1
|
Hao Y, Zheng T, Liu L, Li P, Ma H, Zheng Z, Zheng X, Luo J. Occurrence of dissimilatory nitrate reduction to ammonium (DNRA) in groundwater table fluctuation zones during dissolved organic nitrogen leaching through unsaturated zone. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137501. [PMID: 39952133 DOI: 10.1016/j.jhazmat.2025.137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Nitrate reduction in unsaturated zone is critical for preventing groundwater contamination from anthropogenic nitrogen fertilization. Dissimilatory nitrate reduction to ammonium (DNRA), found in anoxic environments, offers an alternative pathway to denitrification by reducing nitrate while conserving nitrogen. However, the occurrence of DNRA in unsaturated zone remains poorly understood. To address this gap, we conducted numerical simulations to investigate the reactive transport of dissolved organic nitrogen (DON) through unsaturated zone under fluctuating groundwater table conditions, with the focus on the competition between denitrification and DNRA. Our results indicate that DNRA typically gets stronger within capillary fringe, with its intensity varying with groundwater table fluctuations. DNRA competes with denitrification, contributing up to 46.33 % of nitrate reduction, especially when groundwater table drops. The strength of DNRA requires comprehensive consideration of the adsorption characteristics, permeability and porosity of vadose zone, and in our study, silty clay loam-with the relatively weaker adsorptive capacity/lower permeability-exhibits the highest DNRA reaction rates and the largest reaction areas, while DNRA in sandy loam may occur during periods when both DON and NO3--N reserves are relatively low. This study firstly revealed the distribution of DNRA in groundwater table fluctuation zone, exploring its kinetics, controlling factors, and contributions, providing a scientific foundation for assessing the self-purification processes in groundwater contamination.
Collapse
Affiliation(s)
- Yujie Hao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Peihua Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Haoran Ma
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhihong Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Yu Y, Wu J, Tang Z, Wan S, Hu J, Li B, Wang J, Li F. Unveiling the nitrogen metabolism mechanism for nitrogen retention in compost via in-situ ammonia recycling strategy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124863. [PMID: 40054356 DOI: 10.1016/j.jenvman.2025.124863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
A large amount of ammonia volatilization in compost causes environmental pollution and reduces the quality of compost. Ammonia recycling composting strategy (ARCS) is new strategy for reducing ammonia volatilization by absorbing with backfilling ammonia into the compost. This study revealed the mechanism of ARCS on ammonia volatilization and nitrogen retention during chicken manure composting. The results showed that the adsorption layer containing wood vinegar had an obvious inhibition effect on ammonia volatilization. Compared to CK, ARCS treatment could reduce ammonia emissions and nitrogen loss by 20.65% and 39.6% with T3 (12d), respectively. Different adsorption time would affect the occurrence of various nitrogen components in the adsorption layer, especially the change of inorganic nitrogen content. Metagenomic analysis showed that ARCS treatment resulted in significant changes in bacterial communities, and different backfilling times had significant effects on nitrogen metabolism pathways in compost. Glutamate dehydrogenase and glutamate synthase were the key nitrogen metabolism processes during composting, which played an important role in ammonia volatilization and nitrogen retention. The suitable backfilling time (12d) promoted the acceleration of ammonia nitrogen metabolism in the early stage of composting and enhanced the ammonia assimilation and dissimilatory nitrate reduction function in the maturation stage to achieve nitrogen retention. This study provided valuable insights into the effects of in-situ ammonia absorption and backfilling on nitrogen metabolism pathways during composting.
Collapse
Affiliation(s)
- Ying Yu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Ji Wu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Zhurui Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Shuixia Wan
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Jiankun Hu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Boyu Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Jing Wang
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Fan Li
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China.
| |
Collapse
|
3
|
Tabares M, Kashefi K, Reguera G. Adaptive responses of Trichlorobacter lovleyi to nitrite detoxification reveal overlooked contributions of Geobacterales to nitrate ammonification. THE ISME JOURNAL 2025; 19:wraf054. [PMID: 40101204 PMCID: PMC11972089 DOI: 10.1093/ismejo/wraf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
Poorly understood microorganisms "short-circuit" the nitrogen cycle via the dissimilatory nitrate reduction to ammonium to retain the element in agricultural lands and stimulate crop productivity. The prevalence of Geobacterales closely related to Trichlorobacter lovleyi in nitrate ammonification hotspots motivated us to investigate adaptive responses contributing to ammonification rates in the laboratory type strain T. lovleyi SZ. Here, we describe the identification of tightly regulated pathways for efficient nitrate foraging and respiration with acetate, an important intermediate of organic matter degradation that Geobacterales efficiently assimilate and oxidize. Challenging the established dogma that high carbon/nitrate ratios stimulate the reduction of nitrate to ammonium, T. lovleyi doubled rapidly across a wide range of ratios provided nitrate concentrations were low enough to prevent the accumulation of the toxic nitrite intermediate. Yet, excess electrons during hydrogenotrophic growth alleviated nitrite toxicity and stimulated the reduction of nitrate to ammonium even under conditions of severe acetate limitation. These findings underscore the importance of nitrite toxicity in the ammonification of nitrate by Geobacterales and provide much needed mechanistic understanding of microbial adaptations contributing to soil nitrogen conservation. This information is critical to enhance the predictive value of genomic-based traits in environmental surveys and to guide strategies for sustainable management of nitrogen fertilization as well as mitigation of green-house emissions and agrochemical leaching from agricultural lands.
Collapse
Affiliation(s)
- Marcela Tabares
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI 48824, United States
| | - Kazem Kashefi
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI 48824, United States
| | - Gemma Reguera
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
4
|
Han LL, Ge L, Tan E, Zou W, Tian L, Li P, Xu MN, Kao SJ. Model the evolutionary pattern of N species and pool size in groundwater continuum by utilizing measured source and sink rates of nitrate and ammonium. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136046. [PMID: 39393322 DOI: 10.1016/j.jhazmat.2024.136046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Nitrate and ammonium are primary nitrogen (N) contaminants in groundwater and effective restoration strategies depend on understanding the interactions of N transformation processes along redox gradients. Utilizing the 15N tracing technique, we assess nitrate removal rates, focusing on denitrification and anammox in a N-rich groundwater of the Hetao Basin, a typical semiarid region in western China. Results showed that N removal rate (0.36-22.01 µM N d-1) was composed mainly of denitrification (73 ± 18 %), with rates increasing from upstream oxidizing environment to downstream reducing areas. In reducing downstream, both denitrification and anammox adhered to substrate-driven Michaelis-Menten kinetics. Integrating data on all source and sink rates of nitrate and ammonium pools (denitrification, anammox, dissimilatory nitrate reduction ammonia, nitrification, mineralization), we constructed a N-transfer-dynamics model based on chemical stoichiometry. This model effectively captured the observed spatial N transfer patterns and highlighted that the balance of oxidants and biodegradable organic N inputs influences N species retention and removal in groundwater. Our combined experimental and modeling approach underscores the importance of reducing organic N and/or adding oxidants to mitigate groundwater N pollution. These findings provide crucial insights for optimizing high N groundwater remediation strategies and potentially inform for wastewater management practices.
Collapse
Affiliation(s)
- Li-Li Han
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lianghao Ge
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ehui Tan
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China
| | - Wenbin Zou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Li Tian
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, China
| | - Min Nina Xu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China.
