1
|
Liu N, Li X, Chen P, Yuan W, Lin CJ, Feng X, Wang X. Mercury Transport, Transformation and Accumulation Recorded by Stable Isotopes during Retreated Glacier Chronosequence of 250 Years. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6085-6096. [PMID: 40114396 DOI: 10.1021/acs.est.4c13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Vegetative development in regions where glaciers retreated due to global warming forces the mercury (Hg) cycle in the cryosphere. This study depicts the fate of Hg in a glacier-retreated chronosequence over the last 250 years recorded by signals of stable Hg isotopes. Results show that the Hg storage in surface soil increases by 3.2 times over 250 years after the glacier retreated. 53 ± 11% of Hg in grass shoots is from the uptake of atmospheric Hg0 and 47 ± 11%, from the uptake of soil Hg. Atmospheric Hg2+ is the primary source of surface soil Hg (54 ± 13%), followed by atmospheric Hg0 (40 ± 10%) and geogenic Hg. The Hg accumulation in soils increased by a factor of 5 at an accelerating rate from the 1870s to 2010s. The Hg release flux from melting glaciers is 3.51 ± 0.01 μg m-2 yr-1. The highly positive Δ199Hg (1.03 ± 0.49‰) in precipitation due to photoreduction of Hg2+ in water droplets causes all samples in ecosystems to have positive Δ199Hg values. Isotopic evidence suggests that photolytic and abiotic dark reduction processes have driven Hg0 re-emission from glacier and underlying soil after melting. The accelerated Hg release from melting glaciers and soil Hg accumulation caused by global warming alter Hg cycling in the cryosphere.
Collapse
Affiliation(s)
- Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Peijia Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
2
|
Mu G, Huang M, Wu Z, Cui H, Yang Q, Li X, Cui X, Tong Y. Characteristics of nutrients and microbial communities in proglacial lakes on the Tibetan Plateau and their potential linkages associated with mercury. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138117. [PMID: 40188554 DOI: 10.1016/j.jhazmat.2025.138117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/11/2025] [Accepted: 03/30/2025] [Indexed: 04/08/2025]
Abstract
Glacier shrinkages and evolutions of post-glacial ecosystems due to human-induced climate change represent some of the most rapidly occurring ecosystem shifts with potential ecological and societal cascading consequences on Earth. Glacial meltwater could introduce a substantial amount of nutrients, dissolved organic matter (DOM), and contaminants stored in glaciers into the lakes. However, influence of glacial meltwater on microbial communities and its impacts in the transformation of trace contaminants by microbes are frequently underestimated. This study explored the distribution of nutrients, mercury (Hg), and microbial communities across the meltwaters, surface waters, deep waters, and outflows of three proglacial lakes that formed after 2000 on the Tibetan Plateau. Our results revealed that alterations in the DOM composition, particularly the efficient metabolism of carbohydrates (CHO), may foster growth and activities of microorganisms. This could enhance the abundance of potential Hg methylators, resulting in an increase in the ratio of methylmercury (MeHg) to total mercury (THg) in water. Our findings highlight substantial interaction between microbial community and compositional variabilities of DOM in proglacial lake. It underlines the essentiality of integrating these factors into future risk appraisals of aquatic ecosystems in proglacial lakes in the context of global climate changes.
Collapse
Affiliation(s)
- Guangli Mu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Meiqi Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongyang Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China; Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, Tibet University, Lhasa 850000, China
| | - Qing Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaodong Li
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China; Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, Tibet University, Lhasa 850000, China.
| |
Collapse
|
3
|
Grider A, Saros J, Northington R, Yde JC. Glacially-fed lakes of West Greenland have elevated metal and nutrient concentrations and serve as regional repositories of these materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178744. [PMID: 39946888 DOI: 10.1016/j.scitotenv.2025.178744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
The fate of heavy metals and nutrients melting out of the cryosphere into aquatic systems is not well understood. To address this, we measured heavy metals and nutrients in the water and sediment of four glacially-fed (GF) and four snow and groundwater-fed (SF) lakes near Kangerlussuaq, West Greenland during the summer of 2023. Average nutrient concentrations - total phosphorus (TP), NO3-, and NH4+ - in the water of GF lakes were 86 % higher and average total concentrations of some metals - Cd, Pb, Cr, Co, Ni, Al, Fe, Cu, Zn - were 137 % higher compared to nearby SF lakes. This pattern was also reflected in the sediment, where metal concentrations were generally higher in GF lakes compared to SF lakes. However, a few metals, including Hg, As, Cu, and Pb, were higher in SF compared to GF sediment. Our results suggest metals may be increasing over the past few years to decades in GF lakes, and certain metals have increased in SF lakes, notably Hg has substantially increased (298 %), as well as Pb (52.8 %), in SF lakes over the past century. The increase in Hg and Pb in SF, but not GF lakes, is likely due to the higher organic carbon and longer residence times of SF compared to GF lakes. In one GF lake, we quantified inputs and outputs of metals and nutrients, and we found that loads declined by an average of 71 % for metals and 68 % for nutrients from the lake inlet to outlet, suggesting the lake is a sink for these materials. SF lakes also appear to be reservoirs of some metals, specifically atmospherically deposited metals (Hg, Pb, As, and Cu). Our results highlight that GF lakes in West Greenland are elevated in nutrients and some metals compared to nearby SF lakes, indicating that the source of these materials is likely meltwater from the glacial system. We found that GF lakes can sequester a high percentage of the nutrients and metals flowing into them; however, as meltwater fluxes increase due to climate change, the ability of these lakes to remain sinks is an open question.
Collapse
Affiliation(s)
- Ansley Grider
- University of Maine, Climate Change Institute & Ecology and Environmental Sciences, 13 Sawyer Service Ln, Orono, ME 04473, USA.
