1
|
Husain MA, Besold J, Gustafsson JP, Scheinost AC, Planer-Friedrich B, Biswas A. Thioarsenate sorbs to natural organic matter through ferric iron-bridged ternary complexation to a lower extent than arsenite. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136531. [PMID: 39577280 DOI: 10.1016/j.jhazmat.2024.136531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Understanding processes regulating thioarsenate (HxAsSnO4-n3-x; n = 1 - 3; x = 1 - 3) mobility is essential to predicting the fate of arsenic (As) in aquatic environments under anoxic conditions. Under such conditions, natural organic matter (NOM) is known to effectively sorb arsenite and arsenate due to metal cation-bridged ternary complexation with the NOM. However, the extent and mechanism of thioarsenate sorption onto NOM via similar complexation has not been investigated. By equilibrating monothioarsenate (representative of thioarsenate) with a peat (model NOM) with different Fe(III) loadings, this study shows that NOM can sorb monothioarsenate considerably via Fe(III)-bridging. Iron and As K-edge XAS analysis of the monothioarsenate-treated Fe-loaded peats revealed that monothioarsenate forms bidentate mononuclear edge-shared (1E) (RAs···Fe: 2.89 ± 0.02 Å) and bidentate binuclear corner-shared (2C) (RAs···Fe: 3.32 Å) complexes with organically bound Fe(O,OH)6 octahedra, in addition to direct covalent bonds with oxygen-containing functional groups (e.g., -COOH and -OH) (RAs···C: 2.74 ± 0.02 Å), upon equilibration with the Fe(III)-loaded peat. However, the extent of monothioarsenate sorption was considerably less than that of its precursor As species, arsenite, due to higher electrostatic repulsion between the negatively charged monothioarsenate and peat. This study implies that thioarsenate formation under anoxic conditions would increase As mobility by decreasing its sorption onto the NOM.
Collapse
Affiliation(s)
- Mohd Amir Husain
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| | - Johannes Besold
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Jon Petter Gustafsson
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 750 07 Uppsala, Sweden
| | - Andreas C Scheinost
- The Rossendorf Beamline (ROBL) at ESRF, 38043 Grenoble, France; Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Ashis Biswas
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India; Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
2
|
Biswakarma J, Matthews M, Byrne JM. Redox Dynamic Interactions of Arsenic(III) with Green Rust Sulfate in the Presence of Citrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:1239-1246. [PMID: 39554600 PMCID: PMC11562726 DOI: 10.1021/acs.estlett.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024]
Abstract
Arsenic is a global pollutant. Recent studies found that Fe(II) can oxidize As(III), but the extent of oxidation with mixed-valent iron minerals and the mechanisms involved are unknown. In this study, we investigated whether As(III) can be oxidized under reducing conditions using green rust sulfate (GR-SO4), an Fe mineral containing both Fe(II) and Fe(III). Batch sorption experiments showed that GR-SO4 (1 g L-1) effectively sorbs environmentally relevant concentrations of As(III) (50-500 μg L-1) under anoxic, neutral pH conditions with and without citrate (50 μM). X-ray absorption near-edge structure spectroscopy analysis at the As K-edge demonstrated that approximately 76% of As(III) was oxidized to As(V) by GR-SO4. Complete oxidation of As(III) was observed in the presence of citrate. As(III) oxidation can be linked to the phase transformation of GR-SO4 to goethite, resulting in new reactive Fe(III) species that plausibly drive oxidation. Citrate enhanced this process by stabilizing Fe on the mixed GR-SO4/goethite surface, preventing its reduction back to Fe(II) and facilitating further As(III) oxidation without significant Fe loss to the solution. This study highlights the cryptic As(III) oxidation that occurs under reducing conditions, providing new insights into the cycling of arsenic in mixed phases of iron-rich, anoxic environments.
Collapse
Affiliation(s)
- Jagannath Biswakarma
- School
of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom
| | - Molly Matthews
- School
of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom
| | - James M. Byrne
- School
of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom
| |
Collapse
|
3
|
Borda L, Bia G, Borgnino L, Chiaramonte N, García MG. Understanding arsenic-ulexite interactions in evaporite environments: Evidence from XRPD, micro-XRF, micro-FT-IR, and XPS studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134547. [PMID: 38772104 DOI: 10.1016/j.jhazmat.2024.134547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
World-class borate deposits often form from As-rich waters, this study addresses the understudied association of arsenic (As) species with evaporite borates, focusing on the Puna region's borate deposits (Central Andes of Argentina). The research aims to characterize the association between borate minerals and high As concentrations in brines and thermal waters. To achieve this, five borate samples were collected from the Olaroz salt flat nucleus and thermal springs, alongside associated water samples. Comprehensive analytical techniques, including ICP-MS, ICP-OES, synchrotron-based micro-XRF, XRPD, Rietveld analysis, micro-FT-IR, and XPS, were employed to determine bulk and surface chemical compositions, mineral identification, and solid speciation of As and boron. The study reveals that under oxidizing conditions and in absence of organic matter, aqueous arsenic species interact with ulexite through a stepwise process involving charge neutralization, cationic bridge formation, and surface complex formation with polyborate and As(V) oxyanions. However, in environments associated with microbial mats or organic-rich sediments, the dissolved As(V) is reduced to As(III), which forms complexes with functional groups of organic matter. The coexistence of As(III) and As(V) in specific layers suggests potential remediation strategies targeting organic matter for the removal of the more toxic As(III) in similar geological settings.