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Wang T, Wang H, Li X, Wang Y. Unveiling the mechanism underlying in-situ enhancement on anammox system by sulfide: Integration of biological and isotope analysis. WATER RESEARCH 2024; 267:122483. [PMID: 39326183 DOI: 10.1016/j.watres.2024.122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The in-situ utilization of sulfide to remove the nitrate produced during the anaerobic ammonium oxidation (anammox) process can avoid prolonged sludge acclimatization, facilitating the rapid initiation of coupled nitrogen removal processes. However, the understanding of in-situ enhancement on anammox system by sulfide remains unclear. Herein, sulfide (Na2S) was introduced as an additional electron donor to remove the nitrate derived from the anammox under varying sulfide/nitrogen (S/N, S2--S/NO3--N, molar ratio) ratios (0.004-4.375). The underlying mechanisms were elucidated by molecular biology techniques including flow cytometry, quantitative polymerase chain reaction, and 16S rRNA amplicon sequencing, alongside isotope tracer analysis. Results revealed that anammox reactors, when operated with in-situ sulfide addition, exhibited a significant enhancement in total nitrogen removal efficiency (NRE) ranging from 11.5 %-41.7 % (achieved 96 %), with the optimal S/N ratios of 0.01-0.8. Isotope tracer analysis indicated the successful coupling of the anammox, sulfur autotrophic denitrification (SADN), and dissimilatory nitrate reduction to ammonium (DNRA) processes within the system, with their contributions to nitrogen removal being 46 %-50 %, 24 %-30 %, and 20 %-22 %, respectively. Moreover, a notable increase in the abundance of sulfur-oxidizing bacteria (SOB) (20 %-40 % increase) and DNRA bacteria (10 %-20 % increase) were observed. Effective collaboration was further supported by the sustained viability of microbial communities. It is speculated that the heightened presence of SOB and DNRA bacteria created a low toxicity environment by converting sulfide to biogenic sulfur, thereby promoting the well-being of anammox bacteria. However, the excessive dosage of sulfide (S/N = 1.8) intensified the DNRA process (contribution>35 %) and weakened the anammox process, leading to an increase in effluent NH4+-N concentration and a decline in NRE. This study confirms that the in-situ adding an appropriate amount of sulfide favors achieving complete nitrogen removal in anammox system, which provides a novel avenue to resolve the issue of the residual nitrate in anammox process.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
6
|
Shu D, Banerjee S, Mao X, Zhang J, Cui W, Zhang W, Zhang B, Chen S, Jiao S, Wei G. Conversion of monocropping to intercropping promotes rhizosphere microbiome functionality and soil nitrogen cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174953. [PMID: 39069174 DOI: 10.1016/j.scitotenv.2024.174953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Intercropping can increase soil nutrient availability and provide greater crop yields for intensive agroecosystems. Despite its multiple benefits, how intercropping influences rhizosphere microbiome assemblages, functionality, and complex soil nitrogen cycling is not fully understood. Here, a three-year field experiment was carried out on different cropping system with five fertilization treatments at the main soybean production regions. We found that soybean yields in intercropped systems were on average 17 % greater than in monocropping system, regardless of fertilization treatments. We also found that intercropping systems significant increased network modularity (by 46 %) and functional diversity (by 11 %) than monocropping systems. Metagenomics analyses further indicated intercropping promotes microbiome functional adaptation, particularly enriching core functions related to nitrogen metabolism. Cropping patterns had a stronger influence on the functional genes associated with soil nitrogen cycling (R2 = 0.499). Monocropping systems increased the abundance of functional genes related to organic nitrogen ammonification, nitrogen fixation, and denitrification, while functional guilds of nitrate assimilation (by 28 %), nitrification (by 31 %), and dissimilatory nitrate reduction (by 10.1 %) genes were enriched in intercropping systems. Furthermore, we found that abiotic factors (i.e. AP, pH, and Moisture) are important drivers in shaping soil microbial community assemblage and nitrogen cycling. The functional genes include hzsB, and nrfA, and nxrA that affected by these biotic and abiotic variables were strongly related to crop yield (R2 = 0.076 ~ R2 = 0.249), suggesting a key role for maintaining crop production. We demonstrated that land use conversion from maize monocropping to maize-soybean intercropping diversify rhizosphere microbiome and functionality signatures, and intercropping increased key gene abundance related to soil nitrogen cycling to maintain the advantage of crop yield. The results of this study significantly facilitate our understanding of the complex soil nitrogen cycling processes and lay the foundation for manipulating desired specific functional taxa for improved crop productivity under sustainable intensification.
Collapse
Affiliation(s)
- Duntao Shu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China.
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo 58102, ND, USA
| | - Xinyi Mao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China
| | - Jiaqi Zhang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China
| | - Weili Cui
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China
| | - Wu Zhang
- Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe, Heilongjiang 150086, China
| | - Baogang Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Sanfeng Chen
- College of Biological Sciences, China Agricultural University, Beijing 100091, China
| | - Shuo Jiao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Liu C, Yu J, Zhu X, Shi H, Wang X, Sun D, Dong Z, Zhu Y. Deciphering the anammox microbial community succession with humic acid exposure to optimize large anammox granules for robust nitrogen removal. CHEMOSPHERE 2024; 363:142905. [PMID: 39038710 DOI: 10.1016/j.chemosphere.2024.142905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
The robustness of the anaerobic ammonia oxidation (anammox) process in treating wastewater with high concentrations of humic acids (HAs), including landfill leachate and sludge anaerobic digestion liquid, has been paid great attention. This study revealed that the anammox sludge granule size of 1.0-2.0 mm could be robust under the HA exposure with high concentrations. The total nitrogen removal efficiency (NRE) was 96.2% at the HA concentration of 20-100 mg/L, while the NRE was 88.5% at the HA concentration of 500 mg/L, with reduced by 7.7%. The increased extracellular polymeric substances (EPS) content which was stimulated by the HA exposure favored the formation of large granules (1.0-2.0 mm) by enveloping medium and micro granules (0.2-1.0 mm). The abundance of anammox bacteria Candidatus Brocadia was found to be higher (14.2%) in large anammox granules sized 1.0-2.0 mm, suggesting a potentially high anammox activity. However, the abundance of denitrifiers Denitratisoma increased by 4.3% in ultra-large anammox granules sized >2.0 mm, which could be attributed to the high EPS content for heterotrophic denitrifiers metabolism as organic matter. The feedback mechanism of the anammox community for maintaining the ecological function under the HA exposure resulted in a closely related microbial community, with positive and negative correlations in the ecological network increased by 64.3%. This study revealed that the HA exposure of the anammox system resulted in the anammox granules of 1.0-2.0 mm size being the dominant granules with robust nitrogen removal, providing significant guidance for the optimization of anammox granules for an efficient treatment of HA-containing wastewater in anammox applications.