| | - Jasmine Saros
- University of Maine, Climate Change Institute & Ecology and Environmental Sciences, 13 Sawyer Service Ln, Orono, ME 04473, USA
| | - Robert Northington
- Elizabethtown College, Biology and Environmental Science Department, Elizabethtown, PA 17022, USA
| | - Jacob Clement Yde
- Western Norway University of Applied Sciences, Department of Civil Engineering and Environmental Sciences, Røyrgata 6, 6856 Sogndal, Norway
| |
Collapse
|
4
|
Sun W, Zhang E, Liu Y, Shen J. The black carbon record of mid- to late-holocene environmental changes and its links to climate change and anthropogenic activity on the northwest Qinghai-Tibetan plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178659. [PMID: 39893811 DOI: 10.1016/j.scitotenv.2025.178659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Reconstructing long-term black carbon (BC) variations is crucial to improve our understanding of climatic and anthropogenic impacts on the Qinghai-Tibetan Plateau (QTP), due to its particular geographical location and its vulnerable ecosystem. Based on a fine resolution BC record from Sumxi Co combined with various other paleoenvironmental proxies, this study reconstructs regional environmental change and reveals its link to climate change and anthropogenic activities on the QTP and its surrounding areas over the past five millennia. The results show that the BC fluxes were about 875.1 mgm-2 yr-1 during 4.9-4.2 cal ka BP, remained at a relatively low level from 4.1 to 0.1 cal ka BP, and then increased rapidly to the present 3408.6 mgm-2 yr-1. The decrease in pre-industrial fire activities was caused by reduced biofuel availability during cold and dry periods, which is consistent with many other high altitude fire records from the Arid Central Asia. However, this pattern is different from that of the monsoon-influenced QTP, where more fires occurred during the late Holocene as a result of climatic aridification and early anthropogenic activities. With rapid population growth and socioeconomic development, there has been an overall increase in BC flux across the QTP and its surrounding areas, suggesting that enhanced anthropogenic activities have gradually superseded natural processes and profoundly impacted the regional environment since the beginning of Industrial Revolution. These findings are significant in terms of understanding the climatic and anthropogenic impacts on regional environmental change.
Collapse
Affiliation(s)
- Weiwei Sun
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Enlou Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yilan Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
| | - Ji Shen
- School of Geography and Oceanography Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Feng X, Wang X, Jia L, Yuan W, Lu M, Liu N, Wu F, Cai X, Wang F, Lin CJ. Influence of global warming and human activity on mercury accumulation patterns in wetlands across the Qinghai-Tibet Plateau. Natl Sci Rev 2025; 12:nwae414. [PMID: 39781276 PMCID: PMC11707873 DOI: 10.1093/nsr/nwae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
Wetlands in the Qinghai-Tibet Plateau are a unique and fragile ecosystem undergoing rapid changes. We show two unique patterns of mercury (Hg) accumulation in wetland sediments. One is the 'surface peak' in monsoon-controlled regions and the other is the 'subsurface peak' in westerly-controlled regions. The former is attributed to the combined effects of increasing anthropogenic emissions and climate-induced changes in the cryosphere and wetland hydrology in the last 100-150 years. The climate changes in westerly-controlled regions in the last 50-70 years led to a fluctuation in hydrology and Hg peak in the sediment subsurface. The increase in legacy Hg input from soil erosion has largely enhanced the Hg accumulation rate in wetlands since the 1950s, especially in the proglacial wetlands. We highlight that accelerated glacier melting and permafrost thawing caused by global warming have altered geomorphology and hydrology, and affected Hg transport and accumulation in wetlands.
Collapse
Affiliation(s)
- Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Meng Lu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Cai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
| |
Collapse
|
6
|
Chen Q, Wu Q, Cui Y, Wang S. Mercury records from natural archives reveal ecosystem responses to changing atmospheric deposition. Natl Sci Rev 2024; 11:nwae417. [PMID: 39712668 PMCID: PMC11660912 DOI: 10.1093/nsr/nwae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/24/2024] Open
Abstract
Global ecosystems face mercury contamination, yet long-term data are scarce, hindering understanding of ecosystem responses to atmospheric Hg input changes. To bridge the data gap and assess ecosystem responses, we compiled and compared a mercury accumulation database from peat, lake, ice and marine deposits worldwide with atmospheric mercury deposition modelled by GEOS-Chem, focusing on trends, magnitudes, spatial-temporal distributions and impact factors. The mercury fluxes in all four deposits showed a 5- to 9-fold increase over 1700-2012, with lake and peat mercury fluxes that generally mirrored atmospheric deposition trends. Significant decreases in lake and peat mercury fluxes post-1950 in Europe evidenced effective environmental policies, whereas rises in East Asia, Africa and Oceania highlighted coal-use impacts, inter alia. Conversely, mercury fluxes in marine and high-altitude ecosystems did not align well with atmospheric deposition, emphasizing natural influences over anthropogenic impacts. Our study underscores the importance of these key regions and ecosystems for future mercury management.
Collapse
Affiliation(s)
- Qinqin Chen
- School of Environment, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Qingru Wu
- School of Environment, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yuying Cui
- School of Environment, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- School of Environment, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
7
|
Gong C, Tan J, Yang W, Tan C, Wen L, Liu J, Gan L. Source apportionment and driving factor identification for typical watersheds soil heavy metals of Tibetan Plateau based on receptor models and geodetector. Sci Rep 2024; 14:29108. [PMID: 39582012 PMCID: PMC11586407 DOI: 10.1038/s41598-024-75161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 11/26/2024] Open
Abstract
The identification and quantification of soil heavy metal (HM) pollution sources and the identification of driving factors is a prerequisite of soil pollution control. In this paper, the Sabaochaqu Basin of the Tuotuo River, located in the Tibetan Plateau and the headwater of the Yangtze River, was selected as the study area. The soil pollution was evaluated using geochemical baseline, and the source apportionment of soil HMs was performed using absolute principal component score-multiple linear regression (APCS-MLR), edge analysis (UNMIX) and positive matrix decomposition (PMF). The driver of the source factor was identified with the geodetector method (GDM). The results of pollution evaluation showed that the HM pollution of soil in the study area was relatively light. By comparison, UNMIX model was considered to be the preferred model for soil HMs quantitative distribution in this study area, followed by PMF model. The UNMIX model results show that source 1 (U-S1) was dominated by As, with a contribution rate of 53.31%; source 2 (U-S2) was dominated by Cd and Zn, whose contribution rates are 50.35% and 46.60% respectively; source 3 (U-S3) was dominated by Pb, with a contribution rate of 45.58%; source 4 (U-S4) was dominated by Cr, Cu, Hg and Ni, with contribution rates of 60.58%, 60.07%, 51.58% and 56.45%, respectively. The GDM results showed that the main driving factors of U-S1 were distance from lake (explanatory power q = 0.328) and distance from wind channel (q = 0.168), which were defined as long-distance migration sources. The main driving factors of U-S2 were parent material type (q = 0.269) and distance from Tuotuo river (q = 0.213), which were defined as freeze-thaw sources. The main driving factors of U-S3 were distance from town (q = 0.255) and distance from county road (Yanya Line) (q = 0.221), which were defined as human activity sources. The main drivers of U-S4 were V (q = 0.346) and Sc (q = 0.323), which were defined as natural sources. The GDM results of the 3 models were generally consistent with the analytical results of similar types of sources, especially the results of PMF model and Unmix model can basically verify each other. The research results can provide important theoretical reference for the analysis of HM sources in the soil of high-cold and high-altitude regions.
Collapse
Affiliation(s)
- Cang Gong
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China.