Collapse
Affiliation(s)
- L Borda
- Centro de Investigaciones en Ciencias de la Tierra, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - G Bia
- Centro de Investigaciones en Ciencias de la Tierra, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L Borgnino
- Centro de Investigaciones en Ciencias de la Tierra, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - N Chiaramonte
- Centro de Investigaciones en Ciencias de la Tierra, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M G García
- Centro de Investigaciones en Ciencias de la Tierra, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
4
|
Zeng L, Yang F, Chen Y, Chen S, Xu M, Gu C. Temperature and Dissolved Oxygen Drive Arsenic Mobility at the Sediment-Water Interface in the Lake Taihu. TOXICS 2024; 12:471. [PMID: 39058123 PMCID: PMC11281122 DOI: 10.3390/toxics12070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
In this study examining the effects of temperature and dissolved oxygen (DO) on arsenic (As) release at the sediment-water interface (SWI), it was found that an increase in temperature promoted the formation of an anaerobic environment and the reduction and desorption of As fractions within the sediments. A temperature of 32 °C was the most favorable condition for As release at the SWI, and low DO conditions aggravated this process. Even under high DO conditions, the release of sediment As was significantly accelerated under high-temperature conditions, allowing dissolved As to rapidly migrate to the overlying water. In this process, the release of As from sediments was a consequence of the transformation of As fractions in the sediments.
Collapse
Affiliation(s)
- Liqing Zeng
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (Y.C.); (S.C.); (M.X.); (C.G.)
| | - Fan Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
| | - Yuyan Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (Y.C.); (S.C.); (M.X.); (C.G.)
| | - Songmei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (Y.C.); (S.C.); (M.X.); (C.G.)
| | - Mei Xu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (Y.C.); (S.C.); (M.X.); (C.G.)
| | - Chongyu Gu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (Y.C.); (S.C.); (M.X.); (C.G.)
| |
Collapse
|
5
|
Knobloch PVT, Pham LH, Kerl CF, Guo Q, Planer-Friedrich B. Seasonal Formation of Low-Sorbing Methylthiolated Arsenates Induces Arsenic Mobilization in a Minerotrophic Peatland. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1669-1679. [PMID: 38183301 DOI: 10.1021/acs.est.3c05771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Peatlands are known sinks for arsenic (As). In the present study, seasonal As mobilization was observed in an acidic, minerotrophic peatland (called Lehstenbach) in late summer, accompanied by a peak in dissolved sulfide (S(-II)). Arsenic speciation revealed the lowest seasonal porewater concentrations of arsenite and arsenate, likely due to As(III)-S-bridging to natural organic matter. Arsenic mobilization was driven by the formation of arsenite-S(-II) colloids and formation of methylthiolated arsenates (up to 59% of the sum of As species) and to a minor extent also of inorganic thioarsenates (6%-30%) and oxymethylated arsenates (5%-24%). Sorption experiments using a purified model peat, the Lehstenbach peat, natural (to mimic winter conditions) and reacted with S(-II) (to mimic late summer conditions) at acidic and neutral pH confirmed low sorption of methylthiolated arsenates. At acidic pH and in the presence of S(-II), oxymethylated arsenates were completely thiolated. This methylthiolation decreased As sorption up to 10 and 20 times compared with oxymethylated arsenates and arsenite, respectively. At neutral pH, thiolation of monomethylated arsenates was incomplete, and As could be partially retained as oxymethylated arsenates. Dimethylated arsenate was still fully thiolated and highly mobile. Misidentification of methylthiolated arsenates as oxymethylated arsenates might explain previous contradictory reports of methylation decreasing or increasing As mobility.
