1
|
Ding D, Wang Y, He J, Gao J, Xu Z, Dou Y, Guo L, Ji X, Shu M, Yue T. Review of pretreatment and analytical methods for environmental endocrine disruptors: phthalates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1165-1186. [PMID: 39878890 DOI: 10.1093/etojnl/vgaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Phthalates, known as phthalate esters (PAEs), are among the most ubiquitous pervasive environmental endocrine disruptors, extensively utilized globally in various facets of modern life due to their irreplaceable role as plasticizers. The exponential production and utilization of plastic goods have substantially escalated plastic waste accumulation. Consequently, PAEs have infiltrated the environment, contaminating food and drinking water reservoirs, posing notable threats to human health. This review provides a comprehensive overview of research advancements in PAE detection and identifies key focal points from 2000 to 2022, utilizing the Web of Science Core Collection. Sample pretreatment and analytical methodologies for PAEs are examined based on bibliometric analysis findings. Pretreatment methods mainly include dispersive solid-phase extraction, magnetic solid-phase extraction, molecularly imprinted solid-phase extraction, and solid-phase microextraction. Laboratory analytical methods such as gas chromatography, liquid chromatography, and immunoassay have been described. Additionally, a discussion on the advantages and challenges of rapid on-site detection methods compared with traditional approaches is presented in alignment with the evolving demands of PAEs detection. Based on the current research progress, future studies can focus on the demand of rapid detection of PAEs.
Collapse
Affiliation(s)
- Ding Ding
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing, China
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Yu Wang
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Jiaxin He
- Beijing Xingzhan Heshun Technical Testing Co, Ltd, Beijing, China
| | - Jiajia Gao
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing, China
| | - Zhizhen Xu
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Yan Dou
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Ling Guo
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Xiaohui Ji
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Mushui Shu
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Tao Yue
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing, China
| |
Collapse
|
2
|
Li L, Hu S, Shao F, Liu X, Jiang Y. Green lignocellulose-nanofibers-based molecular imprinting membranes for baicalin selective adsorption. Int J Biol Macromol 2025; 302:140439. [PMID: 39884618 DOI: 10.1016/j.ijbiomac.2025.140439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/02/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Lignocellulosic nanofibers (LCNF), blending nano-scale cellulose and lignin, were carboxylated and integrated with PVA and baicalin to create a molecularly imprinted membrane (CLCNF-MINM). This innovation, leveraging reactive deep eutectic solvent technology and electrospinning, boosts adsorption capacity by 12.3-21.5 % and resolution by 31.6 %, achieving a max capacity of 142.1 mg·g-1. The high surface area, layered structure and tunable surface chemistry of carboxyl lignocellulose nanofibers (CLCNF), along with chemisorption and multimolecular adsorption mechanisms, significantly improve adsorption efficiency and selectivity. The membrane's mechanical strength is quadrupled and it retains 96.4 % of its absorption capacity after eight cycles of use. CLCNF-MINM significantly enhances the efficient utilization of biomass resources while exhibiting exceptional performance in the separation and purification of natural products. This study provides valuable insights into the development of advanced materials for improved natural product purification.
Collapse
Affiliation(s)
- Long Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Chemistry and Chemical Engineering, Key Laboratory of Forest Products Chemistry and Engineering, State Ethnic Affairs Commission, Guangxi Key Laboratory of Forest Products Chemistry and Engineering Guangxi Collaborative Innovation Center of Forest Products Chemistry and Engineering, Guangxi Minzu University, Nanning 530006, China; Suzhou Laboratory, Suzhou 215100, China
| | - Song Hu
- College of Chemistry and Chemical Engineering, Key Laboratory of Forest Products Chemistry and Engineering, State Ethnic Affairs Commission, Guangxi Key Laboratory of Forest Products Chemistry and Engineering Guangxi Collaborative Innovation Center of Forest Products Chemistry and Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; Suzhou Laboratory, Suzhou 215100, China
| | - Xiuyu Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Forest Products Chemistry and Engineering, State Ethnic Affairs Commission, Guangxi Key Laboratory of Forest Products Chemistry and Engineering Guangxi Collaborative Innovation Center of Forest Products Chemistry and Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Yan Jiang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Chen X, Wu Y, Qin Y, Carmieli R, Popov I, Gutkin V, Fan C, Willner I. Molecularly Imprinted Polyaniline-Coated Cu-Zeolitic Imidazolate Framework Nanoparticles: Uricase-Mimicking "Polynanozyme" Catalyzing Uric Acid Oxidation. ACS NANO 2025; 19:9981-9993. [PMID: 40043252 PMCID: PMC11924329 DOI: 10.1021/acsnano.4c16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
One of the drawbacks of nanozyme catalytic functions rests in their moderate catalytic activities due to the lack of effective binding sites concentrating the reaction substrate at the nanozyme catalytic interface. Methods to concentrate the substrates at the catalytic interface are essential to improving nanozyme functions. The present study addresses this goal by designing uric acid (UA) molecular-imprinted polyaniline (PAn)-coated Cu-zeolitic imidazolate framework (Cu-ZIF) nanoparticles as superior nanozymes, "polynanozymes", catalyzing the H2O2 oxidation of UA to allantoin (peroxidase activity) or the aerobic, uricase mimicking, oxidation of UA to allantoin (oxidase activity). While bare Cu-ZIF nanoparticles reveal only peroxidase activity and the nonimprinted PAn-coated Cu-ZIF nanoparticles reveal inhibited peroxidase activity, the molecular-imprinted PAn-coated Cu-ZIF nanoparticles reveal a 6.1-fold enhanced peroxidase activity, attributed to the concentration of the UA substrate at the catalytic nanoparticle interface. Moreover, the catalytic aerobic oxidation of UA to allantoin by the imprinted PAn-coated Cu-ZIF nanoparticles is lacking in the bare particles, demonstrating the evolved catalytic functions in the molecularly imprinted polynanozymes. Mechanistic characterization of the system reveals that within the UA molecular imprinting process of the PAn coating, Cu+ reactive units are generated within the Cu-ZIF nanoparticles, and these provide reactive sites for generating O2-• as an intermediate agent guiding the oxidase activities of the nanoparticles. The study highlights the practical utility of molecular-imprinted polynanozymes in catalytic pathways lacking in the bare nanozymes, thus broadening the scope of nanozyme systems.
Collapse
Affiliation(s)
- Xinghua Chen
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yi Wu
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China
| | - Yunlong Qin
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Inna Popov
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Vitaly Gutkin
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Diao Y, Gao J, Ma Y, Pan G. Epitope-imprinted biomaterials with tailor-made molecular targeting for biomedical applications. Bioact Mater 2025; 45:162-180. [PMID: 39634057 PMCID: PMC11616479 DOI: 10.1016/j.bioactmat.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Molecular imprinting technology (MIT), a synthetic strategy to create tailor-made molecular specificity, has recently achieved significant advancements. Epitope imprinting strategy, an improved MIT by imprinting the epitopes of biomolecules (e.g., proteins and nucleic acids), enables to target the entire molecule through recognizing partial epitopes exposed on it, greatly expanding the applicability and simplifying synthesis process of molecularly imprinted polymers (MIPs). Thus, epitope imprinting strategy offers promising solutions for the fabrication of smart biomaterials with molecular targeting and exhibits wide applications in various biomedical scenarios. This review explores the latest advances in epitope imprinting techniques, emphasizing selection of epitopes and functional monomers. We highlight the significant improvements in specificity, sensitivity, and stability of these materials, which have facilitated their use in bioanalysis, clinical therapy, and pharmaceutical development. Additionally, we discuss the application of epitope-imprinted materials in the recognition and detection of peptides, proteins, and cells. Despite these advancements, challenges such as template complexity, imprinting efficiency, and scalability remain. This review addresses these issues and proposes potential directions for future research to overcome these barriers, thereby enhancing the efficacy and practicality of epitope molecularly imprinting technology in biomedical fields.