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China.
| | - Jun Tan
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China.
| | - Weiqing Yang
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Changhai Tan
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China
| | - Lang Wen
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China
| | - Jiufen Liu
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China
- Natural Resources Comprehensive Survey Command Center of China Geological Survey, Beijing, 100055, China
| | - Liming Gan
- Natural Resources Comprehensive Survey Command Center of China Geological Survey, Beijing, 100055, China.
- Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an, 710100, China.
| |
Collapse
|
8
|
Gong C, Wen L, Lu H, Wang S, Liu J, Xia X, Liao Z, Wangzha D, Zhaxi W, Tudan J, Tan C. Ecological, environmental risks and sources of arsenic and other elements in soils of Tuotuo River region, Qinghai-Tibet Plateau. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:460. [PMID: 39352522 PMCID: PMC11457720 DOI: 10.1007/s10653-024-02161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 10/09/2024]
Abstract
Against the backdrop of global warming, the pollutants that were once "temporarily stored" in the permafrost are gradually being released, posing significant impacts on the environment. This has become an internationally focused hot topic. In this study, the contents of 11 elements such as As, Ti, Cd, Cr, Co, Mn, Cu, Pb, Ni, Zn and V in soil samples from 128 sampling points in the freeze-thaw area of the Tuotuo River in the source region of the Yangtze River on the Qinghai-Tibet Plateau were determined to evaluate the possible sources, contamination status and ecological, environmental and health risks of these elements. The mean values of As, Cd, Pb and Zn were higher than the corresponding Tibet soil background values. Among fourteen PTEs, As, Cd and Pb had the highest average values of enrichment factor and pollution index, indicating that freeze-thaw area soils showed moderate enrichment and pollution with As, Cd and Pb. Mean ecological risk factor (ER) of Cd was 109 and other PTEs mean ER values < 40, whereas ecological risk index (RI) values of all PTEs ranged from 59.5 to 880 and mean RI values was 152, indicating moderate ecological risk in study area. Explanatory power q value of total S (TS) content was 0.217 by GeogDetector, indicating TS was the most significant contributing factor to RI. Correlation analysis and PCA analysis showed that Cr, Cu, Ni, Co, Mn, Ti, V were mainly originated from natural sources, Cd, Pb and Zn from traffic activity, As from long-distance migration-freeze-thaw.
Collapse
Affiliation(s)
- Cang Gong
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Lang Wen
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China.
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China.
| | - Haichuan Lu
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Shunxiang Wang
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Jiufen Liu
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
- Natural Resources Comprehensive Survey Command Center of China Geological Survey, Beijing, 100055, China
| | - Xiang Xia
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Zihong Liao
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Duoji Wangzha
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Wangdui Zhaxi
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Jiancai Tudan
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China
| | - Changhai Tan
- Key Laboratory of Natural Resource Coupling Process and Effects, Beijing, 100055, China.
- Research Center of Applied Geology of China Geological Survey, Chengdu, 610039, China.
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Han X, Pan B, Li D, Liu X, Liu X, Hou Y, Li G. Heterogenization of microplastic communities in lakes of the Qinghai-Tibetan Plateau driven by tourism and transport activities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135255. [PMID: 39042989 DOI: 10.1016/j.jhazmat.2024.135255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
The Qinghai-Tibetan Plateau has a booming tourism industry and an increasingly sophisticated road system. There is a paucity of studies quantifying the contributions of anthropogenic and natural factors to microplastic pollution in remote plateau areas. In this study, water and sediment samples were collected from eight lake tourist attractions and four remote lakes in northern and southern regions of the Qinghai-Tibetan Plateau. Microplastics were detected in all samples, with a mean abundance of 0.78 items/L in water and 44.98 items/kg in sediment. The abundance of microplastics in the study area was lower than previously observed in more populated areas of China. Small-sized (<1 mm and 1-2 mm), fiber, and transparent microplastics were predominant, with polyethylene and polypropylene microplastics as the primary polymer types. The compositions of microplastic communities indicated that tourism and road networks were the major sources of microplastics in the lakes. Distance-decay models revealed greater influence of environmental distances on microplastic community similarity than geographic distance. Compared to climate factors, urban spatial impact intensity and traffic flow impact played a leading role in the structuring of microplastic communities in lake water and sediment. Our findings provide novel quantitative insights into the role of various factors in shaping the distribution patterns of microplastic communities in plateau lakes.
Collapse
Affiliation(s)
- Xu Han
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China.
| | - Dianbao Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xing Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xinyuan Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Yiming Hou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Gang Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| |
Collapse
|
10
|
Migaszewski ZM, Gałuszka A, Migaszewski A. Legacy of anthropogenic activity recorded in sediments by microtechnofossils and chemical markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172800. [PMID: 38679086 DOI: 10.1016/j.scitotenv.2024.172800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
This overview presents comparison of common microtechnofossils with other geochemical markers that may have the great potential to be the anthropogenic signatures for recent and future sediment strata. The novel man-made products encompass spherical and spheroidal fly-ash particulates, microplastics, synthetic crystals, and more recently examined glass microspheres. Due to their low specific gravity and small size varying from a tiny fraction of millimeter to approximately 5 mm, microtechnofossils may be transported over a long distance from their primary or secondary sources by water and wind. Of these technogenic materials, among the most resistant to physical and chemical degradation are glass microbeads, and additionally synthetic crystals and some types of fly-ash particulates derived mostly from coal/oil combustion, metal ore smelting operations and cement/lime manufacturing. Nonetheless, synthetic glass microspheres have found exponentially growing applications as reflective ingredients in traffic-related paints and building facades, as well as in a variety of applications mostly as low-density fillers of many materials. In contrast to anthropogenic fly-ash and microplastic particles, glass microspheres resemble in many respects common detrital quartz grains. Moreover, like quartz, they are resistant to depositional and diagenetic processes, which is a prerequisite for future geologic archives preserving anthropogenic signals. These and other characteristics make glass microspheres a more widely used product in various fields thus assigning them to a new emerging and globally spreading chronostratigraphic marker of human-impacted sediments.