Collapse
Affiliation(s)
- Philipp V T Knobloch
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Lan Huong Pham
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Carolin F Kerl
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Qinghai Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
6
|
Covatti G, Hoang TNA, Grischek T. Release of arsenic during riverbank filtration under anoxic conditions linked to grain size of riverbed sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165858. [PMID: 37516192 DOI: 10.1016/j.scitotenv.2023.165858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Geogenic arsenic contamination of groundwater poses a health threat to millions of people worldwide, particularly in Asia. Riverbank filtration (RBF) is a pre-treatment technique that aims to improve surface water quality through natural processes during water infiltration before abstraction. A study in Hanoi, Vietnam is presented, where the water quality of 48 RBF wells from 5 large well fields located in the Pleistocene aquifer along the Red River was analyzed. >80 % of the wells had arsenic concentrations above the WHO limit of 10 μg/l. The riverbed sediment and riverbed pore-water from 23 sites along a stretch of 30 km of the Red River near the well fields was also analyzed. Muddy riverbeds were found to be a hotspot for arsenic release. Already at a 30 cm depth from the riverbed sediment surface, the pore-water at many sites had high concentrations of arsenic (>100 μg/l). Arsenic concentrations in the pore-water of sites where mud lenses were present in the riverbed were significantly higher compared to sites with sandy riverbeds. At well fields along stretches of the Red River where riverbed was mostly muddy, higher arsenic concentrations were found than at well fields where the riverbed was mostly sandy. This indicates that river muds deposition and river morphology can influence arsenic concentrations in the aquifer in Hanoi and potentially other RBF sites in regions with geogenic arsenic contamination. At the end, recommendations regarding site selection of new potential RBF wells in affected regions is given.
Collapse
Affiliation(s)
- Gustavo Covatti
- Dresden University of Applied Sciences, Friedrich-List-Platz 1, 01069 Dresden, Germany.
| | - Thi Ngoc Anh Hoang
- Dresden University of Applied Sciences, Friedrich-List-Platz 1, 01069 Dresden, Germany
| | - Thomas Grischek
- Dresden University of Applied Sciences, Friedrich-List-Platz 1, 01069 Dresden, Germany
| |
Collapse
|
7
|
Ojeda AS, Herron C, Olshansky Y, Malina N. Arsenic-dissolved organic matter complexation in water soluble extracts from lignite. CHEMOSPHERE 2023; 342:140036. [PMID: 37714477 DOI: 10.1016/j.chemosphere.2023.140036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Arsenic in groundwater is a global threat to public health. Recently, As mobility has been tied to the concentration and chemical characteristics of dissolved organic matter (DOM) through formation of As-DOM complexes. To date, there has been a wide range of DOM types studied to understand As-DOM interactions, but most of these have focused on surface water derived materials and not groundwater DOM. We address this gap in knowledge by simulating groundwater DOM using water extractable organic matter (WEOM) from two lignite deposits and treating the extracts with increasing concentrations of As. As-DOM complexes were measured using size-exclusion chromatography coupled to multiple detectors including an inductively coupled plasma mass spectrometer (ICPMS) for As detection as well as fluorescence and variable wave detectors for organic matter detection. First, we found two different size fractions of As-DOM, one of ∼1 kDa and another of ∼15 kDa, depending on the DOM types. The smaller As-DOM complex (∼1 kDa) was approximately 10 times more abundant than the larger complex (∼15 kDa). Second, we found that the lignite derived DOMs showed higher conditional distribution coefficients than did the surface water reference material (Suwanee River Natural Organic Matter, SRNOM). Finally, the data showed good fit (R2 > 0.92) to one-site ligand binding models, and the lignite derived DOMs showed higher maximum sorbate concentrations (Bmax) compared to SRNOM. Together, this study shows that As-DOM complexation is an important control on As speciation, even in groundwater systems.
Collapse
Affiliation(s)
- Ann S Ojeda
- Department of Geosciences, Auburn University, USA.
| | | | - Yaniv Olshansky
- Department of Crop, Soil, and Environmental Sciences, Auburn University, USA
| | | |
Collapse
|
8
|
Zeng L, Yan C, Yang F, Zhen Z, Yang J, Chen J, Huang Y, Xiao Y, Zhang W. The Effects and Mechanisms of pH and Dissolved Oxygen Conditions on the Release of Arsenic at the Sediment-Water Interface in Taihu Lake. TOXICS 2023; 11:890. [PMID: 37999542 PMCID: PMC10675530 DOI: 10.3390/toxics11110890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
The pH and dissolved oxygen (DO) conditions are important environmental factors that control the migration of arsenic (As) at the sediment-water interface. This study investigates the distribution differences of reactive iron, manganese, and arsenic at the sediment-water interface under anaerobic and aerobic conditions at different pH levels. The strong buffering capacity of sediment to water pH results in a shift towards neutral pH values in the overlying water under different initial pH conditions. The level of DO becomes a key factor in the release of As from sediment, with lower DO environments exhibiting higher release quantities and rates of As compared to high DO environments. Under low DO conditions, the combined effects of ion exchange and anaerobic reduction lead to the most significant release of As, particularly under pH 9.5 conditions. The formation of amorphous ferrous sulfide compounds under low DO conditions is a significant factor contributing to increased arsenic concentration in the interstitial water. Therefore, the re-migration of endogenous arsenic in shallow lake sediments should consider the combined effects of multiple driving forces.