Collapse
Affiliation(s)
- Changqing Liu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Jianghua Yu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| | - Xinxin Zhu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Haoqian Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Xin Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Dongxiao Sun
- China Railway Shanghai Engineering Group Municipal Environmental Protection Co., Ltd, Shanghai, 201906, PR China
| | - Zhiqiang Dong
- China Railway Shanghai Engineering Group Municipal Environmental Protection Co., Ltd, Shanghai, 201906, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yijing Zhu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| |
Collapse
|
8
|
Chen J, Tang X, Wu X, Li B, Tang X, Lin X, Li P, Chen H, Huang F, Deng X, Xie X, Wei C, Zou Y, Qiu G. Relating the carbon sources to denitrifying community in full-scale wastewater treatment plants. CHEMOSPHERE 2024; 361:142329. [PMID: 38763396 DOI: 10.1016/j.chemosphere.2024.142329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Carbon source is a key factor determining the denitrifying effectiveness and efficiency in wastewater treatment plants (WWTPs). Whereas, the relationships between diverse and distinct denitrifying communities and their favorable carbon sources in full-scale WWTPs were not well-understood. This study performed a systematic analysis of the relationships between the denitrifying community and carbon sources by using 15 organic compounds from four categories and activated sludge from 8 full-scale WWTPs. Results showed that, diverse denitrifying bacteria were detected with distinct relative abundances in 8 WWTPs, such as Haliangium (1.98-4.08%), Dechloromonas (2.00-3.01%), Thauera (0.16-1.06%), Zoogloea (0.09-0.43%), and Rhodoferax (0.002-0.104%). Overall, acetate resulted in the highest denitrifying activities (1.21-4.62 mg/L/h/gMLSS), followed by other organic acids (propionate, butyrate and lactate, etc.). Detectable dissimilatory nitrate reduction to ammonium (DNRA) was observed for all 15 carbon sources. Methanol and glycerol resulted in the highest DRNA. Acetate, butyrate, and lactate resulted in the lowest DNRA. Redundancy analysis and 16S cDNA amplicon sequencing suggested that carbon sources within the same category tended to correlate to similar denitrifiers. Methanol and ethanol were primarily correlated to Haliangium. Glycerol and amino acids (glutamate and aspartate) were correlated to Inhella and Sphaerotilus. Acetate, propionate, and butyrate were positively correlated to a wide range of denitrifiers, explaining the high efficiency of these carbon sources. Additionally, even within the same genus, different amplicon sequence variants (ASVs) performed distinctly in terms of carbon source preference and denitrifying capabilities. These findings are expected to benefit carbon source formulation and selection in WWTPs.
Collapse
Affiliation(s)
- Jinling Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xuewei Wu
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China.
| | - Biping Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Pengfei Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Yao Zou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Society of Environmental Sciences, Guangzhou, 510000, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Gao X, Li X, Wang Y, Lin C, Zuo Y, Li X, Xing W. Does invasive submerged macrophyte diversity affect dissimilatory nitrate reduction processes in sediments with varying microplastics? JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134510. [PMID: 38704909 DOI: 10.1016/j.jhazmat.2024.134510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Nitrogen removal is essential for restoring eutrophic lakes. Microorganisms and aquatic plants in lakes are both crucial for removing excess nitrogen. However, microplastic (MP) pollution and the invasion of exotic aquatic plants have become increasingly serious in lake ecosystems due to human activity and plant-dominant traits. This field mesocosm study explored how the diversity of invasive submerged macrophytes affects denitrification (DNF), anammox (ANA), and dissimilatory nitrate reduction to ammonium (DNRA) in lake sediments with varying MPs. Results showed that invasive macrophytes suppressed DNF rates, but DNRA and ANA were less sensitive than DNF to the diversity of invasive species. Sediment MPs increased the biomass of invasive species more than native species, but did not affect microbial processes. The effects of MPs on nitrate dissimilatory reduction were process-specific. MPs increased DNF rates and the competitive advantage of DNF over DNRA by changing the sediment environment. The decoupling of DNF and ANA was also observed, with increased DNF rates and decreased ANA rates. The study findings suggested new insights into how the invasion of exotic submerged macrophytes affects the sediment nitrogen cycle complex environments.
Collapse
Affiliation(s)
- Xueyuan Gao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yingcai Wang
- Eco-Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan 430010, China.
| | - Cheng Lin
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan 430062, China
| | - Yanxia Zuo
- Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaolu Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
10
|
Wang T, Wang H, Ran X, Wang Y. Salt stimulates sulfide-driven autotrophic denitrification: Microbial network and metagenomics analyses. WATER RESEARCH 2024; 257:121742. [PMID: 38733967 DOI: 10.1016/j.watres.2024.121742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/26/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Sulfur autotrophic denitrification (SADN) is a promising biological wastewater treatment technology for nitrogen removal, and its performance highly relies on the collective activities of the microbial community. However, the effect of salt (a prevailing characteristic of some nitrogen-containing industrial wastewaters) on the microbial community of SADN is still unclear. In this study, the response of the sulfide-SADN process to different salinities (i.e., 1.5 % salinity, 0.5 % salinity, and without salinity) as well as the involved microbial mechanisms were investigated by molecular ecological network and metagenomics analyses. Results showed that the satisfactory nitrogen removal efficiency (>97 %) was achieved in the sulfide-SADN process (S/N molar ratio of 0.88) with 1.5 % salinity. In salinity scenarios, the genus Thiobacillus significantly proliferated and was detected as the dominant sulfur-oxidizing bacteria in the sulfide-SADN system, occupying a relative abundance of 29.4 %. Network analysis further elucidated that 1.5 % salinity had enabled the microbial community to form a more densely clustered network, which intensified the interactions between microorganisms and effectively improved the nitrogen removal performance of the sulfide-SADN. Metagenomics sequencing revealed that the abundance of functional genes encoding for key enzymes involved in SADN, dissimilatory nitrate reduction to ammonium, and nitrification was up-regulated in the 1.5 % salinity scenario compared to that without salinity, stimulating the occurrence of multiple nitrogen transformation pathways. These multi-paths contributed to a robust SADN process (i.e., nitrogen removal efficiency >97 %, effluent nitrogen <2.5 mg N/L). This study deepens our understanding of the effect of salt on the SADN system at the community and functional level, and favors to advance the application of this sustainable bioprocess in saline wastewater treatment.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Tanvir RU, Li Y, Hu Z. Competitive partitioning of denitrification pathways during arrested methanogenesis: Implications in ammonium recovery, N 2O emission, and volatile fatty acid production. BIORESOURCE TECHNOLOGY 2024; 401:130717. [PMID: 38642664 DOI: 10.1016/j.biortech.2024.130717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
The complex interaction between nitrate (NO3-) reduction and fermentation is poorly understood when high levels of NO3- are introduced into anaerobic systems. This study investigated the competitive distribution between conventional denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA) during simultaneous denitrification and fermentation in arrested methanogenesis. Up to 62% of initial NO3- (200 mg-N/L) was retained as ammonium through DNRA at a chemical oxygen demand (COD)/N ratio of 25. Significant N2O emission occurred (1.7 - 8.0% of the initial NO3-) with limited carbon supply (≤1600 mg COD/L) and sludge concentration (≤3000 mg COD/L). VFA composition shifted predominantly towards acetic acid (>50%) in the presence of nitrate. A novel kinetic model was developed to predict DNRA vs. DEN partitioning and NO2- accumulation. Overall, NO3- input, organic loading, and carbon source characteristics independently and collectively controlled competitive DNRA vs. DEN partitioning.