Collapse
Affiliation(s)
- Zdzisław M Migaszewski
- Institute of Chemistry, Jan Kochanowski University in Kielce, 7 Uniwersytecka St., 25-406 Kielce, Poland.
| | - Agnieszka Gałuszka
- Institute of Chemistry, Jan Kochanowski University in Kielce, 7 Uniwersytecka St., 25-406 Kielce, Poland
| | - Andrzej Migaszewski
- Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, 7 Domaszowska St., 25-314 Kielce, Poland
| |
Collapse
|
11
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals. TOXICS 2024; 12:400. [PMID: 38922080 PMCID: PMC11209588 DOI: 10.3390/toxics12060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are at play, resulting in the movement of heavy metals and alteration of their forms. In this general context, the impact of heavy metals on ecosystems and organisms has changed accordingly. For most ecosystems, the levels of heavy metals are on the rise, and this rise can have a negative impact on the ecosystem as a whole. Numerous studies have been conducted to analyze the combined impacts of climate change and heavy metals. However, the summary of the current studies is not perfect. Therefore, this review discusses how heavy metals affect ecosystems during the process of climate change from multiple perspectives, providing some references for addressing the impact of climate warming on environmental heavy metals.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
12
|
Chen WL, Zhang M, Wang JG, Huang WJ, Wu Q, Zhu XP, Li N, Wu Q, Guo W, Chen J. Microbial mechanisms of C/N/S geochemical cycling during low-water-level sediment remediation in urban rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120962. [PMID: 38677229 DOI: 10.1016/j.jenvman.2024.120962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Low-water-level regulation has been effectively implemented in the restoration of urban river sediments in Guangzhou City, China. Further investigation is needed to understand the microbial mechanisms involved in pollutant degradation in low-water-level environments. This study examined sediment samples from nine rivers, including low-water-level rivers (LW), tidal waterways (TW), and enclosed rivers (ER). Metagenomic high-throughput sequencing and the Diting pipeline were utilized to investigate the microbial mechanisms involved in sediment C/N/S geochemical cycling during low-water-level regulation. The results reveal that the degree of pollution in LW sediment is lower compared to TW and ER sediment. LW sediment exhibits a higher capacity for pollutant degradation and elimination of black, odorous substances due to its stronger microbial methane oxidation, nitrification, denitrification, anammox, and oxidation of sulfide, sulfite, and thiosulfate. Conversely, TW and ER sediment showcase greater microbial methanogenesis, anaerobic fermentation, and sulfide generation abilities, leading to the persistence of black, odorous substances. Factors such as grit and silt content, nitrate, and ammonia concentrations impacted microbial metabolic pathways. Low-water-level regulation improved the micro-environment for functional microbes, facilitating pollutant removal and preventing black odorous substance accumulation. These findings provide insights into the microbial mechanisms underlying low-water-level regulation technology for sediment restoration in urban rivers.
Collapse
Affiliation(s)
- Wen-Long Chen
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Min Zhang
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Jian-Guo Wang
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Wei-Jie Huang
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Qiong Wu
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Xiao-Ping Zhu
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Ning Li
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Qian Wu
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Wei Guo
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| | - Jun Chen
- Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China; Key Laboratory of the Pearl River Estuary Regulation and Protection of Ministry of Water Resources, Guangzhou, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Guangzhou, China
| |
Collapse
|
13
|
Ran F, Wang S, Nie X, Xiao T, Yang C, Liu Y, Li Z. Driver-response relationships in a large shallow lake since the Anthropocene: Short-term abrupt perturbations versus long-term sustainable. GLOBAL CHANGE BIOLOGY 2024; 30:e17267. [PMID: 38563471 DOI: 10.1111/gcb.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Lakes, as integral social-ecological systems, are hotspots for exploring climatic and anthropogenic impacts, with crucial pathways revealed by continuous sediment records. However, the response of multi-proxies in large shallow lakes to typical abrupt events and sustained drivers since the Anthropocene remains unclear. Here, we explored the driver-identification relationships between multi-proxy peaks and natural and anthropogenic events as well as the attribution of short-term perturbations and long-term pressures. To this end, sediment core records, socio-ecological data, and documented events from official records were integrated into a large shallow lake (Dongting Lake, China). Significant causal cascades and path effects (goodness-of-fit: 0.488; total effect: -1.10; p < .001) were observed among catchment environmental proxies, lake biogenic proxies, and mixed-source proxies. The peak-event identification rate (PEIR) and event-peak driving rate were proposed, and values of 28.57%-46.43% and 50%-81.25% were obtained, respectively. The incomplete accuracy of depicting event perturbations using sediment proxies was caused by various information filters both inside and outside the lake. PEIRs for compound events were 1.41 (±0.72) and 1.09 (±0.46) times greater than those for anthropogenic-dominated and natural-dominated events, respectively. Furthermore, socio-economic activity, hydrologic dynamics, land-use changes, and agriculture exerted significant and persistent pressures, cumulatively contributing 55.3%-80.9% to alterations in sediment proxies. Relatively synergistic or antagonistic trends in temporal contributions of these forces were observed after 2000, which were primarily attributed to the "Grain for Green" project and the Three Gorges Dam. This study represents one of the few investigations to distinguish the driver-response relationship of multiple proxies in large shallow lakes under typical event perturbations and long-term sustained pressures since the Anthropocene. The findings will help policymakers and managers address ecological perturbations triggered by climate change and human activities over long-term periods.
Collapse
Affiliation(s)
- Fengwei Ran
- School of Geographic Sciences, Hunan Normal University, Changsha, P.R. China
- Hunan Provincial Key Laboratory for Eco-Environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Changsha, P.R. China
| | - Shilan Wang
- School of Geographic Sciences, Hunan Normal University, Changsha, P.R. China
- Hunan Provincial Key Laboratory for Eco-Environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Changsha, P.R. China
| | - Xiaodong Nie
- School of Geographic Sciences, Hunan Normal University, Changsha, P.R. China
- Hunan Provincial Key Laboratory for Eco-Environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Changsha, P.R. China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, P.R. China
| | - Tao Xiao
- School of Geographic Sciences, Hunan Normal University, Changsha, P.R. China
- Hunan Provincial Key Laboratory for Eco-Environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Changsha, P.R. China
| | - Changrong Yang
- School of Geographic Sciences, Hunan Normal University, Changsha, P.R. China
- Hunan Provincial Key Laboratory for Eco-Environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Changsha, P.R. China
| | - Yaojun Liu
- School of Geographic Sciences, Hunan Normal University, Changsha, P.R. China
- Hunan Provincial Key Laboratory for Eco-Environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Changsha, P.R. China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, P.R. China
| | - Zhongwu Li
- School of Geographic Sciences, Hunan Normal University, Changsha, P.R. China
- Hunan Provincial Key Laboratory for Eco-Environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Changsha, P.R. China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, P.R. China
| |
Collapse
|
14
|
Gonzalez AG, Pokrovsky OS, Auda Y, Shirokova LS, Rols JL, Auguet JC, de Diego A, Camarero L. Trace elements in the water column of high-altitude Pyrenean lakes: Impact of local weathering and long-range atmospheric input. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123098. [PMID: 38072020 DOI: 10.1016/j.envpol.2023.123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/07/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
High altitude (alpine) lakes are efficient sentinels of environmental processes, including local pollution and long-range atmospheric transfer, because these lakes are highly vulnerable to ongoing climate changes and increasing anthropogenic pressure. Towards improving the knowledge of trace element geochemistry in the water column of alpine lakes, we assessed 64 physico-chemical parameters, including macro- and micronutrients, major and trace element concentrations in the water column of 18 lakes in the Pyrenees, located along the border between France and Spain. Lake depth, morphology, retention time and watershed rock lithology did not exhibit sizable impact on major and trace element concentrations in the water column. However, acidic (pH = 4.7 ± 0.2) lakes were distinctly different from circumneutral lakes (pH = 6.8 ± 0.5) as they exhibited >10 times higher concentrations of SO42- and trace metals (Fe, Mn, Zn, Cd, Pb, Co, Ni, Be, Al, Ga and REEs). While some of these elements clearly mark the presence of sulphide-rich minerals within the watershed (Fe, Zn, Cd and Pb), the increased mobility of lithogenic elements (Be, Al, Ga and REEs) in acidic lakes may reflect the leaching of these elements from silicate dust derived from atmospheric deposits or surrounding granites. At the same time, compared to circumneutral lakes, acidic lake water displayed lower concentrations of dissolved oxyanions (As, Mo, V, B and W) and elevated SO42- concentrations. The latter could lead to efficient Ba removal from the water column. The exploitation of metal ores within the watershed of three lakes clearly impacted high Zn and Cd concentrations observed in their water column, despite two of these lakes not being acidic. We conclude that local impacts have a greater effect on the water column than long-range atmospheric inputs and that dissolved trace element concentration measurements can be used for revealing sulphide-rich minerals or acid mine drainage within the lakes' watershed.