Collapse
Affiliation(s)
- Liqing Zeng
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (F.Y.); (Z.Z.)
| | - Fan Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (F.Y.); (Z.Z.)
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (F.Y.); (Z.Z.)
| | - Jiaming Yang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Jielun Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Yujie Huang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Yuhui Xiao
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| | - Wen Zhang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361021, China; (L.Z.); (J.Y.); (J.C.); (Y.H.); (Y.X.); (W.Z.)
| |
Collapse
|
9
|
Zhang Y, Xie X, Sun S, Wang Y. Arsenic transformation and redistribution in groundwater induced by the complex geochemical cycling of iron and sulfur. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164941. [PMID: 37343891 DOI: 10.1016/j.scitotenv.2023.164941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Iron (hydr)oxides are effective sorbents of arsenic that undergo reductive dissolution when exposed to dissolved sulfide, which significantly impacts the movement and repartition of arsenic in groundwater. This study investigated the sulfidation of As-bearing ferrihydrite and its consequences on arsenic repartitioning as well as formation and transformation of secondary minerals induced by sulfide in batch experiments. The sulfidation of As(III) and As(V) adsorbed on ferrihydrite shows very different results. In the As(V) system, sulfidation resulted in the production of significant amounts of elemental sulfur (S0) and Fe2+, and Fe2+ and sulfide combine to form mackinawite. Subsequently, Fe2+ adsorbed and catalyzed the conversion of residual ferrihydrite to lepidocrocite. However, in the As(III) system, As(III) was protonated in the presence of sulfide to produce thioarsenate, which accounted for 87.9 % of the total aqueous arsenic concentration. The formation of thioarsenate also consumed the S0 produced by the sulfidation, resulting in no detectable S0 during solid phase characterization. The adsorption of thioarsenate on iron minerals notably affected the surface charge density of ferrihydrite, hindering the further formation of secondary minerals. Studies on the influence of thiolation on As-Fe-S system are of great significance for understanding the migration and redistribution of arsenic in groundwater systems under sulfur-rich conditions.
Collapse
Affiliation(s)
- Yuyao Zhang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China.
| | - Shutang Sun
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China
| |
Collapse
|
10
|
Baza-Varas A, Roqué-Rosell J, Canals M, Frigola J, Cerdà-Domènech M, Sanchez-Vidal A, Amblàs D, Campeny M, Marini C. As and S speciation in a submarine sulfide mine tailings deposit and its environmental significance: The study case of Portmán Bay (SE Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163649. [PMID: 37094676 DOI: 10.1016/j.scitotenv.2023.163649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The dumping of an estimated amount of 57 million tons of hazardous sulfide mine waste from 1957 to 1990 into Portmán's Bay (SE Spain) caused one of the most severe cases of persistent anthropogenic impact in Europe's costal and marine environments. The resulting mine tailings deposit completely infilled Portmán's Bay and extended seawards on the continental shelf, bearing high levels of metals and As. The present work, where Synchrotron XAS, XRF core scanner and other data are combined, reveals the simultaneous presence of arsenopyrite (FeAsS), scorodite (FeAsO₄·2H₂O), orpiment (As2S3) and realgar (AsS) in the submarine extension of the mine tailings deposit. In addition to arsenopyrite weathering and scorodite formation, the, the presence of realgar and orpiment is discussed, considering both potential sourcing from the exploited ores and in situ precipitation from a combination of inorganic and biologically mediated geochemical processes. Whereas the formation of scorodite relates to the oxidation of arsenopyrite, we hypothesize that the presence of orpiment and realgar is associated to scorodite dissolution and subsequent precipitation of these two minerals within the mine tailings deposit under moderately reducing conditions. The occurrence of organic debris and reduced organic sulfur compounds evidences the activity of sulfate-reducing bacteria (SRB) and provides a plausible explanation to the reactions leading to the formation of authigenic realgar and orpiment. The precipitation of these two minerals in the mine tailings, according to our hypothesis, has important consequences for As mobility since this process would reduce the release of As into the surrounding environment. Our work provides for the first time valuable hints on As speciation in a massive submarine sulfide mine tailings deposit, which is highly relevant for similar situations worldwide.