Collapse
Affiliation(s)
- Youlu Diao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Jia Gao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
5
|
Nono‐Tagne S, Heinze T, Gericke M, Otsuka I. Electrospinning of Cellulose Benzyl Carbamates for Enantioselective Membrane Filtration. Macromol Biosci 2025; 25:e2400415. [PMID: 39601524 PMCID: PMC11904391 DOI: 10.1002/mabi.202400415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/20/2024] [Indexed: 11/29/2024]
Abstract
Electrospun nanofibrous membranes made of chiral selectors (CSs) have shown their potential for efficient chiral resolutions via filtrations. It is thus of great importance to expand the number of electrospun membranes made of various CSs for the resolution of a wide range of chiral compounds. Here, the electrospinning of two benzyl carbamate derivatives of cellulose, namely cellulose benzyl carbamate (CBzC) and cellulose 4-chlorobenzyl carbamate (CCBzC), to form a new type of enantioselective membranes for chiral resolutions of racemic compounds, is reported. The morphology of the electrospun membranes is studied by optical microscopy and scanning electron microscopy in relation to the electrospinning process parameters. Liquid-liquid permeation experiments of the racemic compounds, (R,S)-1-(1-naphthyl)ethanol ((R,S)-NET), (R,S)-1,1'-bi-2-naphtol ((R,S)-BNP), (R,S)-naproxen ((R,S)-NAP), and (R,S)-benzoin ((R,S)-BNZ) through the membranes demonstrate preferable permeations of (R)- or (S)-enantiomers depending on the combinations between the CSs and the racemates. Molecular docking simulations indicate the differences in the binding type, number, and free energies between the CSs and the enantiomers.
Collapse
Affiliation(s)
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich‐Schiller‐University JenaHumboldtstr 1007743JenaGermany
| | - Martin Gericke
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich‐Schiller‐University JenaHumboldtstr 1007743JenaGermany
| | - Issei Otsuka
- Univ. Grenoble AlpesCNRSCERMAVGrenoble38000France
| |
Collapse
|
6
|
Fang M, Chen C, Fan Y, Zhang Q, Li K, Yang G, Deng R, Li X. Constructing coral reef-like imprinted structure on molecularly imprinted nanocomposite membranes based on nanospheres with hydrophilic multicores for selective separation of acteoside. J Chromatogr A 2025; 1742:465645. [PMID: 39755053 DOI: 10.1016/j.chroma.2024.465645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Molecularly imprinted nanocomposite membranes (MINMs) have shown great superiority in selective separation of acteoside (ACT) from phenylethanoid glycosides in Cistanche tubulosa. Herein, ACT-based MINMs (A-MINMs) with coral reef-like imprinted structure were proposed and developed for specifically separating ACT molecules. The nanospheres with hydrophilic multicores (NHMs) were introduced into polyvinylidene fluoride (PVDF) powders to obtain NHMs@PVDF membranes by a phase inversion method. Subsequently, the designed coral reef-like imprinted structure was constructed on NHMs@PVDF membrane-based surface. The A-MINMs with coral reef-like imprinted structure had dendritic and porous properties, which helped to form abundant ACT-imprinted cavities and sites of A-MINMs. In addition, the hydrophilic multicores and void space of NHMs together formed the affinity capture cages for hydrophilic ACT, enhancing rebinding capacity and permselectivity of A-MINMs. Therefore, A-MINMs with coral reef-like imprinted structure exhibited the high rebinding capacity (110.95 mg/g), rebinding selectivity of 5.15 and outstanding permselectivity of 10.04 toward ACT molecules. Moreover, the designed strategy of A-MHIMs with coral reef-like imprinted structure provides a new feasible method for permselectivity separation of other bioactive components.
Collapse
Affiliation(s)
- Mujin Fang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chen Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Yingying Fan
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Qiong Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Kui Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Guoqing Yang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Renpan Deng
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| | - Xueqin Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
7
|
Peng Y, Zhu F, Wei H, Ni J, Yang X, Yao Y, Jiang Y. Real-Time 5-Hydroxyindoleacetic Acid Monitoring in Guinea Pig Brain Using a Molecular Imprinted Polymer-Based Galvanic Redox Potentiometric Sensor. Anal Chem 2025; 97:2136-2142. [PMID: 39865895 DOI: 10.1021/acs.analchem.4c04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
5-Hydroxyindoleacetic acid (5-HIAA), a vital metabolite of serotonin (5-HT), is crucial for understanding metabolic pathways and is implicated in various mental disorders. In situ monitoring of 5-HIAA is challenging due to the lack of affinity ligands and issues with electrochemical fouling. We present an advanced sensing approach that integrates customizable molecular imprinting polymer (MIP) with self-driven galvanic redox potentiometry (GRP) for precise, real-time in vivo monitoring of 5-HIAA. The sensor, featuring pyrrole as the functional monomer in the MIP on the micrometer-sized bipolar carbon fiber electrodes, exhibited nanomolar sensitivity and superior selectivity for 5-HIAA over biosynthetic pathway analogs like 5-hydroxytryptophan (5-HTP) and serotonin. The MIPGRP sensor demonstrated excellent reversibility and resistance to fouling, enabling continuous monitoring in live guinea pig brains. We observed that intraperitoneal 5-HTP injection increases brain 5-HIAA levels, which is amplified up to 8-fold with Carbidopa pretreatment, providing deeper insights into the serotonergic signaling pathway. This work underscores the MIPGRP sensor's potential as a versatile and reliable tool for advancing neuroscience research.
Collapse
Affiliation(s)
- Yuxin Peng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fenghui Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiping Ni
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin Yang
- Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, Beijing 100875, China
| | - Yichun Yao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Lian W, Zhang X, Han Y, Li X, Liu H. A Molecularly Imprinted Electrochemical Sensor for Carbendazim Detection Based on Synergy Amplified Effect of Bioelectrocatalysis and Nanocomposites. Polymers (Basel) 2025; 17:92. [PMID: 39795500 PMCID: PMC11722815 DOI: 10.3390/polym17010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE). Then the MIP films were electropolymerized on the surface of the nanolayer using CBD as the template molecule and o-phenylenediamine (OPD) as the monomer. The detection sensitivity of CBD on the heterogeneous structure films was greatly amplified by AuNP-rGO composites and the bioelectrochemical oxidation of glucose, which was catalyzed by glucose oxidase (GOD) with the help of mediator in the underlying solution. The developed sensor showed high selectivity, good reproducibility, and excellent stability towards CBD with the linear range from 2.0 × 10-9 to 7.0 × 10-5 M, and the limit of detection (LOD) of 0.68 nM (S/N = 3). The expected system would provide a new idea for the development of simple and sensitive molecularly imprinted electrochemical sensors (MIESs).
Collapse
Affiliation(s)
- Wenjing Lian
- Department of Applied Chemistry, College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China; (X.Z.); (Y.H.); (X.L.)
| | - Xinyu Zhang
- Department of Applied Chemistry, College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China; (X.Z.); (Y.H.); (X.L.)
| | - Yongbin Han
- Department of Applied Chemistry, College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China; (X.Z.); (Y.H.); (X.L.)
| | - Xintong Li
- Department of Applied Chemistry, College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China; (X.Z.); (Y.H.); (X.L.)
| | - Hongyun Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Gogoi M, Goswami R, Borah AR, Phukan L, Hazarika S. Enantioselective Membranes for Pharmaceutical Applications: A Comprehensive Review. Biomed Chromatogr 2025; 39:e6043. [PMID: 39557451 DOI: 10.1002/bmc.6043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
In the past decade, significant advances have been made in the field of chiral separation, which is crucial for biological and pharmaceutical applications. Enantioselective membranes have emerged as a promising platform for efficient chiral separation due to their unique properties such as large surface area, tunable pore size, and high selectivity. These membranes are particularly effective in separating enantiomers because of their ability to facilitate selective interactions between the membrane material and chiral molecules. This article provides a comprehensive review of the recent progress in enantioselective membranes for chiral separation. Key topics discussed include various membrane fabrication methods, functionalization approaches, and the characterization of membrane properties, specifically in the context of applications like drug delivery, biomolecule separation, and pharmaceutical analysis. Furthermore, the review addresses the current challenges, potential solutions, and future prospects in this rapidly evolving field, highlighting the direction for upcoming research.