Collapse
Affiliation(s)
- Aridane G Gonzalez
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Spain
| | - Oleg S Pokrovsky
- Géosciences Environnement Toulouse (GET) - Research Institute for Development [IRD]: UMR239, Paul Sabatier University [UPS] - Toulouse III, CNRS: UMR5563, Toulouse III, Toulouse, France; BIO-GEO-CLIM Laboratory, Tomsk State University, 36 Lenina Prs, Tomsk, 630050, Russia.
| | - Yves Auda
- Géosciences Environnement Toulouse (GET) - Research Institute for Development [IRD]: UMR239, Paul Sabatier University [UPS] - Toulouse III, CNRS: UMR5563, Toulouse III, Toulouse, France
| | - Liudmila S Shirokova
- Géosciences Environnement Toulouse (GET) - Research Institute for Development [IRD]: UMR239, Paul Sabatier University [UPS] - Toulouse III, CNRS: UMR5563, Toulouse III, Toulouse, France; Institute of Ecological Problems of the North, N. Laverov Federal Center for Integrated Arctic Research, Nab Severnoi Dviny 23, Arkhangelsk, 163000, Russia
| | - Jean-Luc Rols
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | | | - Alberto de Diego
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao(5) Advanced Studies Center of Blanes (ceab) - C/ D'accés a la Cala St. Francesc, 14. Blanes. Girona. E-17300, Spain
| | | |
Collapse
|
15
|
Souza-Kasprzyk J, Kozak L, Niedzielski P. Impacts of anthropogenic activities and glacial processes on the distribution of chemical elements in Billefjord, Svalbard, Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168534. [PMID: 37977378 DOI: 10.1016/j.scitotenv.2023.168534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The Arctic region is undergoing rapid and extensive transformations due to global climate change. This study investigated the spatial distribution of 31 chemical elements in eight locations in Billefjord, Svalbard, Arctic, with varying degrees of anthropogenic and glacial influences. The west coast of Billefjord has experienced a greater historical anthropogenic impact, while the east coast has larger glaciers and shows less visible evidence of direct human impact. Over 450 topsoil samples collected in the west (abandoned mining town Pyramiden, and glacial valleys of Elsa, Ferdinand, Sven) and east coast of the fjord (glacial valleys of Ebba, Pollock, Ragnar and nearby the Nordenskiöld glacier). These samples were extracted and analyzed by ICP-OES. The results revealed complex distributions of elements among the locations. Nordenskiöld glacier area, along with other locations in the eastern part of the Billefjord, had significantly higher levels of most elements (20 out of 31; As, B, Ca, Cd, Co, Cr, Cu, K, Li, Mg, Mo, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zr). In contrast, Ferdinand Valley and other locations on the western side of the fjord had the lowest mean concentrations of most elements (18 out of 31; B, Ca, Cu, Cd, K, Li, P, Mg, Mo, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zr). These findings highlight the significant influence of glacial processes on the elemental composition of soils within the region. The meltwater flow originating from glaciers in the sampled valleys contributes to the local element load, while the loss of glacier mass is associated with decreased element concentrations within these valleys. These results underscore the complexity of element distribution in the study area and emphasize the necessity for continuous monitoring efforts in this unique and environmentally sensitive region.
Collapse
Affiliation(s)
- Juliana Souza-Kasprzyk
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland
| | - Lídia Kozak
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland
| | - Przemyslaw Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland.
| |
Collapse
|
16
|
Wang M, Masoudi A, Wang C, Wu C, Zhang Z, Zhao X, Liu Y, Yu Z, Liu J. Impacts of net cages on pollutant accumulation and its consequence on antibiotic resistance genes (ARGs) dissemination in freshwater ecosystems: Insights for sustainable urban water management. ENVIRONMENT INTERNATIONAL 2024; 183:108357. [PMID: 38056093 DOI: 10.1016/j.envint.2023.108357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
There has been increasing interest in the role of human activities in disseminating antibiotic-resistance genes (ARGs) in aquatic ecosystems. However, the influence of pollutant accumulation on anthropogenic pollutant-ARG synergistic actions is limited. This study explored the association of net cages with the propagation of anthropogenic pollutants and their consequences for influencing the enrichment of ARGs using high-throughput metagenomic sequencing. We showed that net cages could substantially impact the ecology of freshwater systems by enhancing i) ARG diversity and the tendency for ARG-horizontal gene transfer and ii) the overlap of mobile genetic elements (MGEs) with biocide-metal resistance genes (BMRGs) and ARGs. These findings suggested that the cotransfer of these three genetic determinants would be favored in net cage plots and that nonantibiotic factors such as metal(loid)s, particularly iron (Fe), displayed robust selective pressures on ARGs exerted by the net cage. The resistome risk scores of net cage sediments and biofilms were higher than those from off-net cage plots, indicating that the net cage-origin antibiotic resistome should be of great concern. The combination of deterministic and stochastic processes acting on bacterial communities could explain the higher ARG variations in cage plots (8.2%) than in off-cage plots (3.4%). Moreover, MGEs and pollutants together explained 43.3% of the total variation in ARG communities, which was higher than that of off-cage plots (8.8%), considering pollutants, environmental variables, MGEs, and assembly processes. These findings will inform the development of policies and guidelines to more effectively limit the spread of antimicrobial resistance and achieve the goal of sustainability in freshwater systems in urban areas.