Collapse
Affiliation(s)
- A Baza-Varas
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Martí i Franquès s/n, 08028 Barcelona, Catalonia, Spain
| | - J Roqué-Rosell
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Martí i Franquès s/n, 08028 Barcelona, Catalonia, Spain.
| | - M Canals
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Martí i Franquès s/n, 08028 Barcelona, Catalonia, Spain.
| | - J Frigola
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Martí i Franquès s/n, 08028 Barcelona, Catalonia, Spain
| | - M Cerdà-Domènech
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Martí i Franquès s/n, 08028 Barcelona, Catalonia, Spain
| | - A Sanchez-Vidal
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Martí i Franquès s/n, 08028 Barcelona, Catalonia, Spain
| | - D Amblàs
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Martí i Franquès s/n, 08028 Barcelona, Catalonia, Spain
| | - M Campeny
- Museu de Ciències Naturals de Barcelona, Passeig Picasso s/n, 08003 Barcelona, Catalonia, Spain
| | - C Marini
- CELLS - ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08090, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Qing C, Nicol A, Li P, Planer-Friedrich B, Yuan C, Kou Z. Different sulfide to arsenic ratios driving arsenic speciation and microbial community interactions in two alkaline hot springs. ENVIRONMENTAL RESEARCH 2023; 218:115033. [PMID: 36502897 DOI: 10.1016/j.envres.2022.115033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is ubiquitous in geothermal fluids, which threatens both water supply safety and local ecology. The co-occurrence of sulfur (S) and As increases the complexity of As migration and transformation in hot springs. Microorganisms play important roles in As-S transformation processes. In the present study, two Tibetan alkaline hot springs (designated Gulu [GL] and Daba [DB]) with different total As concentrations (0.88 mg/L and 12.42 mg/L, respectively) and different sulfide/As ratios (3.97 and 0.008, respectively) were selected for investigating interactions between As-S geochemistry and microbial communities along the outflow channels. The results showed that As-S transformation processes were similar, although concentrations and percentages of As and S species differed between the two hot springs. Thioarsenates were detected at the vents of the hot springs (18% and 0.32%, respectively), and were desulfurized to arsenite along the drainage channel. Arsenite was finally oxidized to arsenate (532 μg/L and 12,700 μg/L, respectively). Monothioarsenate, total As, and sulfate were the key factors shaping the changes in microbial communities with geochemical gradients. The relative abundances of sulfur reduction genes (dsrAB) and arsenate reduction genes (arsC) were higher in upstream portions of GL explaining high thiolation. Arsenite oxidation genes (aoxAB) were relatively abundant in downstream parts of GL and at the vent of DB explaining low thiolation. Sulfur oxidation genes (soxABXYZ) were abundant in GL and DB. Putative sulfate-reducing bacteria (SRB), such as Desulfuromusa and Clostridium, might be involved in forming thioarsenates by producing reduced S for chemical reactions with arsenite. Sulfur-oxidizing bacteria (SOB), such as Elioraea, Pseudoxanthomonas and Pseudomonas, and arsenite-oxidizing bacteria (AsOB) such as Thermus, Sulfurihydrogenibium and Hydrogenophaga, may be responsible for the oxidation of As-bound S, thereby desulfurizing thioarsenates, forming arsenite and, by further abiotic or microbial oxidation, arsenate. This study improves our understanding of As and S biogeochemistry in hot springs.
Collapse
Affiliation(s)
- Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Alan Nicol
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), Bayreuth University, 95440, Bayreuth, Germany.
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Britta Planer-Friedrich
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), Bayreuth University, 95440, Bayreuth, Germany.
| | - Changguo Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Zhu Kou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| |
Collapse
|
12
|
Wang Y, Zhang P, Wang S, Song Y, Xiao F, Wang Y, Zhang D, Jia Y. The arsenic species in the sulfidic environments: Determination, transformation, and geochemical implications. CHEMOSPHERE 2022; 307:135971. [PMID: 35987268 DOI: 10.1016/j.chemosphere.2022.135971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The species and fate of arsenic (As) are closely related to sulfide (S-II) in the anaerobic and sulfidic environment. In this work, the mechanisms and kinetics of arsenate (AsV) reduction by S-II at different pHs, S-II/AsV molar ratios, and initial AsV concentrations in the absence (or presence) of Al-hydroxide were studied, where the concentrations of various kinds of As species, namely AsV, arsenite (AsIII), and thioarsenics (ThioAs) were qualitatively and quantitatively determined by liquid chromatography with atomic fluorescence spectrophotometry. The results showed that under acidic or neutral conditions, ThioAs may act as intermediate(s), where amorphous As2S3 precipitate was observed at pH 5 in high S-II condition. By comparison, at pH 9, AsV was probably directly reduced to AsIII with polysulfide as the byproduct. The reaction rate was faster at mildly acidic pH than that of neutral or alkaline pH, as well as in the presence of Al-hydroxide. The findings may give further insights about the role of ThioAs in the biogeochemical cycle of As.