Collapse
Affiliation(s)
- Rahamat Ullah Tanvir
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Yebo Li
- Quasar Energy Group, 8600 E Pleasant Valley Road, Independence, OH 44131, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
12
|
Fadum JM, Borton MA, Daly RA, Wrighton KC, Hall EK. Dominant nitrogen metabolisms of a warm, seasonally anoxic freshwater ecosystem revealed using genome resolved metatranscriptomics. mSystems 2024; 9:e0105923. [PMID: 38259093 PMCID: PMC10878078 DOI: 10.1128/msystems.01059-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Nitrogen (N) availability is one of the principal drivers of primary productivity across aquatic ecosystems. However, the microbial communities and emergent metabolisms that govern N cycling in tropical lakes are both distinct from and poorly understood relative to those found in temperate lakes. This latitudinal difference is largely due to the warm (>20°C) temperatures of tropical lake anoxic hypolimnions (deepest portion of a stratified water column), which result in unique anaerobic metabolisms operating without the temperature constraints found in lakes at temperate latitudes. As such, tropical hypolimnions provide a platform for exploring microbial membership and functional diversity. To better understand N metabolism in warm anoxic waters, we combined measurements of geochemistry and water column thermophysical structure with genome-resolved metatranscriptomic analyses of the water column microbiome in Lake Yojoa, Honduras. We sampled above and below the oxycline in June 2021, when the water column was stratified, and again at the same depths and locations in January 2022, when the water column was mixed. We identified 335 different lineages and significantly different microbiome membership between seasons and, when stratified, between depths. Notably, nrfA (indicative of dissimilatory nitrate reduction to ammonium) was upregulated relative to other N metabolism genes in the June hypolimnion. This work highlights the taxonomic and functional diversity of microbial communities in warm and anoxic inland waters, providing insight into the contemporary microbial ecology of tropical ecosystems as well as inland waters at higher latitudes as water columns continue to warm in the face of global change.IMPORTANCEIn aquatic ecosystems where primary productivity is limited by nitrogen (N), whether continuously, seasonally, or in concert with additional nutrient limitations, increased inorganic N availability can reshape ecosystem structure and function, potentially resulting in eutrophication and even harmful algal blooms. Whereas microbial metabolic processes such as mineralization and dissimilatory nitrate reduction to ammonium increase inorganic N availability, denitrification removes bioavailable N from the ecosystem. Therefore, understanding these key microbial mechanisms is critical to the sustainable management and environmental stewardship of inland freshwater resources. This study identifies and characterizes these crucial metabolisms in a warm, seasonally anoxic ecosystem. Results are contextualized by an ecological understanding of the study system derived from a multi-year continuous monitoring effort. This unique data set is the first of its kind in this largely understudied ecosystem (tropical lakes) and also provides insight into microbiome function and associated taxa in warm, anoxic freshwaters.
Collapse
Affiliation(s)
- J. M. Fadum
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
| | - M. A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - R. A. Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - K. C. Wrighton
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - E. K. Hall
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
13
|
Lu T, Zheng Q, Huang A, Chen J, Liu X, Qin Y. Investigation of denitrification to Anammox phase transformation performance of Up-Flow anaerobic sludge blanket reactor. BIORESOURCE TECHNOLOGY 2024; 394:130190. [PMID: 38096996 DOI: 10.1016/j.biortech.2023.130190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
For investigating the microbial community and nitrogen removal performance during the transformation from heterotrophic denitrification (HtDn), mixotrophic denitrification (MtDn), and autotrophic denitrification (AtDn) to anaerobic ammonia oxidation (Anammox), an up-flow anaerobic sludge blanket reactor was constructed by changing the influent substrates and their ratios. The reactor got a total nitrogen removal efficiency (TNRE) of 98.0 % at the molar ratio of carbon, nitrogen, and sulfur sources was 5:8:4 in the MtDn process. In the last phase, the conversion of AtDn to Anammox was successful in 33 days, and a stable TNRE was 87.7 %. The dominant functional bacteria of the microbial communities were Thauera and unclassified_Comamonadaceae in the HtDn process; Thiobacillus, Thauera, Denitratisoma, and Pseudoxanthomonas in the MtDn process; Thiobacillus and Sulfurimonas in the AtDn process; and unclassified_Gemmatimonadaceae, unclassified_SBR1031, and Candidatus_Brocadia in the Anammox process.
Collapse
Affiliation(s)
- Tiansheng Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qiaoyue Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Angui Huang
- Guizhou Ruijinfang Brewing Co., LTD, Guiyang 551199, China
| | - Jiannv Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiangyin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
14
|
Saghaï A, Pold G, Jones CM, Hallin S. Phyloecology of nitrate ammonifiers and their importance relative to denitrifiers in global terrestrial biomes. Nat Commun 2023; 14:8249. [PMID: 38086813 PMCID: PMC10716430 DOI: 10.1038/s41467-023-44022-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Nitrate ammonification is important for soil nitrogen retention. However, the ecology of ammonifiers and their prevalence compared with denitrifiers, being competitors for nitrate, are overlooked. Here, we screen 1 million genomes for nrfA and onr, encoding ammonifier nitrite reductases. About 40% of ammonifier assemblies carry at least one denitrification gene and show higher potential for nitrous oxide production than consumption. We then use a phylogeny-based approach to recruit gene fragments of nrfA, onr and denitrification nitrite reductase genes (nirK, nirS) in 1861 global terrestrial metagenomes. nrfA outnumbers the nearly negligible onr counts in all biomes, but denitrification genes dominate, except in tundra. Random forest modelling teases apart the influence of the soil C/N on nrfA-ammonifier vs denitrifier abundance, showing an effect of nitrate rather than carbon content. This study demonstrates the multiple roles nitrate ammonifiers play in nitrogen cycling and identifies factors ultimately controlling the fate of soil nitrate.
Collapse
Affiliation(s)
- Aurélien Saghaï
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Plant Pathology, Uppsala, Sweden
| | - Grace Pold
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Plant Pathology, Uppsala, Sweden
| | - Christopher M Jones
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Plant Pathology, Uppsala, Sweden
| | - Sara Hallin
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Plant Pathology, Uppsala, Sweden.
| |
Collapse
|
15
|
Yoon S, Heo H, Han H, Song DU, Bakken LR, Frostegård Å, Yoon S. Suggested role of NosZ in preventing N 2O inhibition of dissimilatory nitrite reduction to ammonium. mBio 2023; 14:e0154023. [PMID: 37737639 PMCID: PMC10653820 DOI: 10.1128/mbio.01540-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) is a microbial energy-conserving process that reduces NO3 - and/or NO2 - to NH4 +. Interestingly, DNRA-catalyzing microorganisms possessing nrfA genes are occasionally found harboring nosZ genes encoding nitrous oxide reductases, i.e., the only group of enzymes capable of removing the potent greenhouse gas N2O. Here, through a series of physiological experiments examining DNRA metabolism in one of such microorganisms, Bacillus sp. DNRA2, we have discovered that N2O may delay the transition to DNRA upon an oxic-to-anoxic transition, unless timely removed by the nitrous oxide reductases. These observations suggest a novel explanation as to why some nrfA-possessing microorganisms have retained nosZ genes: to remove N2O that may otherwise interfere with the transition from O2 respiration to DNRA.
Collapse
Affiliation(s)
- Sojung Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hokwan Heo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heejoo Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dong-Uk Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Lars R. Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
16
|
Ye F, Duan L, Sun Y, Yang F, Liu R, Gao F, Wang Y, Xu Y. Nitrogen removal in freshwater sediments of riparian zone: N-loss pathways and environmental controls. Front Microbiol 2023; 14:1239055. [PMID: 37664113 PMCID: PMC10469909 DOI: 10.3389/fmicb.2023.1239055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
The riparian zone is an important location of nitrogen removal in the terrestrial and aquatic ecosystems. Many studies have focused on the nitrogen removal efficiency and one or two nitrogen removal processes in the riparian zone, and less attention has been paid to the interaction of different nitrogen transformation processes and the impact of in situ environmental conditions. The molecular biotechnology, microcosm culture experiments and 15N stable isotope tracing techniques were used in this research at the riparian zone in Weinan section of the Wei River, to reveal the nitrogen removal mechanism of riparian zone with multi-layer lithologic structure. The results showed that the nitrogen removal rate in the riparian zone was 4.14-35.19 μmol·N·kg-1·h-1. Denitrification, dissimilatory reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox) jointly achieved the natural attenuation process of nitrogen in the riparian zone, and denitrification was the dominant process (accounting for 59.6%). High dissolved organic nitrogen and nitrate ratio (DOC:NO3-) would promote denitrification, but when the NO3- content was less than 0.06 mg/kg, DNRA would occur in preference to denitrification. Furthermore, the abundances of functional genes (norB, nirS, nrfA) and anammox bacterial 16S rRNA gene showed similar distribution patterns with the corresponding nitrogen transformation rates. Sedimentary NOX-, Fe(II), dissolved organic carbon (DOC) and the nitrogen transformation functional microbial abundance were the main factors affecting nitrogen removal in the riparian zone. Fe (II) promoted NO3- attenuation through nitrate dependent ferrous oxidation process under microbial mediation, and DOC promotes NO3- attenuation through enhancing DNRA effect. The results of this study can be used for the management of the riparian zone and the prevention and control of global nitrogen pollution.