Collapse
Affiliation(s)
- Monti Gogoi
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Rajiv Goswami
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Akhil Ranjan Borah
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Lachit Phukan
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Swapnali Hazarika
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Zhang M, Dong X, Ji G, Wang J, Wang T, Liu Q, Niu Q. Synergistic effect of 2D covalent organic frameworks confined 0D carbon quantum dots film: Toward molecularly imprinted cathodic photoelectrochemical platform for detection of tetracycline. Biosens Bioelectron 2025; 267:116870. [PMID: 39454365 DOI: 10.1016/j.bios.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The development of high photoactive cathode materials combined with the formation of a stable interface are considered important factors for the selective and sensitive photoelectrochemical (PEC) detection of tetracycline (TC). Along these lines, in this work, a novel type II heterostructure composed of two-dimensional (2D) covalent organic frameworks confined to zero-dimensional (0D) carbon quantum dots (CDs/COFs) film was successfully synthesized using the rapid in-situ polymerization method at room temperature. The PEC signal of CDs/COFs was significantly amplified by improving the light absorption and electron transfer capabilities. Furthermore, a cathodic molecularly imprinted PEC sensor (MIP-PEC) for the detection of TC was constructed through fast in-situ Ultraviolet (UV) photopolymerization on the electrode. Finally, a "turn-off" PEC cathodic signal was achieved based on the selective recognition of the imprinted cavity and the mechanism of steric hindrance increase. Under optimal conditions, the proposed sensor demonstrated a wide linear relationship with TC in the concentration range of 5.00 × 10-12-1.00 × 10-5 M, with a detection limit as low as 6.00 × 10-13 M. Meanwhile, excellent stability, selectivity, reproducibility, and applicability in real river samples was recorded. Our work provides an effective and rapid in situ construction method for fabricating highly photoactive cathode heterojunctions and uniform stable selective MIP-PEC sensing interfaces, yielding accurate antibiotics detection in the environment.
Collapse
Affiliation(s)
- Mengge Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiuxiu Dong
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Guanya Ji
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jing Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Tao Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
11
|
Olivares Moreno CA, Ghaddar N, Sehit E, Schomäcker R, Altintas Z. Surface modification of PVDF ultrafiltration membranes using spacer arms and synthetic receptors for virus capturing and separation. Talanta 2024; 279:126558. [PMID: 39047630 DOI: 10.1016/j.talanta.2024.126558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Although membrane technology has demonstrated outstanding pathogen removal capabilities, current commercial membranes are insufficient for removing small viruses at trace levels due to certain limitations. The theoretical and practical significance of developing a new form of hydrophilic, anti-fouling, and virus-specific ultra-purification membrane with high capturing and separation efficiency, stability, and throughput for water treatment is of the utmost importance. In this study, molecularly imprinted membranes (MIMs) were fabricated from polyvinylidene fluoride (PVDF) membranes utilizing novel surface hydrophilic modification techniques, followed by the immobilization of virus-specific molecularly imprinted nanoparticles (nanoMIPs) as synthetic receptors. Three distinct membrane functionalization strategies were established and optimized for the first time: membrane functionalization with (i) polyethyleneimine (PEI) and dopamine (DOP), (ii) PEI and 3-(chloropropyl)-trimethoxysilane (CTS), and (iii) chitosan (CS). Hydrophilicity was enhanced significantly as a result of these modification strategies. Additionally, the modifications enabled spacer arms between the membrane surface and the nanoMIPs to decrease steric hindrance. The surface chemistry, morphology, and membrane performance results from the characterization analysis of the MIMs demonstrated excellent hydrophilicity (e.g., the functionalized membrane presented 37.84° while the unmodified bare membrane exhibited 128.94° of water contact angle), higher permeation flux (145.96 L m-2 h-1 for the functionalized membrane), excellent uptake capacity (up to 99.99 % for PEI-DOP-MIM and CS-MIM), and recovery (more than 80 % for PEI-DOP-MIM). As proof of concept, the cutting-edge MIMs were able to eliminate the model adenoviruses up to 99.99 % from water. The findings indicate that the novel functionalized PVDF membranes hold promise for implementation in practical applications for virus capture and separation.
Collapse
Affiliation(s)
| | - Nabila Ghaddar
- Institute of Chemistry, Technical University of Berlin, Straße des 17, Juni 124, 10623, Berlin, Germany
| | - Ekin Sehit
- Institute of Chemistry, Technical University of Berlin, Straße des 17, Juni 124, 10623, Berlin, Germany; Institute of Materials Science, Faculty of Engineering, Kiel University, 24143, Kiel, Germany
| | - Reinhard Schomäcker
- Institute of Chemistry, Technical University of Berlin, Straße des 17, Juni 124, 10623, Berlin, Germany
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17, Juni 124, 10623, Berlin, Germany; Institute of Materials Science, Faculty of Engineering, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118, Kiel, Germany.
| |
Collapse
|
12
|
Shah N, Shah M, Rehan T, Khan A, Majeed N, Hameed A, Bououdina M, Abumousa RA, Humayun M. Molecularly imprinted polymer composite membranes: From synthesis to diverse applications. Heliyon 2024; 10:e36189. [PMID: 39253174 PMCID: PMC11382202 DOI: 10.1016/j.heliyon.2024.e36189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
This review underscores the fundamentals of MIP-CMs and systematically summarizes their synthetic strategies and applications, and potential developments. MIP-CMs are widely acclaimed for their versatility, finding applications in separation, filtration, detection, and trace analysis, as well as serving as scaffolds in a range of analytical, biomedical and industrial contexts. Also characterized by extraordinary selectivity, remarkable sensitivity, and outstanding capability to bind molecules, those membranes are also cost-effective, highly stable, and configurable in terms of recognition and, therefore, inalienable in various application fields. Issues relating to the potential future for the paper are discussed in the last section with the focus on the improvement of resource practical application across different areas. Hence, this review can be seen as a kind of cookbook for the design and fabrication of MIP-CMs with an intention to expand the scope of their application.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Touseef Rehan
- Department of Biochemistry Women University Mardan, Mardan, 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Rasha A Abumousa
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| |
Collapse
|
13
|
Meng M, Ren J, Zhang C, Du W, Wang J. Polyvinylidene Fluoride-Based Nanowire-Imprinted Membranes with High Flux for Efficient and Selective Separation of Artemisinin/Artemether. Molecules 2024; 29:3868. [PMID: 39202947 PMCID: PMC11357418 DOI: 10.3390/molecules29163868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
A traditional phase transformation method is commonly used to prepare molecular imprinting membranes for selective separation. However, traditional molecularly imprinted polymers are mostly micron-sized particles, and the imprinting sites in their membrane are easily embedded, leading to a reduced adsorption capacity and decreased selectivity. In this study, an ultra-long nanowire with a diameter of about 15 nm was synthesized for the separation of artemisinin (ART), and its adsorption capacity was as high as 198.29 mg g-1 after imprinting polymerization. Molecular imprinting membranes were prepared, using polyvinylidene fluoride (PVDF), polyethersulfone (PES), and polysulfone (PSF) as the membrane matrix, for comparison. The average membrane pore size of PVDF-MIM was about 480 nm, and PVDF-MIM had the highest adsorption capacity (69 mg g-1) for ART. The optimal flow rate for PVDF-MIM's dynamic adsorption of ART was 7 mL min-1. Under this optimal flow rate, selectivity experiments were carried out to obtain the separation factor of PVDF-MIM (α = 8.37), which was much higher than the corresponding values of PES-MIM and PSF-MIM. In addition, the hydrophobicity and low flux of PES-MIM and PSF-MIM lead to higher non-specific adsorption. The hydrophobicity of PVDF-MIM is lower than that of PES-MIM and PSF-MIM, which greatly reduces the non-specific adsorption of the membrane, thus increasing the selectivity of the membranes. Therefore, the effective density of the imprinting sites in the pores and the membrane structure are the main factors determining the efficient separation of molecularly imprinted membranes.
Collapse
Affiliation(s)
- Minjia Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (J.R.); (C.Z.); (W.D.)
| | | | | | | | - Jixiang Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (J.R.); (C.Z.); (W.D.)
| |
Collapse
|
14
|
Wang L, Li N, Zhang X, Bobrinetskiy I, Gadjanski I, Fu W. Sensing with Molecularly Imprinted Membranes on Two-Dimensional Solid-Supported Substrates. SENSORS (BASEL, SWITZERLAND) 2024; 24:5119. [PMID: 39204816 PMCID: PMC11358988 DOI: 10.3390/s24165119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Molecularly imprinted membranes (MIMs) have been a focal research interest since 1990, representing a breakthrough in the integration of target molecules into membrane structures for cutting-edge sensing applications. This paper traces the developmental history of MIMs, elucidating the diverse methodologies employed in their preparation and characterization on two-dimensional solid-supported substrates. We then explore the principles and diverse applications of MIMs, particularly in the context of emerging technologies encompassing electrochemistry, surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), and the quartz crystal microbalance (QCM). Furthermore, we shed light on the unique features of ion-sensitive field-effect transistor (ISFET) biosensors that rely on MIMs, with the notable advancements and challenges of point-of-care biochemical sensors highlighted. By providing a comprehensive overview of the latest innovations and future trajectories, this paper aims to inspire further exploration and progress in the field of MIM-driven sensing technologies.