Collapse
Affiliation(s)
- Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Can Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Changhao Wu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Ze Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xin Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Yuanjie Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
17
|
Han W, Zhang E, Sun W, Lin Q, Meng X, Ni Z, Ning D, Shen J. Anthropogenic activities altering the ecosystem in Lake Yamzhog Yumco, southern Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166715. [PMID: 37666338 DOI: 10.1016/j.scitotenv.2023.166715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Lakes on the Qinghai-Tibet Plateau (QTP) have been subject to multiple environmental pressures from rapid climate change and intensified human activity in recent decades. However, their ecological effects on the lake ecosystem remain largely unclear due to the lack of long-term monitoring data. This study presented the environmental and ecological changes of the lake Yamzhog Yumco (Southern QTP) over the past three decades based on multi-proxy analysis (geochemistry and sedaDNA) on a high-time resolution sediment core. The result showed that the lake exhibited a continuous eutrophication process from 2004 CE, which has accelerated since 2014 CE. The nutrient enrichment was mainly attributed to anthropogenic emissions from the catchment. The sedimentary ancient DNA (sedaDNA) metabarcoding data registered a sensitive response of aquatic communities to the additional nutrient supply. Eukaryotic algae and aquatic invertebrate communities exhibited similar temporal dynamics, characterized by the increase in eutrophic taxa and the decrease in oligotrophic taxa. Change points analysis suggested that lake ecosystems underwent a slight ecological shift in 2003 CE and an abrupt shift in 2012 CE driven by nutrient enrichment. Quantitative analysis revealed that nutrients and human activity accounted for 27.9 % and 21.7 % of the temporal variation in aquatic communities, whereas climate change only explained 6.9 % of the total variation. From a paleolimnological view, our study supported that regional human activity could distinctly alter the nutrient level and aquatic community structure of lake ecosystems in the QTP. Considering that anthropogenic disturbance will continuously increase, it is crucial to strengthen the field monitoring of the lakes on the plateau and make effective management measures to avoid irreversible ecological consequences.
Collapse
Affiliation(s)
- Wu Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China.
| | - Weiwei Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Xianqiang Meng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Zhenyu Ni
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Dongliang Ning
- School of Geography Sciences, Nantong University, Nantong, 226007, China
| | - Ji Shen
- School of Geography and Oceanography Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Xia Y, Liu Y, Liu C, Gao T, Yin R, Qi M, Wu H. Lake Sediment Archive Reveals a Distinct Response to Anthropogenic Pb and Zn Deposition with Historical Periods: Pb-Zn Isotope Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15184-15192. [PMID: 37723101 DOI: 10.1021/acs.est.3c00511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Anthropogenic activities release large quantities of heavy metals into the atmosphere. In China, the input of these heavy metals through local and trans-boundary atmospheric deposition is poorly understood. To assess this issue, herein, we use Pb and Zn isotopes to constrain the sources of Pb and Zn in a 210Pb-dated sediment core collected from the enclosed lake in South China. We observed a progressive shift toward higher 208Pb/206Pb and Pb fluxes (0.79-4.02 μg·cm-2·a-1) from 1850 to 1950 and a consistent decrease in δ66ZnIRMM (as low as -0.097 ± 0.030‰) coupled with an increase in Pb (1.74-3.36 μg·cm-2·a-1) and Zn (8.07-10.44 μg·cm-2·a-1) fluxes after 1980. These distinguished isotopic signals and flux variations reveal the presence of trans-boundary Pb since 1900, with the addition of local industrial Pb and Zn pollution after 1980. Up to 72.3% of Pb deposited at our site can be attributed to long-distance transportation from previously industrialized countries, resulting in a noteworthy legacy of Pb in China since 1900. Despite the phasing out of leaded gasoline, Chinese gasoline still contributes an average of 20.9%. The contribution of China's mining and smelting activities to Pb has increased steadily since 1980 and remained stable at an average of 25.1% since 2000.
Collapse
Affiliation(s)
- Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental and Soil Science, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
| | - Ting Gao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
| | - Meng Qi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongchen Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, No. 99, West Lincheng Road, Guiyang 550081, P. R. China
| |
Collapse
|
19
|
He X, Yan B, Jiang J, Ouyang Y, Wang D, Liu P, Zhang XX. Identification of key degraders for controlling toxicity risks of disguised toxic pollutants with division of labor mechanisms in activated sludge microbiomes: Using nonylphenol ethoxylate as an example. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131740. [PMID: 37269567 DOI: 10.1016/j.jhazmat.2023.131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Efficient management of disguised toxic pollutants (DTPs), which can undergo microbial degradation and convert into more toxic substances, necessitates the collaboration of diverse microbial populations in wastewater treatment plants. However, the identification of key bacterial degraders capable of controlling the toxicity risks of DTPs through division of labor mechanisms in activated sludge microbiomes has received limited attention. In this study, we investigated the key degraders capable of controlling the risk of estrogenicity associated with nonylphenol ethoxylate (NPEO), a representative DTP, in textile activated sludge microbiomes. The results of our batch experiments revealed that the transformation of NPEO into NP and subsequent NP degradation were the rate-limiting processes for controlling the risk of estrogenicity, resulting in an inverted V-shaped curve of estrogenicity in water samples during the biodegradation of NPEO by textile activated sludge. By utilizing enrichment sludge microbiomes treated with NPEO or NP as the sole carbon and energy source, a total of 15 bacterial degraders, including Sphingbium, Pseudomonas, Dokdonella, Comamonas, and Hyphomicrobium, were identified as capable of participating in these processes, Among them, Sphingobium and Pseudomonas were the two key degraders that could cooperatively interact in the degradation of NPEO with division of labor mechanisms. Co-culturing Sphingobium and Pseudomonas isolates exhibited a synergistic effect in degrading NPEO and reducing estrogenicity. Our study underscores the potential of the identified functional bacteria for controlling estrogenicity associated with NPEO and provides a methodological framework for identifying key cooperators engaged in labor division, contributing to the management of risks associated with DTPs by leveraging intrinsic microbial metabolic interactions.