Collapse
Affiliation(s)
- Ying Wang
- School of Ecology and Environment, NingXia University, Yinchuan, 750021, China
| | - Peiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yu Song
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Department of Forest Ecology and Management, Swedish University of Agricultural Science, SE-901 83, Umeå, Sweden.
| | - Fan Xiao
- Shanxi Eco-environmental Protection Service Center, Taiyuan, 030002, China
| | - Yumeng Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Danni Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China; Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yongfeng Jia
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
13
|
Abu-Ali L, Yoon H, Reid MC. Effects of organic sulfur and arsenite/dissolved organic matter ratios on arsenite complexation with dissolved organic matter. CHEMOSPHERE 2022; 302:134770. [PMID: 35500636 DOI: 10.1016/j.chemosphere.2022.134770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The speciation and fate of arsenic (As) in soil-water systems is a topic of great interest, in part due to growing awareness of As uptake into rice as an important human exposure pathway to As. Rice paddy and other wetland soils are rich in dissolved organic matter (DOM), leading to As/DOM ratios that are typically lower than those in groundwater aquifers or that have been used in many laboratory studies of As-DOM interactions. In this contribution, we evaluate arsenite (As(III)) binding to seven different DOM samples at As/DOM ratios relevant for wetland pore waters, and explore the chemical properties of the DOM samples associated with high levels of As(III)-DOM complexation. We integrate data from wet chemical analysis of DOM chemical properties, dialysis equilibrium experiments, and two-site ligand binding models to show that in some DOM samples, 15-60% of As(III) can be bound to DOM at environmentally-relevant As/DOM ratios of 0.0032-0.016 μmol As/mmol C. Binding decreases as the As(III)/DOM ratio increases. The organic sulfur (Sorg) content of the DOM samples was strongly correlated with levels of As(III)-DOM complexation and "strong" binding site densities, consistent with theories that thiols are strong binding ligands for As(III) in natural organic matter. Finally, a whole-cell E. coli biosensor assay was used to show that DOM samples most effective at complexing As(III) also led to decreased microbial As(III) uptake at low As/DOC ratios. This work demonstrates that naturally-occurring variations in the Sorg content of DOM has a significant impact on As(III) binding to DOM, and has implications for As(III) availability to microorganisms.
Collapse
Affiliation(s)
- Lena Abu-Ali
- School of Civil & Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Hyun Yoon
- School of Civil & Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew C Reid
- School of Civil & Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Mensah AK, Marschner B, Wang J, Bundschuh J, Wang SL, Yang PT, Shaheen SM, Rinklebe J. Reducing conditions increased the mobilisation and hazardous effects of arsenic in a highly contaminated gold mine spoil. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129238. [PMID: 35739757 DOI: 10.1016/j.jhazmat.2022.129238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) redox-induced mobilisation and speciation in polluted gold mine sites in tropical climates largely remains unknown. Here, we investigated the impact of changes in soil redox potential (EH) (-54 mV to +429 mV) on mobilisation of As and its dominant species in an abandoned spoil (total As = 4283 mg/kg) using an automated biogeochemical microcosm set-up. Arsenic mobilisation increased (85-137 mg/L) at moderately reducing conditions (-54 mV to + 200 mV)), while its reduced (6-35 mg/L) under oxic conditions (+200 to +400 mV). This indicates the high risk of As potential loss under reducing conditions. The mobilisation of As was governed by the redox chemistry of Fe. XANES and EXAFS analyses showed that sorbed-As(V)-goethite, sorbed-As(III)-ferrihydrite, scorodite and arsenopyrite were the predominant As species in the mine spoil. As(V) dominated at oxic conditions and As(III) predominated at moderately reducing conditions, which may be attributed to either inability of arsenate bacteria to reduce As or incomplete reduction. Lower Fe/As molar ratios during moderately reducing conditions show that the mine spoil may migrate As to watercourses during flooding, which may increase the hazardous effects of this toxic element. Therefore, encouraging aerobic conditions may mitigate As release and potential loss from the mine field.
Collapse
Affiliation(s)
- Albert Kobina Mensah
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany; Council for Scientific and Industrial Research- Soil Research Institute, Academy Post Office, Kwadaso- Kumasi, Ghana.