Collapse
Affiliation(s)
- Lishuang Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Nan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Xiaoyan Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (L.W.); (N.L.)
| | - Ivan Bobrinetskiy
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1a, 21000 Novi Sad, Serbia; (I.B.); (I.G.)
| | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1a, 21000 Novi Sad, Serbia; (I.B.); (I.G.)
| | - Wangyang Fu
- School of Materials Science and Engineering, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing 100084, China
| |
Collapse
|
15
|
Du M, Xu Z, Xue Y, Li F, Bi J, Liu J, Wang S, Guo X, Zhang P, Yuan J. Application Prospect of Ion-Imprinted Polymers in Harmless Treatment of Heavy Metal Wastewater. Molecules 2024; 29:3160. [PMID: 38999112 PMCID: PMC11243660 DOI: 10.3390/molecules29133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.
Collapse
Affiliation(s)
- Mengzhen Du
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Zihao Xu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Yingru Xue
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Fei Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jingtao Bi
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jie Liu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Shizhao Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Xiaofu Guo
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Junsheng Yuan
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| |
Collapse
|
16
|
Zhang X, Gan T, Xu Z, Zhang H, Wang D, Zhao X, Huang Y, Liu Q, Fu B, Dai Z, Li P, Xu W. Immune-like sandwich multiple hotspots SERS biosensor for ultrasensitive detection of NDKA biomarker in serum. Talanta 2024; 271:125630. [PMID: 38237280 DOI: 10.1016/j.talanta.2024.125630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Developing the rapid, specific, and sensitive tumor marker NDKA biosensor has become an urgent need in the field of early diagnosis of colorectal cancer (CRC). Surface-enhanced Raman spectroscopy (SERS) with the advantages of high sensitivity, high resolution as well as providing sample fingerprint, enables rapid and sensitive detection of tumor markers. However, many SERS biosensors rely on boosting the quantity of Raman reporter molecules on individual nanoparticle surfaces, which can result in nanoparticle agglomeration, diminishing the stability and sensitivity of NDKA detection. Here, we proposed an immune-like sandwich multiple hotspots SERS biosensor for highly sensitive and stable analysis of NDKA in serum based on molecularly imprinted polymers and NDKA antibody. The SERS biosensor employs an array of gold nanoparticles, which are coated with a biocompatible polydopamine molecularly imprinted polymer as a substrate to specifically capture NDKA. Then the biosensor detects NDKA through Raman signals as a result of the specific binding of NDKA to the SERS nanotag affixed to the capture substrate along with the formation of multiple hotspots. This SERS biosensor not only avoids the aggregation of nanoparticles but also presents a solution to the obstacles encountered in immune strategies for certain proteins lacking multiple antibody or aptamer binding sites. Furthermore, the practical application of the SERS biosensor is validated by the detection of NDKA in serum with the lower limit of detection (LOD) of 0.25 pg/mL, meanwhile can detect NDKA of 10 ng/mL in mixed proteins solution, illustrating high sensitivity and specificity. This immune-like sandwich multiple hotspots biosensor makes it quite useful for the early detection of CRC and also provides new ideas for cancer biomarker sensing strategy in the future.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Tian Gan
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ziming Xu
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hanyuan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Dan Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xinxin Zhao
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ying Huang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qunshan Liu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Bangguo Fu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zuyun Dai
- Anhui Jianghuai Horticulture Seeds Co., Ltd., Hefei, 230031, Anhui, China.
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Weiping Xu
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Anhui, Hefei, 230001, China.
| |
Collapse
|
17
|
Xiao H, Feng Y, Goundry WRF, Karlsson S. Organic Solvent Nanofiltration in Pharmaceutical Applications. Org Process Res Dev 2024; 28:891-923. [PMID: 38660379 PMCID: PMC11036530 DOI: 10.1021/acs.oprd.3c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
Separation and purification in organic solvents are indispensable procedures in pharmaceutical manufacturing. However, they still heavily rely on the conventional separation technologies of distillation and chromatography, resulting in high energy and massive solvent consumption. As an alternative, organic solvent nanofiltration (OSN) offers the benefits of low energy consumption, low solid waste generation, and easy scale-up and incorporation into continuous processes. Thus, there is a growing interest in employing membrane technology in the pharmaceutical area to improve process sustainability and energy efficiency. This Review comprehensively summarizes the recent progress (especially the last 10 years) of organic solvent nanofiltration and its applications in the pharmaceutical industry, including the concentration and purification of active pharmaceutical ingredients, homogeneous catalyst recovery, solvent exchange and recovery, and OSN-assisted peptide/oligonucleotide synthesis. Furthermore, the challenges and future perspectives of membrane technology in pharmaceutical applications are discussed in detail.
Collapse
Affiliation(s)
- Hui Xiao
- Early
Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Yanyue Feng
- Early
Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca Gothenburg, SE-431 83 Mölndal, Sweden
| | - William R. F. Goundry
- Early
Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Staffan Karlsson
- Early
Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca Gothenburg, SE-431 83 Mölndal, Sweden
| |
Collapse
|
18
|
Zavahir S, Riyaz NS, Elmakki T, Tariq H, Ahmad Z, Chen Y, Park H, Ho YC, Shon HK, Han DS. Ion-imprinted membranes for lithium recovery: A review. CHEMOSPHERE 2024; 354:141674. [PMID: 38462186 DOI: 10.1016/j.chemosphere.2024.141674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
This review critically examines the effectiveness of ion-imprinted membranes (IIMs) in selectively recovering lithium (Li) from challenging sources such as seawater and brine. These membranes feature customized binding sites that specifically target Li ions, enabling selective separation from other ions, thanks to cavities shaped with crown ether or calixarene for improved selectivity. The review thoroughly investigates the application of IIMs in Li extraction, covering extensive sections on 12-crown-4 ether (a fundamental crown ether for Li), its modifications, calixarenes, and other materials for creating imprinting sites. It evaluates these systems against several criteria, including the source solution's complexity, Li+ concentration, operational pH, selectivity, and membrane's ability for regeneration and repeated use. This evaluation places IIMs as a leading-edge technology for Li extraction, surpassing traditional methods like ion-sieves, particularly in high Mg2+/Li+ ratio brines. It also highlights the developmental challenges of IIMs, focusing on optimizing adsorption, maintaining selectivity across varied ionic solutions, and enhancing permselectivity. The review reveals that while the bulk of research is still exploratory, only a limited portion has progressed to detailed lab verification, indicating that the application of IIMs in Li+ recovery is still at an embryonic stage, with no instances of pilot-scale trials reported. This thorough review elucidates the potential of IIMs in Li recovery, cataloging advancements, pinpointing challenges, and suggesting directions for forthcoming research endeavors. This informative synthesis serves as a valuable resource for both the scientific community and industry professionals navigating this evolving field.
Collapse
Affiliation(s)
- Sifani Zavahir
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | | | - Tasneem Elmakki
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Haseeb Tariq
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Zubair Ahmad
- Qatar University Young Scientists Center (QUYSC), Qatar University, Doha, Qatar
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Hyunwoong Park
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeek-Chia Ho
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Civil and Environmental Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), New South Wales, Australia
| | - Dong Suk Han
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar.
| |
Collapse
|
19
|
Sarvutiene J, Prentice U, Ramanavicius S, Ramanavicius A. Molecular imprinting technology for biomedical applications. Biotechnol Adv 2024; 71:108318. [PMID: 38266935 DOI: 10.1016/j.biotechadv.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.