Collapse
Affiliation(s)
- Fei Ye
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Lei Duan
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Yaqiao Sun
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Fan Yang
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Rui Liu
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Fan Gao
- Power China Northwest Engineering Corporation Limited, Xi’an, Shaanxi, China
- Shaanxi Union Research Center of University and Enterprise for River and Lake Ecosystems Protection and Restoration, Xi’an, Shaanxi, China
| | - Yike Wang
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| | - Yirong Xu
- School of Water and Environment, Chang’an University, Xi’an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
| |
Collapse
|
17
|
Li B, Godfrey BJ, RedCorn R, Candry P, Abrahamson B, Wang Z, Goel R, Winkler MKH. Mainstream nitrogen removal from low temperature and low ammonium strength municipal wastewater using hydrogel-encapsulated comammox and anammox. WATER RESEARCH 2023; 242:120303. [PMID: 37419028 DOI: 10.1016/j.watres.2023.120303] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Application of partial nitritation (PN)-anammox to mainstream wastewater treatment faces challenges in low water temperature and low ammonium strength. In this study, a continuous flow PN-anammox reactor with hydrogel-encapsulated comammox and anammox was designed and operated for nitrogen removal from mainstream wastewater with low temperature. Long-term operation with synthetic and real wastewater as the feed demonstrated nearly complete ammonium and total inorganic nitrogen (TIN) removal by the reactor at temperatures as low as 10 °C. A significantly decreased nitrogen removal performance and biomass activity was observed in the reactor at 4 °C before a selective heating strategy was employed. A novel heating technology using radiation to heat carbon black co-encapsulated in the hydrogel matrix with biomass was used to selectively heat biomass but not water in the treatment system. This selective heating technology enabled nearly complete ammonium removal and 89.4 ± 4.3 % TIN removal at influent temperature of 4 °C and reactor temperature 5 °C. Activity tests suggested selective heating brought the biomass activity at influent temperatures of 4 °C and reactor temperature 5 °C to a level comparable to that at 10 °C. Comammox and anammox were consistently present in the system and spatially organized in the hydrogel beads as revealed by qPCR and fluorescence in-situ hybridization (FISH). The abundance of comammox largely decreased by 3 orders of magnitude during the operation at 4 °C, and rapidly recovered after the application of selective heating. The anammox-comammox technology tested in this study essentially enabled mainstream shortcut nitrogen removal, and the selective heating ensured good performance of the technology at temperature as low as 5 °C.
Collapse
Affiliation(s)
- Bo Li
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA.
| | - Bruce J Godfrey
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Raymond RedCorn
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Pieter Candry
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Britt Abrahamson
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Zhiwu Wang
- Virginia Polytechnic Institute and State University, Department of Biological Systems Engineering, 1230 Washington St. SW, Blacksburg VA 24061, VA 20147, USA
| | - Ramesh Goel
- The University of Utah, Department of Civil & Environmental Engineering, 110 S. Central Campus Drive, 2000MCE, Salt Lake City, UT 84112, USA
| | - Mari-K H Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Samanta B, Sharma S, Budhwar R. Metagenome Analysis of Speleothem Microbiome from Subterranean Cave Reveals Insight into Community Structure, Metabolic Potential, and BGCs Diversity. Curr Microbiol 2023; 80:317. [PMID: 37561193 DOI: 10.1007/s00284-023-03431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
The Borra caves, the second largest subterranean karst cave ecosystem in the Indian sub-continent, are located at the Ananthagiri hills of Araku Valley in the Alluri district of Andhra Pradesh, India. The present investigation applied a shotgun metagenomic approach to gain insights into the microbial community structure, metabolic potential, and biosynthetic gene cluster (BGC) diversity of the microbes colonizing the surface of the speleothems from the aphotic zone of Borra caves. The taxonomic analysis of the metagenome data illustrated that the speleothem-colonizing core microbial community was dominated mainly by Alpha-, Beta-, and Gamma-Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. The key energy metabolic pathways analysis provides strong evidence of chemolithoautotrophic and chemoheterotrophic modes of nutrition in the speleothem-colonizing microbial community. Metagenome data suggests that sulfur reducers and sulfur-disproportionating microbes might play a vital role in energy generation in this ecosystem. Our metagenome data also suggest that the dissimilatory nitrifiers and nitrifying denitrifiers might play an essential role in conserving nitrogen pools in the ecosystem. Furthermore, metagenome-wide BGCs mining retrieved 451 putative BGCs; NRPS was the most abundant (24%). Phylogenetic analysis of the C domain of NRPS showed that sequences were distributed across all six function categories of the known C domain, including several novel subclades. For example, a novel subclade had been recovered within the LCL domain clade as a sister subclade of immunosuppressant cyclosporin encoding C domain sequences. Our result suggested that subterranean cave microbiomes might be a potential reservoir of novel microbial metabolites.
Collapse
Affiliation(s)
- Brajogopal Samanta
- Department of Microbiology and FST, GITAM School of Science, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
| | - Shivasmi Sharma
- Bionivid Technology Private Limited, Bengaluru, Karnataka, 560043, India
| | - Roli Budhwar
- Bionivid Technology Private Limited, Bengaluru, Karnataka, 560043, India
| |
Collapse
|
19
|
White C, Antell E, Schwartz SL, Lawrence JE, Keren R, Zhou L, Yu K, Zhuang W, Alvarez-Cohen L. Synergistic interactions between anammox and dissimilatory nitrate reducing bacteria sustains reactor performance across variable nitrogen loading ratios. Front Microbiol 2023; 14:1243410. [PMID: 37637134 PMCID: PMC10450351 DOI: 10.3389/fmicb.2023.1243410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023] Open
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria are utilized for high efficiency nitrogen removal from nitrogen-laden sidestreams in wastewater treatment plants. The anammox bacteria form a variety of competitive and mutualistic interactions with heterotrophic bacteria that often employ denitrification or dissimilatory nitrate reduction to ammonium (DNRA) for energy generation. These interactions can be heavily influenced by the influent ratio of ammonium to nitrite, NH4+:NO2-, where deviations from the widely acknowledged stoichiometric ratio (1:1.32) have been demonstrated to have deleterious effects on anammox efficiency. Thus, it is important to understand how variable NH4+:NO2- ratios impact the microbial ecology of anammox reactors. We observed the response of the microbial community in a lab scale anammox membrane bioreactor (MBR) to changes in the influent NH4+:NO2- ratio using both 16S rRNA gene and shotgun metagenomic sequencing. Ammonium removal efficiency decreased from 99.77 ± 0.04% when the ratio was 1:1.32 (prior to day 89) to 90.85 ± 0.29% when the ratio was decreased to 1:1.1 (day 89-202) and 90.14 ± 0.09% when the ratio was changed to 1:1.13 (day 169-200). Over this same timespan, the overall nitrogen removal efficiency (NRE) remained relatively unchanged (85.26 ± 0.01% from day 0-89, compared to 85.49 ± 0.01% from day 89-169, and 83.04 ± 0.01% from day 169-200). When the ratio was slightly increased to 1:1.17-1:1.2 (day 202-253), the ammonium removal efficiency increased to 97.28 ± 0.45% and the NRE increased to 88.21 ± 0.01%. Analysis of 16 S rRNA gene sequences demonstrated increased relative abundance of taxa belonging to Bacteroidetes, Chloroflexi, and Ignavibacteriae over the course of the experiment. The relative abundance of Planctomycetes, the phylum to which anammox bacteria belong, decreased from 77.19% at the beginning of the experiment to 12.24% by the end of the experiment. Analysis of metagenome assembled genomes (MAGs) indicated increased abundance of bacteria with nrfAH genes used for DNRA after the introduction of lower influent NH4+:NO2- ratios. The high relative abundance of DNRA bacteria coinciding with sustained bioreactor performance indicates a mutualistic relationship between the anammox and DNRA bacteria. Understanding these interactions could support more robust bioreactor operation at variable nitrogen loading ratios.