Collapse
Affiliation(s)
- Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Bingwei Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jinhong Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yixin Ouyang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
20
|
Ouyang J, Wu H, Yang H, Wang J, Liu J, Tong Y, Wang D, Huang M. Global warming induces the succession of photosynthetic microbial communities in a glacial lake on the Tibetan Plateau. WATER RESEARCH 2023; 242:120213. [PMID: 37354841 DOI: 10.1016/j.watres.2023.120213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
As an important freshwater resource in the Qinghai-Tibet Plateau, glacial lakes are being immensely affected by global warming. Due to the lack of long-term monitoring data, the processes and driving mechanisms of the water ecology of these glacial lakes in a rapidly changing climate are poorly understood. This study, for the first time, reconstructed changes in water temperature and photosynthetic microbial communities over the past 200 years in Lake Basomtso, a glacial lake on the southeastern Tibetan Plateau. Temperatures were reconstructed using a paleotemperature proxy based on branched glycerol dialkyl glycerol tetraethers (brGDGTs), the cell membrane lipids of some bacteria, and photosynthetic microbial communities were determined by high-throughput DNA sequencing. The reconstructed mean annual air temperature (MAAT) at Lake Basomtso varied between 6.9 and 8.3 °C over the past 200 years, with a rapid warming rate of 0.25 °C /10 yrs after 1950s. Carbon isotope of sediment and n-alkane analyses indicate that ≥95% of the organic matter in Lake Basomtso is derived from a mixture of terrestrial C3 plants and endogenous organic matter inputs, and the proportion of endogenous organic matter in the sediments has gradually increased since the 1960s. The sedimentary DNA analyses of the sediment core reveal that Chloracea is the most dominant prokaryotic photosynthetic microbial group (84.5%) over the past 200 years. However, the relative abundance of Cyanobacteria has increased from ≤6.8% before the 1960s to 15.5% nowadays, suggesting that warmer temperatures favor the growth of Cyanobacteria in glacial lakes. Among eukaryotic photosynthetic microorganisms, the Chlorophyceae have been gradually replaced by Dinoflagellata and Diatomacae since the 1980s, although the Chlorophyceae still had the highest average relative abundance overall (30-40%). The Pb isotopic composition, together with the total phosphorous concentration, implies that human activity exerted a minimal impact on Lake Basomtso over the past 200 yrs. However, the synchronous fluctuations of total organic carbon (TOC), total nitrogen (TN), and metal elements in sediments suggest that temperature appears to have a strong influence on nutrient input to Lake Basomtso by controlling glacial erosion. Global warming and the concurrent increase in glacial meltwater are two main factors driving changes in nutrient inputs from terrestrial sources which, in turn, increases the lake productivity, and changes microbial community composition. Our findings demonstrate the sensitive response of glacial lake ecology to global warming. It is necessary to strengthen the monitoring and research of glacial lake ecology on the Tibetan plateau, so as to more scientifically and accurately understand the response process and mechanism of the glacial lake ecosystem under global warming.
Collapse
Affiliation(s)
- Jingwu Ouyang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Hongchen Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianbao Liu
- Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; College of Ecological Environment, Tibet University, Lasa 850000, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Miao Huang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
21
|
Ji P, Chen J, Zhou A, Chen R, Ding G, Wang H, Chen S, Chen F. Anthropogenic atmospheric deposition caused the nutrient and toxic metal enrichment of the enclosed lakes in North China. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130972. [PMID: 36860080 DOI: 10.1016/j.jhazmat.2023.130972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic emissions have resulted in increases in the atmospheric fluxes of both nutrient and toxic elements. However, the long-term geochemical impacts on lake sediments of deposition activities have not been clearly clarified. We selected two small enclosed lakes in northern China-Gonghai, strongly influenced by anthropogenic activities, and Yueliang lake, relatively weakly influenced by anthropogenic activities-to reconstruct historical trends of atmospheric deposition on the geochemistry of the recent sediments. The results showed an abrupt rise in the nutrient levels in Gonghai and the enrichment of toxic metal elements from 1950 (the Anthropocene) onwards. While, at Yueliang lake, the rise on TN was from 1990 onwards. These consequences are attributable to the aggravation of anthropogenic atmospheric deposition in N, P and toxic metals, from fertilizer consumption, mining and coal combustion. The intensity of anthropogenic deposition is considerable, which leave a significant stratigraphic signal of the Anthropocene in lake sediments.
Collapse
Affiliation(s)
- Panpan Ji
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianhui Chen
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Aifeng Zhou
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruijin Chen
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guoqiang Ding
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haipeng Wang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shengqian Chen
- ALPHA, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Fahu Chen
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; ALPHA, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Fu J, Fu K, Hu B, Zhou W, Fu Y, Gu L, Zhang Q, Zhang A, Fu J, Jiang G. Source Identification of Organophosphate Esters through the Profiles in Proglacial and Ocean Sediments from Ny-Ålesund, the Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1919-1929. [PMID: 36646647 DOI: 10.1021/acs.est.2c06747] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Little is known about the sources and environmental behavior of organophosphate esters (OPEs) in the Arctic, especially their transformation products. The present study unprecedentedly investigated both 16 tri-OPEs and 8 di-OPEs in proglacial and ocean sediments from Ny-Ålesund, the Arctic. Mean concentrations of tri-OPEs and di-OPEs in proglacial sediments were 487 and 341 pg/g dry weight (dw), respectively, which were significantly lower than those in ocean sediments (1692 and 525 pg/g dw). Ocean sediments might be simultaneously influenced by long-range atmospheric transport (LRAT), oceanic transport, and human activities, whereas proglacial sediments, since they are isolated from human settlements, may be dominantly affected by LRAT. Such source difference was evidenced by the contamination profile of OPEs: chlorinated tri-OPEs with high environmental persistence and high LRAT were dominant in proglacial sediments (66%); however, weakly environmentally persistent and highly hydrophobic aryl tri-OPEs were dominant in ocean sediments (47%), which were plausibly from local emission sources due to their low LRAT potential. Di-OPEs in proglacial and ocean sediments were dominated by groups of parent tri-OPEs with strong photodegradability, such as alkyl (75%) and aryl (58%). A higher mean molar ratio of di-OPE/tri-OPE in the proglacial sediment (14) than that in the ocean sediment (2.2) may be related to its higher photodegradation than that of the ocean sediment.
Collapse
Affiliation(s)
- Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kehan Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Boyuan Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Luyao Gu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
23
|
Li N, Li Y, Wei J, Liu K, Wang G, Zhang H, Wen J, Cheng X. Source-oriented ecological risk assessment of heavy metals in sediments of West Taihu Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13909-13919. [PMID: 36547827 DOI: 10.1007/s11356-022-24766-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The geographical location of West Taihu Lake determines that it is the entrance of the whole Taihu Lake, and the intensive industries around it pose a great threat to the ecology of Taihu Lake. We innovatively combined Pb isotope ratio analysis with ecological risk assessment index to quantify the source-oriented ecological risk of heavy metals (HMs) in the sediments of West Taihu Lake. In this study, the representative HMs Zn, Pb, Cr, and Cd in the surface (0-2 cm) sediments of West Tai Lake were determined, and the ecological risk assessment of HM sources was carried out based on the Pb isotope ratio and ecological risk index. The results showed that HMs were significantly enriched in the south and the west of the study area. The average geo-accumulation index (Igeo) of Pb was unpolluted, Cr and Zn were between unpolluted and moderately polluted, and Cd was moderately polluted. The average ecological risk index (Ei) of Pb, Cr, and Zn was low, and only Cd reached a considerable risk (ECd = 120.7), which accounted for 89.8% of the comprehensive ecological risk index (RI). However, the RI in the whole study area (RI = 134.4) still indicated low risk. There was a significant correlation between Pb and other HMs (P < 0.05). The IsoSource analysis showed that the order of contribution rate was fossil fuels (48.0%) > industrial sources (35.8%) > natural sources (14.9%) > agricultural sources (1.3%). The HM pollution caused by fossil fuel combustion and industrial activities reaches a moderate ecological risk, whereas natural sources and agricultural sources pose a low risk. Overall, the main sources of HM pollution are anthropogenic, which pose moderate ecological risk to the study area and should be paid more attention to.