Collapse
Affiliation(s)
- Julija Sarvutiene
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
20
|
Yu X, Yang Y, Shen Q, Sun Y, Kang Q, Shen D. A novel differential ratiometric molecularly imprinted electrochemical sensor for determination of sulfadiazine in food samples. Food Chem 2024; 434:137461. [PMID: 37716152 DOI: 10.1016/j.foodchem.2023.137461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Herein, we report a novel differential ratiometric molecularly imprinted polymer (MIP) electrochemical sensor for sulfadiazine (SDZ). An MIP membrane with double templates, SDZ and propyl gallate (PG), was fabricated on glassy carbon electrode (GCE) modified by CuInS2/ZnS nanocomposites. After adding PG in the samples as the reference, the current differences between MIP@CuInS2/ZnS/GCE and non-imprinted polymer@CuInS2/ZnS/GCE at the potentials of 0.18 V (ΔIPG) and 0.92 V (ΔISDZ) were measured. The ratio of ΔISDZ/ΔIPG was used for SDZ determination in the differential and ratiometric dual-mode. The influence of the variations in electrode modification and sample enrichment conditions on the determination of SDZ can be suppressed by 2.8 ∼ 13.2-fold, enhancing the reproducibility and stability of the MIP sensor. The interference level was reduced by one order of magnitude compared with the normal MIP mode. The proposed sensors were used to determine SDZ in food samples, with the detection limit of 2.1 nM.
Collapse
Affiliation(s)
- Xifeng Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, PR China
| | - Yan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, PR China
| | - Qirui Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, PR China
| | - Yue Sun
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, PR China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, PR China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
21
|
Bian W, Zhang R, Chen X, Zhang C, Meng M. Three-Dimensional Porous PVDF Foam Imprinted Membranes with High Flux and Selectivity toward Artemisinin/Artemether. Molecules 2023; 28:7452. [PMID: 37959871 PMCID: PMC10647727 DOI: 10.3390/molecules28217452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, a new 3D porous PVDF-foam-imprinted membrane (PPIM) for the selective separation of artemisinin (ART) was first prepared via the dopamine adhesion of pre-synthesized MIPs into the interior of the PPIM. In the PPIM, the pre-synthesized molecularly imprinted polymers (MIPs) with artesunate (ARU) as a dummy template were uniformly loaded on the interior of the membrane, avoiding the defects of recognition site encapsulation found in the conventional membrane. This membrane also exhibited excellent flux, which is beneficial in practical separation applications. The PPIM was systematically characterized via FT-IR, SEM, pore-size distribution analysis, water contact angle test, membrane flux, and mechanical performance analysis, respectively. In the static adsorption experiment, the pseudo-second-order kinetic model better fitted the rebinding data of ART. Under dynamic conditions, the ART adsorption capacity of the PPIM could be further remarkably improved by tailoring the flow rate to 3 mL min-1. In the selective separation experiment, with artemether (ARE) as the competition substrate, the selective separation ability (α) of the PPIM towards ART/artemether (ARE) reached its peak value (3.16) within only 10 min at this flow rate, which is higher than that of porous PVDF foam non-imprinted membranes (PPNM) (ca. 1.5), showing great separation efficiency in a short time. Moreover, the PPIM can be reused five times without a significant decrease in its adsorption capacities, showing good regeneration performance. This work highlights a simple strategy for constructing new MIMs with high flux and great mechanical strength to achieve the efficient selective separation of ART and ARE in practical applications.
Collapse
Affiliation(s)
- Weibai Bian
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (R.Z.); (X.C.)
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China;
- Tianhe Pharmaceutical Co., Ltd., Yangzhou 225267, China
| | - Ruixuan Zhang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (R.Z.); (X.C.)
| | - Xiaohui Chen
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China; (R.Z.); (X.C.)
| | - Chuanxun Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Minjia Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
22
|
Ni X, Tang X, Wang D, Zhang J, Zhao L, Gao J, He H, Dramou P. Research progress of sensors based on molecularly imprinted polymers in analytical and biomedical analysis. J Pharm Biomed Anal 2023; 235:115659. [PMID: 37657406 DOI: 10.1016/j.jpba.2023.115659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Molecularly imprinted polymers (MIPs) have had tremendous impact on biomimetic recognition due to their precise specificity and high affinity comparable to that of antibodies, which has shown the great advantages of easy preparation, good stability and low cost. The combination of MIPs with other analytical technologies can not only achieve rapid extraction and sensitive detection of target compounds, improving the level of analysis, but also achieve precise targeted delivery, in-vivo imaging and other applications. Among them, the recognition mechanism plays a vital role in chemical and biological sensing, while the improvement of the recognition element, such as the addition of new nanomaterials, can greatly improve the analytical performance of the sensor, especially in terms of selectivity. Currently, due to the need for rapid diagnosis and improved sensing properties (such as selectivity, stability, and cost-effectiveness), researchers are investigating new recognition elements and their combinations to improve the recognition capabilities of chemical sensing and bio-sensing. Therefore, this review mainly discusses the design strategies of optical sensors, electrochemical sensors and photoelectric sensors with molecular imprinting technology and their applications in environmental systems, food fields, drug detection and biology including bacteria and viruses.
Collapse
Affiliation(s)
- Xu Ni
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Tang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Dan Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Linjie Zhao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Gao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.
| | - Pierre Dramou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
23
|
Cheng Y, Tian DY, Wang YH, Liu W, Huo XL, Bao N, Wu ZQ. Vibration-enhanced disposable electroanalytical platform for selective analysis of tryptophan in fruits based on molecular imprinting. Anal Chim Acta 2023; 1279:341853. [PMID: 37827659 DOI: 10.1016/j.aca.2023.341853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Although electrochemical detection based on molecular imprinting polymers (MIP) could dramatically improve the selectivity, the procedure is time-consuming because of the essential incubation step. In addition, current MIP electrochemical detections were not suitable for analysis of microliter-level sample solutions, limiting their applications for real samples. This investigation aims at applying vibration to enhance efficiency of MIP electrochemical detection of 20 μL sample solutions. MIP analysis of Tryptophan (Trp) was used as the model with disposable MIP electrodes prepared by electrochemical polymerization of o-phenylenediamine on carbon ink coated on stainless steel sheets. The MIP electrode was integrated in a 3D-printed analytical device for vibration-enhanced electrochemical detection of Trp. Our results showed that this vibration-enhanced strategy could significantly increase electrochemical responses of Trp at the same incubation time. Such improvement might be attributed to the enhanced mass transfer at the surface of the working electrode brought by vibration. It needs to be emphasized that this strategy is suitable for analysis of sample solutions with the volume of microliters, which is superior to normal stirring in MIP electrochemical detection. Our approach could be successfully utilized for differentiation of Trp in different fruits, opening more opportunities for MIP electrochemical detection of real samples. The enhanced efficiency by vibration could pave foundation for extensive practical MIP detection of sample solutions at the level of microliters.
Collapse
Affiliation(s)
- Ye Cheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Dong-Yang Tian
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Ya-Hong Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
| | - Xiao-Lei Huo
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| | - Ning Bao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| | - Zeng-Qiang Wu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| |
Collapse
|
24
|
Sathirapongsasuti N, Panaksri A, Jusain B, Boonyagul S, Pechprasarn S, Jantanasakulwong K, Suksuwan A, Thongkham S, Tanadchangsaeng N. Enhancing protein trapping efficiency of graphene oxide-polybutylene succinate nanofiber membrane via molecular imprinting. Sci Rep 2023; 13:15398. [PMID: 37717111 PMCID: PMC10505162 DOI: 10.1038/s41598-023-42646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Filtration of biological liquids has been widely employed in biological, medical, and environmental investigations due to its convenience; many could be performed without energy and on-site, particularly protein separation. However, most available membranes are universal protein absorption or sub-fractionation due to molecule sizes or properties. SPMA, or syringe-push membrane absorption, is a quick and easy way to prepare biofluids for protein evaluation. The idea of initiating SPMA was to filter proteins from human urine for subsequent proteomic analysis. In our previous study, we developed nanofiber membranes made from polybutylene succinate (PBS) composed of graphene oxide (GO) for SPMA. In this study, we combined molecular imprinting with our developed PBS fiber membranes mixed with graphene oxide to improve protein capture selectivity in a lock-and-key fashion and thereby increase the efficacy of protein capture. As a model, we selected albumin from human serum (ABH), a clinically significant urine biomarker, for proteomic application. The nanofibrous membrane was generated utilizing the electrospinning technique with PBS/GO composite. The PBS/GO solution mixed with ABH was injected from a syringe and transformed into nanofibers by an electric voltage, which led the fibers to a rotating collector spinning for fiber collection. The imprinting process was carried out by removing the albumin protein template from the membrane through immersion of the membrane in a 60% acetonitrile solution for 4 h to generate a molecular imprint on the membrane. Protein trapping ability, high surface area, the potential for producing affinity with proteins, and molecular-level memory were all evaluated using the fabricated membrane morphology, protein binding capacity, and quantitative protein measurement. This study revealed that GO is a controlling factor, increasing electrical conductivity and reducing fiber sizes and membrane pore areas in PBS-GO-composites. On the other hand, the molecular imprinting did not influence membrane shape, nanofiber size, or density. Human albumin imprinted membrane could increase the PBS-GO membrane's ABH binding capacity from 50 to 83%. It can be indicated that applying the imprinting technique in combination with the graphene oxide composite technique resulted in enhanced ABH binding capabilities than using either technique individually in membrane fabrication. The suitable protein elution solution is at 60% acetonitrile with an immersion time of 4 h. Our approach has resulted in the possibility of improving filter membranes for protein enrichment and storage in a variety of biological fluids.