Collapse
Affiliation(s)
- Christian White
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Edmund Antell
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Sarah L. Schwartz
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | | | - Ray Keren
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Weiqin Zhuang
- Department of Civil & Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Lisa Alvarez-Cohen
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
20
|
Chen Y, Su X, Wan Y, Lyu H, Dong W, Shi Y, Zhang Y. Quantifying the effect of the nitrogen biogeochemical processes on the distribution of ammonium in the riverbank filtration system. ENVIRONMENTAL RESEARCH 2023; 216:114358. [PMID: 36210547 DOI: 10.1016/j.envres.2022.114358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Ammonium (NH4+) enrichment of riverbank filtration (RBF) systems is gaining popularity. However, most previous research has concentrated on NO3- removal efficiencies, while the mechanisms of NH4+ enrichment remain unknown. A nitrogen biogeochemical process model was developed for the quantitative analysis of NH4+ enrichment in the Kaladian well field in northwest Songyuan City, NE China. Data from laboratory experiments and in-situ monitoring were used to determine initial values and calibrate the thermodynamic/kinetic parameters representing nitrogen (N) biogeochemical reactions. (1) The NO3- from river was subjected to denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) within 10-14 m of the shore, whereas the NH4+ in groundwater was caused by DNRA, organic nitrogen mineralization (MIN), and mixing with laterally recharged high NH4+ groundwater. (2) DNF and DNRA were regulated by hydrodynamic processes, with the ranges of these processes being more significant in the wet season due to a higher hydraulic gradient. MIN occurred widely throughout the water flow path, with temperature primarily controlling the rates of the three reactions. (3) DNRA activity was relatively higher in the wet season when the water temperature was higher within 10-14 m of the shore. In the wet season, DNRA contributed 25%-30% to NO3- reduction, which was higher than in the dry season (5%-10%). DNRA contributed at least 40% and 15% to NH4+ enrichment in the wet and dry seasons, respectively. (4). Organic N in media gradually released NH4+ into groundwater via MIN and desorption across the entire flow path, with contributions to NH4+ enrichment reaching 75% and 85%, respectively, in the wet and dry seasons.
Collapse
Affiliation(s)
- Yaoxuan Chen
- Institute of Water Resources and Environment, Jilin University, Changchun, 130026, China; College of New Energy and Environment, Jilin University, Changchun, 130026, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130026, China; China Institute of Geo-Environmental Monitoring, Beijing, 100081, China
| | - Xiaosi Su
- Institute of Water Resources and Environment, Jilin University, Changchun, 130026, China; College of New Energy and Environment, Jilin University, Changchun, 130026, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, China
| | - Yuyu Wan
- College of New Energy and Environment, Jilin University, Changchun, 130026, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, China.
| | - Hang Lyu
- College of New Energy and Environment, Jilin University, Changchun, 130026, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130026, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130026, China
| | - Weihong Dong
- Institute of Water Resources and Environment, Jilin University, Changchun, 130026, China; College of New Energy and Environment, Jilin University, Changchun, 130026, China
| | - Yakun Shi
- No. 1 Institute of Geo-environment Survey of Henan, Zhengzhou, 450000, China
| | - Yiwu Zhang
- Nanjing Center, China Geological Survey, Nanjing, 210000, China
| |
Collapse
|
21
|
Su X, Zheng Z, Chen Y, Wan Y, Lyu H, Dong W. Effects of carbon load on nitrate reduction during riverbank filtration: Field monitoring and batch experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157198. [PMID: 35810902 DOI: 10.1016/j.scitotenv.2022.157198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Riverbank filtration (RBF) is a well-established technique worldwide, and is critical for the maintenance of groundwater quality and production of clean drinking water. Evaluation of the decay of exogenous nitrate (NO3-) in river water and the enrichment of ammonium (NH4+) in groundwater during RBF is important; these two processes are mainly influenced by denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) controlled by the groundwater carbon load. In this study, the effects of carbon load (organic carbon [OC]: NO3-) on the competing nitrate reduction (DNRA and DNF) were assessed during RBF using field monitoring and a laboratory batch experiment. Results show the groundwater OC: NO3- ratio did not directly affect the reaction rate of DNRA and DNF, however, it could control the competitive partitioning between the two. In the near-shore zone, the groundwater OC: NO3- ratio shows significant seasonal variations along the filtration path owing to the changing conditions of redox, OC-rich, and NO3--limited. A greater proportion of NO3- would be available for DNRA in the wet season with higher OC: NO3- ratio (> 10), resulting in a significantly NH4+-N enrichment rate (from 1.43 × 10-3 to 9.54 × 10-4 mmol L-1 d-1) in the near-shore zone where the zone of Mn (IV) oxide reduction. However, the activity of DNRA was suppressed with lower OC: NO3- ratio (< 10) in the dry season, resulting in a stable NH4+-N enrichment rate (from 3.12 × 10-4 to 1.30 × 10-4 mmol L-1 d-1). Benefiting from seasonal variation of OC-rich and NO3--limited conditions, DNRA bacteria outcompeted denitrifiers, which eventually led to seasonal differences in NO3- reduction in the near-shore zone. Overall, under the effect of DNRA induced by continuous high carbon load in RBF systems, nitrogen input is not permanently removed but rather retained in groundwater during RBF.
Collapse
Affiliation(s)
- Xiaosi Su
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Zhuyan Zheng
- College of Construction Engineering, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China
| | - Yaoxuan Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China.
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Hang Lyu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| |
Collapse
|
22
|
Nie Y, Lau SYL, Tan X, Lu X, Liu S, Tahvanainen T, Isoda R, Ye Q, Hashidoko Y. Sphagnum capillifolium holobiont from a subarctic palsa bog aggravates the potential of nitrous oxide emissions. FRONTIERS IN PLANT SCIENCE 2022; 13:974251. [PMID: 36160957 PMCID: PMC9490422 DOI: 10.3389/fpls.2022.974251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Melting permafrost mounds in subarctic palsa mires are thawing under climate warming and have become a substantial source of N2O emissions. However, mechanistic insights into the permafrost thaw-induced N2O emissions in these unique habitats remain elusive. We demonstrated that N2O emission potential in palsa bogs was driven by the bacterial residents of two dominant Sphagnum mosses especially of Sphagnum capillifolium (SC) in the subarctic palsa bog, which responded to endogenous and exogenous Sphagnum factors such as secondary metabolites, nitrogen and carbon sources, temperature, and pH. SC's high N2O emission activity was linked with two classes of distinctive hyperactive N2O emitters, including Pseudomonas sp. and Enterobacteriaceae bacteria, whose hyperactive N2O emitting capability was characterized to be dominantly pH-responsive. As the nosZ gene-harboring emitter, Pseudomonas sp. SC-H2 reached a high level of N2O emissions that increased significantly with increasing pH. For emitters lacking the nosZ gene, an Enterobacteriaceae bacterium SC-L1 was more adaptive to natural acidic conditions, and N2O emissions also increased with pH. Our study revealed previously unknown hyperactive N2O emitters in Sphagnum capillifolium found in melting palsa mound environments, and provided novel insights into SC-associated N2O emissions.