| | - Bernd Marschner
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| | - Jochen Bundschuh
- University of Southern Queensland, UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, West Street, Toowoomba 4350 Queensland, Australia; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, 1 Sect. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Puu-Tai Yang
- Department of Agricultural Chemistry, National Taiwan University, 1 Sect. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
15
|
Peřestá M, Drahota P, Culka A, Matoušek T, Mihaljevič M. Impact of organic matter on As sulfidation in wetlands: An in situ experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152008. [PMID: 34852251 DOI: 10.1016/j.scitotenv.2021.152008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Arsenic incorporation into newly formed As sulfides has recently been identified as an important As sequestration pathway in both laboratory experiments and natural As-wetlands. Here, we used an in situ experimental technique with double nylon experimental bags (10-μm mesh) to study the effect of low-cost organic materials (sawdust, wood cubes and hemp shives) on As sulfidation in three naturally As-enriched wetland soils under water-saturated (~1 m depth) and neutral pH conditions. After 15 months of in situ incubation, all of the organic materials and their corresponding inner bags were covered by yellow-black mineral accumulations, dominantly composed of crystalline As4S4 polymorphs (realgar and bonazziite) and reactive Fe(II) sulfides (probably mackinawite); while the major fraction of As (~80%) was sequestered as AsS minerals. The amount of As accumulation in the experimental bags varied significantly (0.03-4.24 g As kg-1) and corresponded with different levels of As (0.23-9.4 mg As L-1) in the groundwater. Our findings suggest an authigenic formation of AsS minerals in strongly reducing conditions of experimental bags by a combination of reduced exchange of solutes through the pores of the bag and comparatively fast microbial production of dissolved sulfide. Arsenic sulfide formation, as an effective treatment mechanism for natural and human-constructed wetlands, appears to be favored for As(III)-rich waters with a low Fe(II)/As(III) molar ratio. These conditions prevent the consumption of dissolved As and sulfide by their preferential incorporation into natural organic matter, and newly-formed Fe(II) sulfides, respectively.
Collapse
Affiliation(s)
- Magdaléna Peřestá
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Petr Drahota
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic.
| | - Adam Culka
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Tomáš Matoušek
- Institute of Analytical Chemistry, Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| |
Collapse
|
16
|
Ye L, Jing C. Environmental geochemistry of thioantimony: formation, structure and transformation as compared with thioarsenic. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1863-1872. [PMID: 34734613 DOI: 10.1039/d1em00261a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimony (Sb), a redox-sensitive toxic element, has received global attention due to the increased awareness of its rich geochemistry. The past two decades have witnessed the explosive development in geochemistry of oxyanionic Sb(OH)3 and Sb(OH)6-. Emerging thioantimony species (Sb-S) have recently been detected, which actually dominate the Sb mobility in sulfate-reducing environments. However, the instability and complexity of Sb-S present the most pressing challenges. To overcome these barriers, it is urgent to summarize the existing research on the environmental geochemistry of Sb-S. Since Sb-S is an analogous species to thioarsenic (As-S), a comparison between Sb-S and As-S will provide insightful information. Therefore, this review presents a way of comparing environmental geochemistry between Sb-S and As-S. Here, we summarize the formation and transformation of Sb-S and As-S, their chemical structures and analytical methods. Then, the challenges and perspectives are discussed. Finally, the important scientific questions that need to be addressed are also proposed.
Collapse
Affiliation(s)
- Li Ye
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Chuanyong Jing
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
Gao J, Zheng T, Deng Y, Jiang H. Microbially mediated mobilization of arsenic from aquifer sediments under bacterial sulfate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144709. [PMID: 33736355 DOI: 10.1016/j.scitotenv.2020.144709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/04/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Understanding the biogeochemical processes controlling arsenic (As) mobilization under bacterial sulfate reduction (BSR) in aquifer sediments is essential for the remediation of high As groundwater. Here, we conducted microcosm experiments with shallow aquifer sediments from the Jianghan Plain (central Yangtze River Basin) under the stimulation of exogenous sulfate. Initially, co-increases of As(III) (from 0.0 to 88.5 μg/L), Fe(II) (from 0.5 to 6.0 mg/L), and S(-II) (from 0.0 to 90.0 μg/L) indicated the concurrent occurrence of sulfate, Fe(III), and arsenate reduction. The corresponding increase of the relative abundance of OTUs classified as sulfate-reducing bacteria, Desulfomicrobium (from 0.5 to 30.6%), and dsrB gene abundance indicated the strong occurrence of BSR during the incubation. The underlying mechanisms of As mobilization could be attributed to the biotic and abiotic reduction of As-bearing iron (hydro)oxides either through the iron-reducing bacteria or the bacterially generated sulfide, which were supported by the variations in solid speciation of Fe, S, and As. As the incubation progressed, we observed a transient attenuation followed by a re-increase of aqueous As, due to the limited abundance of newly-formed Fe-sulfide minerals with a weak ability of As sequestration. Moreover, the formation of thioarsenate (H2AsS4-) during the mobilization of As from the sediments was observed, highlighting that BSR could facilitate As mobilization through multiple pathways. The present results provided new insights for the biogeochemical processes accounting for As mobilization from sediments under BSR conditions.
Collapse
Affiliation(s)
- Jie Gao
- Geological Survey, China University of Geosciences, Wuhan, China
| | - Tianliang Zheng
- Geological Survey, China University of Geosciences, Wuhan, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Yamin Deng
- School of Environmental Studies, China University of Geosciences, Wuhan, China.