Collapse
Affiliation(s)
- Nuankanya Sathirapongsasuti
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Pli, Samut Prakan, Thailand
| | - Anuchan Panaksri
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Benjabhorn Jusain
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Sani Boonyagul
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Suejit Pechprasarn
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Mae Hia, Chiang Mai, Thailand
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | - Acharee Suksuwan
- The Halal Science Center, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Somprasong Thongkham
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, Thailand
| | | |
Collapse
|
25
|
Vargas-Berrones K, Ocampo-Perez R, Rodríguez-Torres I, Medellín-Castillo NA, Flores-Ramírez R. Molecularly imprinted polymers (MIPs) as efficient catalytic tools for the oxidative degradation of 4-nonylphenol and its by-products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90741-90756. [PMID: 37462867 DOI: 10.1007/s11356-023-28653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/02/2023] [Indexed: 08/24/2023]
Abstract
Water pollution is a current global concern caused by emerging pollutants like nonylphenol (NP). This endocrine disruptor cannot be efficiently removed with traditional wastewater treatment plants (WTPs). Therefore, this work aimed to evaluate the adsorption influence of molecularly imprinted polymers (MIPs) on the oxidative degradation (ozone and ultraviolet irradiations) of 4-nonylphenol (4-NP) and its by-products as a coadjuvant in WTPs. MIPs were synthesized and characterized; the effect of the degradation rate under system operating conditions was studied by Box-Behnken response surface design of experiments. The variables evaluated were 4-NP concentration, ozone exposure time, pH, and MIP amount. Results show that the MIPs synthesized by co-precipitation and bulk polymerizations obtained the highest retention rates (> 90%). The maximum adsorption capacities for 4-NP were 201.1 mg L-1 and 500 mg L-1, respectively. The degradation percentages under O3 and UV conditions reached 98-100% at 120 s of exposure at different pHs. The degradation products of 4-NP were compounds with carboxylic and ketonic acids, and the MIP adsorption was between 50 and 60%. Our results present the first application of MIPs in oxidation processes for 4-NP, representing starting points for the use of highly selective materials to identify and remove emerging pollutants and their degradation by-products in environmental matrices.
Collapse
Affiliation(s)
- Karla Vargas-Berrones
- Instituto Tecnológico Superior de Rioverde, Ma del Rosario, San Ciro de Acosta-Rioverde 165, CP 79610, Rioverde, SLP, Mexico
| | - Raul Ocampo-Perez
- Centro de Investigación Y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Israel Rodríguez-Torres
- Instituto de Metalurgia-Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, 78210, San Luis Potosí, San Luis Potosí, Mexico
| | - Nahúm A Medellín-Castillo
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 8, 78290, San Luis Potosí, SLP, Mexico
| | - Rogelio Flores-Ramírez
- Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Colonia Lomas Segunda Sección, Avenida Sierra Leona No. 550, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
26
|
Chen J, Wei M, Meng M. Advanced Development of Molecularly Imprinted Membranes for Selective Separation. Molecules 2023; 28:5764. [PMID: 37570733 PMCID: PMC10420217 DOI: 10.3390/molecules28155764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Molecularly imprinted membranes (MIMs), the incorporation of a given target molecule into a membrane, are generally used for separating and purifying the effective constituents of various natural products. They have been in use since 1990. The application of MIMs has been studied in many fields, including separation, medicine analysis, solid-phase extraction, and so on, and selective separation is still an active area of research. In MIM separation, two important membrane performances, flux and permselectivities, show a trade-off relationship. The enhancement not only of permselectivity, but also of flux poses a challenging task for membranologists. The present review first describes the recent development of MIMs, as well as various preparation methods, showing the features and applications of MIMs prepared with these different methods. Next, the review focuses on the relationship between flux and permselectivities, providing a detailed analysis of the selective transport mechanisms. According to the majority of the studies in the field, the paramount factors for resolving the trade-off relationship between the permselectivity and the flux in MIMs are the presence of effective high-density recognition sites and a high degree of matching between these sites and the imprinted cavity. Beyond the recognition sites, the membrane structure and pore-size distribution in the final imprinted membrane collectively determine the selective transport mechanism of MIM. Furthermore, it also pointed out that the important parameters of regeneration and antifouling performance have an essential role in MIMs for practical applications. This review subsequently highlights the emerging forms of MIM, including molecularly imprinted nanofiber membranes, new phase-inversion MIMs, and metal-organic-framework-material-based MIMs, as well as the construction of high-density recognition sites for further enhancing the permselectivity/flux. Finally, a discussion of the future of MIMs regarding breakthroughs in solving the flux-permselectivity trade-off is offered. It is believed that there will be greater advancements regarding selective separation using MIMs in the future.
Collapse
Affiliation(s)
- Jiahe Chen
- College of Physics, Jilin Normal University, 1301 Haifeng Street, Siping 136000, China;
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maobin Wei
- College of Physics, Jilin Normal University, 1301 Haifeng Street, Siping 136000, China;
| | - Minjia Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
27
|
Zhang K, Yan M, Li Y, Ma F, Wu Y. Precise identification and ultrafast transport of specific molecules with nanofluid-functionalized imprinted membrane. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131134. [PMID: 36871464 DOI: 10.1016/j.jhazmat.2023.131134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based imprinted sites for achieving specific molecule transport and precise recognition have great potential to revolutionize nanofiltration technology. Nonetheless, how to efficiently prepare imprinted membrane structures with accurate identification - ultrafast molecular transport - high stability in mobile phase remains a key issue and serious challenge. Herein, we have developed a dual-activation strategy to constructing nanofluid-functionalized membranes with double imprinted nanoscale channels (NMDINCs), realizing ultrafast transport performance as well as structure&size-exclusion selectivity in allusion to particular compounds. The resultant NMDINCs, founded on principal nanofluid-functionalized construction companied by the boronate affinity sol-gel imprinting systems, illustrated that delicate regulation towards polymerization framework as well as functionalization belonging to distinctive membrane structures was crucial for realizing ultrafast molecules transport combined with prominent molecules selectivity. The synergistic recognition of covalent bonds and non-covalent bonds driven by two functional monomers effectively realized the selective recognition to template molecules, leading to the high selective separation factors of Shikimic acid (SA)/ Para hydroxybenzoic acid(PHA), SA/ P nitrophenol(PN)and catechol(CL)for 8.9, 8.14 and 7.23, respectively. The dynamic consecutive transport outcomes exhibited that numerous SA-dependent recognition sites could still keep reactivity under pump-driven permeation pressure for appreciable time, forcefully proving the successful construction as to high-efficiency membrane-based selective separation system. It is anticipated that this strategy as to the in situ introduction of nanofluid-functionalized construction into porous membrane would hold great promise in preparing high-intensities membrane-founded discriminating separation systems, which was equipped with prominent consecutive permeability as well as excellent selectivity.