Collapse
Affiliation(s)
- Yanxia Nie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Sharon Yu Ling Lau
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- Sarawak Tropical Peat Research Institute, Kota Samarahan, Malaysia
| | - Xiangping Tan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiankai Lu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Suping Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Teemu Tahvanainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Reika Isoda
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | | |
Collapse
|
23
|
Yin Q, Sun Y, Li B, Feng Z, Wu G. The r/K selection theory and its application in biological wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153836. [PMID: 35176382 DOI: 10.1016/j.scitotenv.2022.153836] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Understanding the characteristics of functional organisms is the key to managing and updating biological processes for wastewater treatment. This review, for the first time, systematically characterized two typical types of strategists in wastewater treatment ecosystems via the r/K selection theory and provided novel strategies for selectively enriching microbial community. Functional organisms involved in nitrification (e.g., Nitrosomonas and Nitrosococcus), anammox (Candidatus Brocadia), and methanogenesis (Methanosarcinaceae) are identified as r-strategists with fast growth capacities and low substrate affinities. These r-strategists can achieve high pollutant removal loading rates. On the other hand, other organisms such as Nitrosospira spp., Candidatus Kuenenia, and Methanosaetaceae, are characterized as K-strategists with slow growth rates but high substrate affinities, which can decrease the pollutant concentration to low levels. More importantly, K-strategists may play crucial roles in the biodegradation of recalcitrant organic pollutants. The food-to-microorganism ratio, mass transfer, cell size, and biomass morphology are the key factors determining the selection of r-/K-strategists. These factors can be related with operating parameters (e.g., solids and hydraulic retention time), biomass morphology (biofilm or granules), and operating modes (continuous-flow or sequencing batch), etc., to achieve the efficient acclimation of targeted r-/K-strategists. For practical applications, the concept of substrate flux was put forward to further benefit the selective enrichment of r-/K-strategists, fulfilling effective management and improvement of engineered pollution control bioprocesses. Finally, the future perspectives regarding the development of the r/K selection theory in wastewater treatment processes were discussed.
Collapse
Affiliation(s)
- Qidong Yin
- College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Yuepeng Sun
- Department of Civil and Environmental Engineering, Virginia Tech, Ashburn, VA 20147, United States
| | - Bo Li
- Department of Civil & Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| | - Zhaolu Feng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
24
|
Chakrawal A, Calabrese S, Herrmann AM, Manzoni S. Interacting Bioenergetic and Stoichiometric Controls on Microbial Growth. Front Microbiol 2022; 13:859063. [PMID: 35656001 PMCID: PMC9152356 DOI: 10.3389/fmicb.2022.859063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms function as open systems that exchange matter and energy with their surrounding environment. Even though mass (carbon and nutrients) and energy exchanges are tightly linked, there is a lack of integrated approaches that combine these fluxes and explore how they jointly impact microbial growth. Such links are essential to predicting how the growth rate of microorganisms varies, especially when the stoichiometry of carbon- (C) and nitrogen (N)-uptake is not balanced. Here, we present a theoretical framework to quantify the microbial growth rate for conditions of C-, N-, and energy-(co-) limitations. We use this framework to show how the C:N ratio and the degree of reduction of the organic matter (OM), which is also the electron donor, availability of electron acceptors (EAs), and the different sources of N together control the microbial growth rate under C, nutrient, and energy-limited conditions. We show that the growth rate peaks at intermediate values of the degree of reduction of OM under oxic and C-limited conditions, but not under N-limited conditions. Under oxic conditions and with N-poor OM, the growth rate is higher when the inorganic N (NInorg)-source is ammonium compared to nitrate due to the additional energetic cost involved in nitrate reduction. Under anoxic conditions, when nitrate is both EA and NInorg-source, the growth rates of denitrifiers and microbes performing the dissimilatory nitrate reduction to ammonia (DNRA) are determined by both OM degree of reduction and nitrate-availability. Consistent with the data, DNRA is predicted to foster growth under extreme nitrate-limitation and with a reduced OM, whereas denitrifiers are favored as nitrate becomes more available and in the presence of oxidized OM. Furthermore, the growth rate is reduced when catabolism is coupled to low energy yielding EAs (e.g., sulfate) because of the low carbon use efficiency (CUE). However, the low CUE also decreases the nutrient demand for growth, thereby reducing N-limitation. We conclude that bioenergetics provides a useful conceptual framework for explaining growth rates under different metabolisms and multiple resource-limitations.
Collapse
Affiliation(s)
- Arjun Chakrawal
- Department of Physical Geography, Stockholm University, Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Salvatore Calabrese
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, United States
| | - Anke M Herrmann
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
Bryson SJ, Hunt KA, Stahl DA, Winkler MKH. Metagenomic Insights Into Competition Between Denitrification and Dissimilatory Nitrate Reduction to Ammonia Within One-Stage and Two-Stage Partial-Nitritation Anammox Bioreactor Configurations. Front Microbiol 2022; 13:825104. [PMID: 35547121 PMCID: PMC9083452 DOI: 10.3389/fmicb.2022.825104] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Anaerobic ammonia oxidizing bacteria (Anammox) are implemented in high-efficiency wastewater treatment systems operated in two general configurations; one-stage systems combine aerobic ammonia oxidizing bacteria (AOB) and Anammox within a single aerated reactor, whereas two-stage configurations separate these processes into discrete tanks. Within both configurations heterotrophic populations that perform denitrification or dissimilatory nitrate reduction to ammonia (DNRA) compete for carbon and nitrate or nitrite and can impact reactor performance because DNRA retains nitrogen in the system. Therefore, it is important to understand how selective pressures imposed by one-stage and two-stage reactor configurations impact the microbial community structure and associated nitrogen transforming functions. We performed 16S rRNA gene and metagenomic sequencing on different biomass fractions (granules, flocs, and suspended biomass) sampled from two facilities treating sludge dewatering centrate: a one-stage treatment facility (Chambers Creek, Tacoma, WA) and a two-stage system (Rotterdam, Netherlands). Similar microbial populations were identified across the different samples, but relative abundances differed between reactor configurations and biomass sources. Analysis of metagenome assembled genomes (MAGs) indicated different lifestyles for abundant heterotrophic populations. Acidobacteria, Bacteroidetes, and Chloroflexi MAGs had varying capacity for DNRA and denitrification. Acidobacteria MAGs possessed high numbers of glycosyl hydrolases and glycosyl transferases indicating a role in biomass degradation. Ignavibacteria and Phycosphaerae MAGs contributed to the greater relative abundance of DNRA associated nrf genes in the two-stage granules and contained genomic features suggesting a preference for an anoxic or microoxic niche. In the one-stage granules a MAG assigned to Burkholderiales accounted for much of the abundant denitrification genes and had genomic features, including the potential for autotrophic denitrification using reduced sulfur, that indicate an ability to adapt its physiology to varying redox conditions. Overall, the competition for carbon substrates between denitrifying and DNRA performing heterotrophs may be impacted by configuration specific selective pressures. In one-stage systems oxygen availability in the bulk liquid and the oxygen gradient within granules would provide a greater niche space for heterotrophic populations capable of utilizing both oxygen and nitrate or nitrite as terminal electron acceptors, compared to two-stage systems where a homogeneous anoxic environment would favor heterotrophic populations primarily adapted to anaerobic metabolism.
