP. Cells 2024; 13:338. [PMID: 38391951 PMCID: PMC10886726 DOI: 10.3390/cells13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Neurological disorders such as Parkinsonism cause serious socio-economic problems as there are, at present, only therapies that treat their symptoms. The well-established hallmark alpha-synuclein (SYN) is enriched in the inclusion bodies characteristic of Parkinsonism. We discovered a prominent partner of SYN, termed Tubulin Polymerization Promoting Protein (TPPP), which has important physiological and pathological activities such as the regulation of the microtubule network and the promotion of SYN aggregation. The role of TPPP in Parkinsonism is often neglected in research, which we here attempt to remedy. In the normal brain, SYN and TPPP are expressed endogenously in neurons and oligodendrocytes, respectively, whilst, at an early stage of Parkinsonism, soluble hetero-associations of these proteins are found in both cell types. The cell-to-cell transmission of these proteins, which is central to disease progression, provides a unique situation for specific drug targeting. Different strategies for intervention and for the discovery of biomarkers include (i) interface targeting of the SYN-TPPP hetero-complex; (ii) proteolytic degradation of SYN and/or TPPP using the PROTAC technology; and (iii) depletion of the proteins by miRNA technology. We also discuss the potential roles of SYN and TPPP in the phenotype stabilization of neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Attila Lehotzky
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Judit Ovádi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| |
Collapse
|