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
18
|
Eberle A, Besold J, León Ninin JM, Kerl CF, Kujala K, Planer-Friedrich B. Potential of high pH and reduced sulfur for arsenic mobilization - Insights from a Finnish peatland treating mining waste water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143689. [PMID: 33279195 DOI: 10.1016/j.scitotenv.2020.143689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/01/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Peatlands, used for purification of mining waste waters, have shown efficient solid-phase sequestration of contaminants such as arsenic (As). However, contaminant re-mobilization may occur related to management changes or chemical alteration of original peatland conditions. For a treatment peatland in Finnish Lapland, we here confirm efficient As retention in near-surface peat layers close to the mining waste water inflow, likely due to binding to FeIII-phases. Seven years into operation of the treatment peatland, there appears to be further retention potential, as large areas downstream still had solid-phase As concentrations at background levels. However, via depth-resolved pore water analysis we observed a hotspot 170 m from the inflow at 10-50 cm depth, where As pore water concentrations exceeded input concentrations by a factor of 20, indicating substantial As re-mobilization. At the same spot, a peak of reduced sulfur (S) species was found. Arsenic species detected were arsenite and up to 26% methylated oxyarsenates, 15% methylated and 7.9% inorganic thioarsenates. We postulate that As mobilization is a result of short-term re-equilibration to a changed inflow chemistry after installation of a process water treatment plant and a long-term consequence of changing pore water pH from acidic to near-neutral, releasing reduced S and As. We infer that the co-occurrence of reduced S and As leads to formation of methylated and/or thiolated As species with known low sorption affinity, thereby further enhancing As mobility. Laboratory incubation studies with two peat cores confirmed a high S-induced As mobilization potential, especially when As-Fe-rich, oxic surface layers were incubated anoxically at near-neutral pH. Highest risk of As re-mobilization from this treatment peatland is expected in a scenario in which mining waste water inflow has stopped but the peatland remains flooded, and near-surface layers transition from oxic to anoxic conditions.
Collapse
Affiliation(s)
- Anne Eberle
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Johannes Besold
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - José M León Ninin
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Carolin F Kerl
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Katharina Kujala
- Water Resources and Environmental Engineering Research Unit, University of Oulu, FI-90014 Oulu, Finland
| | - Britta Planer-Friedrich
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
19
|
Rotiroti M, Bonomi T, Sacchi E, McArthur JM, Jakobsen R, Sciarra A, Etiope G, Zanotti C, Nava V, Fumagalli L, Leoni B. Overlapping redox zones control arsenic pollution in Pleistocene multi-layer aquifers, the Po Plain (Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143646. [PMID: 33257069 DOI: 10.1016/j.scitotenv.2020.143646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Understanding the factors that control As concentrations in groundwater is vital for supplying safe groundwater in regions with As-polluted aquifers. Despite much research, mainly addressing Holocene aquifers hosting young (<100 yrs) groundwater, the source, transport, and fate of As in Pleistocene aquifers with fossil (>12,000 yrs) groundwaters are not yet fully understood and so are assessed here through an evaluation of the redox properties of the system in a type locality, the Po Plain (Italy). Analyses of redox-sensitive species and major ions on 22 groundwater samples from the Pleistocene arsenic-affected aquifer in the Po Plain shows that groundwater concentrations of As are controlled by the simultaneous operation of several terminal electron accepters. Organic matter, present as peat, is abundant in the aquifer, allowing groundwater to reach a quasi-steady-state of highly reducing conditions close to thermodynamic equilibrium. In this system, simultaneous reduction of Fe-oxide and sulfate results in low concentrations of As (median 7 μg/L) whereas As reaches higher concentrations (median of 82 μg/L) during simultaneous methanogenesis and Fe-reduction. The position of well-screens is an additional controlling factor on groundwater As: short screens that overlap confining aquitards generate higher As concentrations than long screens placed away from them. A conceptual model for groundwater As, applicable worldwide in other Pleistocene aquifers with reducible Fe-oxides and abundant organic matter is proposed: As may have two concentration peaks, the first after prolonged Fe-oxide reduction and until sulfate reduction takes place, the second during simultaneous Fe-reduction and methanogenesis.
Collapse
Affiliation(s)
- Marco Rotiroti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Tullia Bonomi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Elisa Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - John M McArthur
- Department of Earth Sciences, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Rasmus Jakobsen
- Geological Survey of Denmark and Greenland, Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Alessandra Sciarra
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 1, Via di Vigna Murata 605, 00143 Rome, Italy
| | - Giuseppe Etiope
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 2, Via di Vigna Murata 605, 00143 Rome, Italy
| | - Chiara Zanotti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Letizia Fumagalli
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Barbara Leoni
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| |
Collapse
|