Collapse
Affiliation(s)
- Samuel J Bryson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
26
|
Zhuang JL, Sun X, Zhao WQ, Zhang X, Zhou JJ, Ni BJ, Liu YD, Shapleigh JP, Li W. The anammox coupled partial-denitrification process in an integrated granular sludge and fixed-biofilm reactor developed for mainstream wastewater treatment: Performance and community structure. WATER RESEARCH 2022; 210:117964. [PMID: 34959064 DOI: 10.1016/j.watres.2021.117964] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
This study describes an integrated granular sludge and fixed-biofilm (iGB) reactor innovatively designed to carry out the anammox/partial-denitrification (A/PD) process for nitrogen removal with mainstream municipal wastewater. The iGB-A/PD reactor consists of anammox granules inoculated in the lower region of reactor and an acclimated fixed-biofilm positioned in the upper region. Compared to the other reported A/PD systems for mainstream wastewater treatment, this iGB-A/PD reactor is notable due to its higher quality effluent with a total inorganic nitrogen (TIN) of ∼3 mg•L-1 and operation at a high nitrogen removal rate (NRR) of 0.8 ± 0.1 kg-N•m-3•d-1. Reads-based metatranscriptomic analysis found that the expression values of hzsA and hdh, key genes associated with anammox, were much higher than other functional genes on nitrogen conversion, confirming the major roles of the anammox bacteria in nitrogen bio-removal. In both regions of the reactor, the nitrate reduction genes (napA/narG) had expression values of 56-99 RPM, which were similar to that of the nitrite reduction genes (nirS/nirK). The expression reads from genes for dissimilatory nitrate reduction to ammonium (DNRA), nrfA and nirB, were unexpectedly high, and were over the half of the levels of reads from genes required for nitrate reduction. Kinetic assays confirmed that the granules had an anammox activity of 16.2 g-NH4+-N•kg-1-VSS•d-1 and a nitrate reduction activity of 4.1 g-N•kg-1-VSS•d-1. While these values were changed to be 4.9 g- NH4+-N•kg-1-VSS•d-1and 4.3 g-N•kg-1-VSS•d-1 respectively in the fixed-biofilm. Mass flux determination found that PD and DNRA was responsible for ∼50% and ∼25% of nitrate reduction, respectively, in the whole reactor, consistent with high effluent quality and treatment efficiency via a nitrite loop. Metagenomic binning analysis revealed that new and unidentified anammox species, affiliated with Candidatus Brocadia, were the dominant anammox organisms. Myxococcota and Planctomycetota were the principal organisms associated with the PD and DNRA processes, respectively.
Collapse
Affiliation(s)
- Jin-Long Zhuang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xu Sun
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei-Qi Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jia-Jia Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
| | - Yong-Di Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - James P Shapleigh
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Wei Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, China.
| |
Collapse
|
27
|
Pelivano B, Bryson S, Hunt KA, Denecke M, Stahl DA, Winkler M. Application of pyritic sludge with an anaerobic granule consortium for nitrate removal in low carbon systems. WATER RESEARCH 2022; 209:117933. [PMID: 34923445 DOI: 10.1016/j.watres.2021.117933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Granules recovered from a highly reduced anaerobic digester were capable of active nitrogen removal in the absence of exogenous electron donors, averaging 0.25 mg mgNO3--N /gVSS/d over 546 days of operation. Electron mass balance indicated that about half the influent nitrate was converted to ammonia via DNRA and another half denitrified. This capacity was associated with an onion-like structure of multiple layers enriched in reduced iron and sulfur, and a complex microbial community shown by metagenomic sequencing to consist of multiple physiological groups and associated activities, including methanogenesis, denitrification, dissimilatory nitrate reduction to ammonia (DNRA), iron oxidation and reduction, and sulfur reduction and oxidation. Nitrate reduction was supported by both entrained organic material and reduced iron and sulfur species, corresponding to 2.13 mg COD/gVSS/d. Batch incubations showed that approximately 15% of denitrified nitrate was coupled to the oxidation of sulfur derived from both sulfate respiration and granular material enriched in iron-sulfide. Inhibition of sulfate reduction resulted in redirection of electron flow to methanogenesis and, in combination with other batch tests, showed that these granules supported a complex microbial community in which cryptic redox cycles linked carbon, sulfur, and iron oxidation with nitrate, sulfate, iron, and carbon dioxide reduction. This system shows promise for treatment of nitrate contaminated ground water without addition of an external organic carbon source as well as wastewater treatment in combination with (granular) sludge elimination leading in a net reduction of solid treatment costs.
Collapse
Affiliation(s)
- Bojan Pelivano
- Department of Civil and Environmental Engineering, University of Washington, 616 Northeast Northlake Place, Seattle, Washington 98105, USA; Department of Urban Water and Waste Management, University of Duisburg-Essen, Universitaetsstr. 15, Essen 45141, Germany.
| | - Samuel Bryson
- Department of Civil and Environmental Engineering, University of Washington, 616 Northeast Northlake Place, Seattle, Washington 98105, USA
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, 616 Northeast Northlake Place, Seattle, Washington 98105, USA
| | - Martin Denecke
- Department of Urban Water and Waste Management, University of Duisburg-Essen, Universitaetsstr. 15, Essen 45141, Germany
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, 616 Northeast Northlake Place, Seattle, Washington 98105, USA
| | - Mari Winkler
- Department of Civil and Environmental Engineering, University of Washington, 616 Northeast Northlake Place, Seattle, Washington 98105, USA
| |
Collapse
|
28
|
Zhou Z, Ge L, Huang Y, Liu Y, Wang S. Coupled relationships among anammox, denitrification, and dissimilatory nitrate reduction to ammonium along salinity gradients in a Chinese estuarine wetland. J Environ Sci (China) 2021; 106:39-46. [PMID: 34210438 DOI: 10.1016/j.jes.2021.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 06/13/2023]
Abstract
Salinization in estuarine wetlands significantly alters the balance between their nitrogen (N) removal and retention abilities but these processes have not yet been characterized effectively. In the present study, the potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped using N isotope tracing methods along salinity gradients across the Yellow River Delta wetland (YRDW) in China. The contribution of anammox to total dissimilatory N transformations in YRDW was merely 6.8%, whereas denitrification and DNRA contributed 52.3% and 40.9%, respectively. The potential rate of denitrification (5.82 μmol/kg/h) decreased significantly along salinity gradients and markedly exceeded DNRA potential rate (2.7 μmol/kg/h) in fresh wetlands, but was lower than that of DNRA in oligohaline wetlands (3.06 and 3.18 μmol/kg/h, respectively). Moreover, a significantly positive relationship between salinity and DNRA/denitrification was obeserved, indicating that increased salinity may favor DNRA over denitrification. Furthermore, total sulfur (TS) content and ratio of total organic carbon to total nitrogen (C/N) increased with the salinity gradient and showed evident positive relationships with the DNRA/denitrification ratio. In this study, we proved that increased salinization resulted in the dominance of DNRA over denitrification, possible through the addition of S and alteration of the C/N in estuarine wetlands, leading to increased N retention in estuarine wetlands during salinization, which would enhance the eutrophication potential within wetlands and in downstream ecosystems.
Collapse
Affiliation(s)
- Zijun Zhou
- Institute of Yellow River Water Resources Protection, Zhengzhou 450003, China
| | - Lei Ge
- Institute of Yellow River Water Resources Protection, Zhengzhou 450003, China
| | - Yufang Huang
- Institute of Yellow River Water Resources Protection, Zhengzhou 450003, China
| | - Yuqian Liu
- Institute of Yellow River Water Resources Protection, Zhengzhou 450003, China
| | - Siyang Wang
- Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China.
| |
Collapse
|