Collapse
Affiliation(s)
- Kaicheng Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ming Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yue Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Faguang Ma
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
28
|
Kanao E, Osaki H, Tanigawa T, Takaya H, Sano T, Adachi J, Otsuka K, Ishihama Y, Kubo T. Rational Supramolecular Strategy via Halogen Bonding for Effective Halogen Recognition in Molecular Imprinting. Anal Chem 2023. [PMID: 37230938 DOI: 10.1021/acs.analchem.3c01311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Halogen bonding is a highly directional interaction and a potential tool in functional material design through self-assembly. Herein, we describe two fundamental supramolecular strategies to synthesize molecularly imprinted polymers (MIPs) with halogen bonding-based molecular recognition sites. In the first method, the size of the σ-hole was increased by aromatic fluorine substitution of the template molecule, enhancing the halogen bonding in the supramolecule. The second method involved sandwiching hydrogen atoms of a template molecule between iodo substituents, which suppressed competing hydrogen bonding and enabled multiple recognition patterns, improving the selectivity. The interaction mode between the functional monomer and the templates was elucidated by 1H NMR, 13C NMR, X-ray absorption spectroscopy, and computational simulation. Finally, we succeeded in the effective chromatographic separation of diiodobenzene isomers on the uniformly sized MIPs prepared by multi-step swelling and polymerization. The MIPs selectively recognized halogenated thyroid hormones via halogen bonding and could be applied to screening endocrine disruptors.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Hayato Osaki
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tetsuya Tanigawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hikaru Takaya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Jun Adachi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
29
|
Hu W, Feng S, Pei F, Du B, Liu B, Mu X, Tong Z. A novel smartphone-integrated binary-emission molecularly imprinted fluorescence sensor embedded with MIL-101(Cr) for sensitive and real-time detection of protein. Talanta 2023; 260:124563. [PMID: 37087945 DOI: 10.1016/j.talanta.2023.124563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Aiming for precise, real-time, and on-site analysis of proteins, an innovative binary-emission fluorescence imprinted polymer was designed by sol-gel method after mixing MIL-101(Cr), green CdTe (g-CdTe) and red CdTe (r-CdTe) for detection of protein. In this proposal, MIL-101(Cr), as a favorable supporter, provided high surface area and porosity for imprinting sites, which ameliorated the transfer rate and the sensitivity of the nanosensor. And g-CdTe and r-CdTe were served as signal transduction for dual-emission response. Based on strengthened recognition reaction between high-affinity imprinting sites and protein, the fluorescence intensities of g-CdTe and r-CdTe yielded conspicuous two responses at 528 nm and 634 nm for protein under the excitation of 350 nm. The cytochrome c (Cyt c) and trypsin were served as model proteins to verify the generality of strategy. Given prominent merits of MIL-101(Cr), g-CdTe/r-CdTe@MIL-101(Cr)@MIP exhibited good linear range of 1-30 μM for Cyt c and 0.15-4 μM for trypsin, and the limit of detection were 0.13 μM and 0.014 μM, respectively. Significantly, an unsophisticated smartphone-based sensing device was developed by integrating g-CdTe/r-CdTe@MIL-101(Cr)@MIP with a 3D printing portable device to obtain precise on-site results. As expected, this portable platform was successfully applied for monitoring Cyt c and trypsin with a detection limit of 0.71 μM and 0.026 μM, respectively. These results indicated this dual-response molecularly imprinted fluorescence senor based on smartphone provided promising perspectives on futural on-site protein analysis.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shasha Feng
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Fubin Pei
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
30
|
Siwy ZS, Bruening ML, Howorka S. Nanopores: synergy from DNA sequencing to industrial filtration - small holes with big impact. Chem Soc Rev 2023; 52:1983-1994. [PMID: 36794856 DOI: 10.1039/d2cs00894g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Nanopores in thin membranes play important roles in science and industry. Single nanopores have provided a step-change in portable DNA sequencing and understanding nanoscale transport while multipore membranes facilitate food processing and purification of water and medicine. Despite the unifying use of nanopores, the fields of single nanopores and multipore membranes differ - to varying degrees - in terms of materials, fabrication, analysis, and applications. Such a partial disconnect hinders scientific progress as important challenges are best resolved together. This Viewpoint suggests how synergistic crosstalk between the two fields can provide considerable mutual benefits in fundamental understanding and the development of advanced membranes. We first describe the main differences including the atomistic definition of single pores compared to the less defined conduits in multipore membranes. We then outline steps to improve communication between the two fields such as harmonizing measurements and modelling of transport and selectivity. The resulting insight is expected to improve the rational design of porous membranes. The Viewpoint concludes with an outlook of other developments that can be best achieved by collaboration across the two fields to advance the understanding of transport in nanopores and create next-generation porous membranes tailored for sensing, filtration, and other applications.
Collapse
Affiliation(s)
- Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, USA.
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA.
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, UK.
| |
Collapse
|
31
|
Song J, Yu C, Ma F, Lin R, Gao L, Yan Y, Wu Y. Design of molecularly imprinted nanocomposite membrane for selective separation of lysozyme based on double-faced self-assembly strategy. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Mehmandoust M, Soylak M, Erk N. Innovative molecularly imprinted electrochemical sensor for the nanomolar detection of Tenofovir as an anti-HIV drug. Talanta 2023; 253:123991. [PMID: 36228557 DOI: 10.1016/j.talanta.2022.123991] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 10/02/2022] [Indexed: 11/23/2022]
Abstract
Tenofovir (TNF) is an antiviral medicine that is utilized to treat the human immunodeficiency virus (HIV). However, its level must be controlled in the human body and environment at the risk of causing kidney and liver problems. Therefore, determining TNF concentration in real samples with more advanced, inexpensive, and accurate sensing systems is essential. In this work, a novel electrochemical nanosensor for TNF determination based on molecularly imprinted polymer (MIP) on the screen-printed electrode modified with functionalized multi-walled carbon nanotubes, graphite carbon nitride, and platinum nanoparticles (MIP-Pt@g-C3N4/F-MWCNT/SPE) was constructed through the electro-polymerization approach. The molecularly imprinted polymers were prepared on the electrode surface with TNF as the template molecule and 2-aminophenol (2-AP) as the functional monomer. Moreover, factors that affect sensor response were optimized. Pt@g-C3N4/F-MWCNT nanocomposite had an excellent synergistic effect on MIP, allowing rapid and specific identification of the test substance. The results demonstrated that the electro-polymerization of 2-AP supplies large amounts of functional groups for the binding of the template molecules, which remarkably enhances the sensitivity and specific surface area of the MIP sensor. This surface enlargement increased the analyte accessibility to imprinted molecular cavities. Under optimum conditions, the oxidation peak current had a linear relationship with TNF concentration ranging from 0.005 to 0.69 μM with a low detection limit of 0.0030 μM (S/N = 3). The results demonstrated that the designed MIP sensor possesses acceptable sensitivity, repeatability, and reproducibility toward TNF determination. Moreover, the developed sensor was applied to biological and water samples to determine TNF, and satisfactory recovery results of 95.6-104.8% were obtained (RSD less than 10.0%). We confirm that combining as-synthesized nanocomposite Pt@g-C3N4/F-MWCNT with MIP improves the limitations of MIP-based nanosensors. The proposed electrode is also compatible with portable potentiostats, allowing on-site measurements and showing tremendous promise as a point-of-care (POC) diagnostic platform.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Mustafa Soylak
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039, Kayseri, Turkey; Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey.
| |
Collapse
|
33
|
Affiliation(s)
- Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
34
|
ZIF-8-derived N-doped hierarchical porous carbon coated with imprinted polymer as magnetic absorbent for phenol selective removal from wastewater. J Colloid Interface Sci 2023; 630:573-585. [DOI: 10.1016/j.jcis.2022.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
35
|
One-stage chiral enrichment process by continuous flow electrodialysis with molecularly imprinted membrane. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
37
|
Wang Q, Cheng S, Ren S, Zheng Z. Construction of molecularly imprinted voltammetric sensor based on Cu N C polyhedron porous carbon from Cu doping ZIF-8 for the selective determination of norfloxacin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
38
|
Olivares Moreno CA, Altintas Z. Bioselective PES Membranes Based on Chitosan Functionalization and Virus-Imprinted NanoMIPs for Highly Efficient Separation of Human Pathogenic Viruses from Water. MEMBRANES 2022; 12:1117. [PMID: 36363672 PMCID: PMC9694008 DOI: 10.3390/membranes12111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Waterborne viruses are a public health concern due to relatively small infection doses. Particularly, adenoviruses (AdVs) are more resistant than RNA viruses to water purification treatments in terms of ultraviolet (UV) irradiation, pH, and chlorination tolerance. Moreover, AdVs are one of the most predominant waterborne viruses. Membrane separations have proven superior removal capabilities of waterborne pathogens over other separation methods. However, virus removal at ultratrace levels is still a significant challenge for current membrane technology. This study successfully addressed this challenge by developing a bioselective polyethersulfone (PES) membrane by a joint strategy involving chitosan hydrophilic surface modification and the immobilization of adenovirus-specific molecularly imprinted nanoparticles (nanoMIPs). The topological and chemical changes taking place on the membrane surface were characterized by using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Furthermore, hydrophilicity and membrane performance were investigated in terms of swelling behavior, permeation flux, and surface fouling studies. The membrane efficacy was evaluated by filtration experiments, where the virus concentration of the loading solution before filtration and the permeates after filtration was quantified. The novel bioselective membrane showed excellent virus removal capabilities by separating 99.99% of the viruses from the water samples.
Collapse
Affiliation(s)
- Carmen Andreina Olivares Moreno
- Institute of Chemistry, Faculty of Maths and Natural Sciences, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Maths and Natural Sciences, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| |
Collapse
|
39
|
Liu J, Chu T, Cheng M, Su Y, Zou G, Hou S. Bovine serum albumin functional graphene oxide membrane for effective chiral separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Zhang YD, Ma C, Shi YP. Gold bipyramids molecularly imprinted gel colorimetric device for whole blood cholesterol analysis. Anal Chim Acta 2022; 1236:340584. [DOI: 10.1016/j.aca.2022.340584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
41
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
42
|
Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L. Greenificated Molecularly Imprinted Materials for Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203154. [PMID: 35734896 DOI: 10.1002/adma.202203154] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
43
|
|
44
|
Yan M, Fei H, Zhen J, Jiang F, Wu Y. New Insights into High-Performance Nanocomposite Membranes with Threefold-Imprinted Layers for Selective Recognition and Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9321-9334. [PMID: 35855516 DOI: 10.1021/acs.langmuir.2c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we reported on mixed-matrix membranes with polydopamine (PDA)-based threefold-imprinted layers (MMMs-PTIs), in which the dopamine molecules were simultaneously regarded as functional monomers and cross-linking agents during the first-in-class ternary-PDA-based imprinted method. Threefold-ibuprofen-imprinted layers were constructed into and onto the MMMs-PTIs through the phase inversion process, followed by suction filtration strategy, in which the PDA-based ibuprofen-imprinted activated carbon (AC)/SiO2 and TiO2/GO were chosen as fillers. Based on the threefold-imprinted SiO2/AC and polymer and TiO2/GO-loaded structure, rebinding capacities and permselectivity of MMMs-PTIs had been successfully enhanced, and the selective recognition and separation mechanism had been finally evaluated based on the static adsorption/permeation results. Both high rebinding capacity (53.22 mg/g) and adsorption selectivity (α > 2.0) had been achieved. Importantly, as to the permselectivity performance of MMMs-PTIs toward different compounds, the ibuprofen-permeation efficiencies (β value) of MMMs-PTIs reached 4.07, 4.08, and 3.77, respectively. That is to say, remarkable and stable permselectivity performance could be obtained, which demonstrated the successful preparation of good recognizability and permeability toward ibuprofen.
Collapse
Affiliation(s)
- Ming Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hangtao Fei
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingjing Zhen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fan Jiang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
45
|
Pulsed-sonochemiluminescence combined with molecularly imprinted polymerized high internal phase emulsion adsorbent for determination of bentazone. Mikrochim Acta 2022; 189:302. [PMID: 35913687 DOI: 10.1007/s00604-022-05406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
Abstract
A small low-power humidifier with a simple programmable on/off switch was used as a pulsed ultrasound generator. Using this tool, a novel sonochemiluminescence (SCL) method was developed to determine bentazone. To the best of our knowledge, no chemiluminescence method has been proposed to determine this pesticide. Only five studies have been proposed for SCL quantitative applications so far. Therefore, revealing new aspects of SCL promises to develop analytical methods for the quantitative determination of different substances. A molecularly imprinted polymerized high internal phase emulsion (MIP-polyHIPE) was synthesized, bentazone separated from aqueous solutions, and pre-concentrated by the MIP-polyHIPE foam. The adsorption of bentazone on the MIP-polyHIPE adsorbent was theoretically studied by density functional theory through molecular dynamics simulation. Both experimental and simulation results indicated removal and pre-concentration of bentazone by the MIP-polyHIPE adsorbent. Using the proposed SCL method and without pre-concentration process, a linear dynamic range (LDR) of 2.5 × 10-7-5.0 × 10-5 mol L-1 and a limit of detection (LOD) of 8.4 × 10-8 mol L-1 were obtained for bentazone with a relative standard deviation of 2.64%. The LDR and LOD were improved to 2.6 × 10-9-2.0 × 10-7 mol L-1 and 8.8 × 10-10 mol L-1, respectively, using MIP-polyHIPE adsorbents. The method's application was evaluated by removing and pre-concentration of bentazone from water samples, including well, river, and tap water. The results showed that the pre-concentration factor and recovery percentages were 113-131 times and 93-106%, respectively, using the MIP-polyHIPE absorbent.
Collapse
|
46
|
Yu X, Liao J, Zeng H, Wan J, Cao X. Synthesis of water-compatible noncovalent imprinted microspheres for acidic or basic biomolecules designed based on molecular dynamics. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Fan J, Huang C, Cheng Y, Xie C, Chen H, Peng H. Silk fibroin/calcium alginate composite modifying supermacroporous molecularly imprinted membrane synthesis for high performance on recognizing bovine hemoglobin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie‐Ping Fan
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Cong‐Bo Huang
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Yu‐Tong Cheng
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Chun‐Fang Xie
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Hui‐Ping Chen
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Hai‐Long Peng
- Department of Chemical Engineering Nanchang University Nanchang China
| |
Collapse
|
48
|
Ratnaningsih E, Kadja GTM, Putri RM, Alni A, Khoiruddin K, Djunaidi MC, Ismadji S, Wenten IG. Molecularly Imprinted Affinity Membrane: A Review. ACS OMEGA 2022; 7:23009-23026. [PMID: 35847319 PMCID: PMC9280773 DOI: 10.1021/acsomega.2c02158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A molecularly imprinted affinity membrane (MIAM) can perform separation with high selectivity due to its unique molecular recognition introduced from the molecular-printing technique. In this way, a MIAM is able to separate a specific or targeted molecule from a mixture. In addition, it is possible to achieve high selectivity while maintaining membrane permeability. Various methods have been developed to produce a MIAM with high selectivity and productivity, with their respective advantages and disadvantages. In this paper, the MIAM is reviewed comprehensively, from the fundamentals of the affinity membrane to its applications. First, the development of a MIAM and various preparation methods are presented. Then, applications of MIAMs in sensor, metal ion separation, and organic compound separation are discussed. The last part of the review discusses the outlook of MIAMs for future development.
Collapse
Affiliation(s)
- Enny Ratnaningsih
- Biochemistry
Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Grandprix T. M. Kadja
- Division
of Inorganic and Physical Chemistry, Institut
Teknologi Bandung, Jalan
Ganesha No. 10, Bandung 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
- Center
for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Rindia M. Putri
- Biochemistry
Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Anita Alni
- Organic
Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Khoiruddin Khoiruddin
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jalan Ganesha
No. 10, Bandung 40132, Indonesia
| | - Muhammad C. Djunaidi
- Department
of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. H Soedarto SH, Semarang 50275, Indonesia
| | - Suryadi Ismadji
- Department
of Chemical Engineering, Widya Mandala Surabaya
Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - I. Gede Wenten
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jalan Ganesha
No. 10, Bandung 40132, Indonesia
| |
Collapse
|
49
|
Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022; 305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Achievements in polymer chemistry enables to design artificial phase boundaries modified by imprints of selected molecules and some larger structures. These structures seem very useful for the design of new materials suitable for affinity chromatography and sensors. In this review, we are overviewing the synthesis of molecularly imprinted polymers (MIPs) and the applicability of these MIPs in the design of affinity sensors. Such MIP-based layers or particles can be used as analyte-recognizing parts for sensors and in some cases they can replace very expensive compounds (e.g.: antibodies, receptors etc.), which are recognizing analyte. Many different polymers can be used for the formation of MIPs, but conducing polymers shows the most attractive capabilities for molecular-imprinting by various chemical compounds. Therefore, the application of conducting polymers (e.g.: polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene), and ortho-phenylenediamine) seems very promising. Polypyrrole is one of the most suitable for the development of MIP-based structures with molecular imprints by analytes of various molecular weights. Overoxiation of polypyrrole enables to increase the selectivity of polypyrrole-based MIPs. Methods used for the synthesis of conducting polymer based MIPs are overviewed. Some methods, which are applied for the transduction of analytical signal, are discussed, and challenges and new trends in MIP-technology are foreseen.
Collapse
|
50
|
|