Collapse
Affiliation(s)
- Ning Li
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry, Nanjing Forestry University, Xuanwu District, No. 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Yan Li
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry, Nanjing Forestry University, Xuanwu District, No. 159 Longpan Road, Nanjing, 210037, Jiangsu, China.
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China.
| | - Jiaxiang Wei
- Transportation Institute, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ke Liu
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu, China
| | - Genmei Wang
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry, Nanjing Forestry University, Xuanwu District, No. 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Huanchao Zhang
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry, Nanjing Forestry University, Xuanwu District, No. 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Jiale Wen
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry, Nanjing Forestry University, Xuanwu District, No. 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| | - Xinyu Cheng
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry, Nanjing Forestry University, Xuanwu District, No. 159 Longpan Road, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
24
|
Chai L, Zhou Y, Wang X. Impact of global warming on regional cycling of mercury and persistent organic pollutants on the Tibetan Plateau: current progress and future prospects. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1616-1630. [PMID: 35770617 DOI: 10.1039/d1em00550b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Global warming profoundly affects not only mountainous and polar environments, but also the global and regional cycling of pollutants. Mercury (Hg) and persistent organic pollutants (POPs) have global transport capacity and are regulated by the Minamata Convention and Stockholm Convention, respectively. Since the beginning of this century, understanding of the origin and fate of Hg and POPs on the Tibetan Plateau (TP, also known as the third pole) has been deepening. In this paper, the existing literature is reviewed to comprehensively understand the atmospheric transport, atmospheric deposition, cumulative transformation and accumulation of Hg and POPs on the TP region under the background of global warming. The biogeochemical cycle of both Hg and POPs has the following environmental characteristics: (1) the Indian summer monsoon and westerly winds carry Hg and POPs inland to the TP; (2) the cold trapping effect causes Hg and POPs to be deposited on the TP by dry and wet deposition, making glaciers, permafrost, and snow the key sinks of Hg and POPs; (3) Hg and POPs can subsequently be released due to the melting of glaciers and permafrost; (4) bioaccumulation and biomagnification of Hg and POPs have been examined in the aquatic food chain; (5) ice cores and lake cores preserve the impacts of both regional emissions and glacial melting on Hg and POP migration. This implies that comprehensive models will be needed to evaluate the fate and toxicity of Hg and POPs on larger spatial and longer temporal scales to forecast their projected tendencies under diverse climate scenarios. Future policies and regulations should address the disrupted repercussions of inclusive CC such as weather extremes, floods and storms, and soil sustainable desertification on the fate of Hg and POPs. The present findings advocate the strengthening of the cross-national programs aimed at the elimination of Hg and POPs in polar (Arctic, Antarctic and TP) and certain mountainous (the Himalaya, Rocky Mountains, and Alps) ecosystems for better understanding the impacts of global warming on the accumulation of Hg/POPs in cold and remote areas.
Collapse
Affiliation(s)
- Lei Chai
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Yang X, Eziz M, Hayrat A, Ma X, Yan W, Qian K, Li J, Liu Y, Wang Y. Heavy Metal Pollution and Risk Assessment of Surface Dust in the Arid NW China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13296. [PMID: 36293878 PMCID: PMC9603297 DOI: 10.3390/ijerph192013296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
High concentrations of heavy metals (HMs) in urban surface dust (USD) can be extremely hazardous to urban ecology and human health. Oasis cities are located at the edge of deserts and are more exposed to salt/sandstorms, and they face a significantly higher accumulation of USD than wet or semi-humid areas. However, systematic studies on the pollution and risk assessment of HMs in USD in oasis cities have rarely been conducted. This study systematically analyzed the enrichment status, spatial distribution, pollution levels, health risks, and sources of HMs in USD in a typical oasis city (Changji city). The results showed that the average concentrations of Pb, Ni, As, Cd, Hg, and Cu in the USD of Changji city were 46.83, 26.35, 9.92, 0.21, 0.047, and 59.33 mg/kg, respectively, and the results of the pollution index evaluation showed moderate Pb, Hg, and Cu pollution, mild Cd pollution, and no Ni or As pollution. The spatial distribution of HM concentrations in the USD was substantially heterogeneous. High values of Pb, Hg, and Cu concentrations were mainly observed in areas with relatively intensive transportation and commercial activities, and high values of Cd and Ni were observed in industrial areas. The health risk assessment showed that HMs do not pose non-carcinogenic risks to humans at their current level, but they pose a carcinogenic risk to children, with As contributing the largest carcinogenic and non-carcinogenic risks. The source identification of HMs showed that the main pollution of HMs were traffic sources for Pb and Cu, industrial sources for Ni and Cd, natural sources for As, and coal-fired sources for Hg. According to the results of the quantitative analysis with the positive matrix factorization, the contribution of pollution sources followed this order: industrial sources (31.08%) > traffic sources (26.80%) > coal-fired sources (23.31%) > natural sources (18.81%).
Collapse
Affiliation(s)
- Xiuyun Yang
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China
- China State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Mamattursun Eziz
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China
| | - Adila Hayrat
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China
| | - Xiaofei Ma
- China State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Research Centre for Ecology and Environment of CA, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wei Yan
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Kaixuan Qian
- China State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiaxin Li
- China State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuan Liu
- Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, College of Resources and Environment Science, Xinjiang University, Urumqi 830046, China
| | - Yifan Wang
- School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
26
|
Men C, Liu R, Wang Y, Cao L, Jiao L, Li L, Wang Y. Impact of particle sizes on health risks and source-specific health risks for heavy metals in road dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75471-75486. [PMID: 35655016 DOI: 10.1007/s11356-022-21060-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
To analyze the impact of particle sizes on sources and related health risks for heavy metals, road dust samples in Beijing were collected and sifted into five particle sizes. The positive matrix factorization (PMF), human health risk assessment model (HHRA), and Monte Carlo simulation were used in the health risk assessment and source apportionment. Results showed that mass of particles < 74 μm occupied about 50% of the total particles, while only 8.48% of the particles were > 500 μm. Mass distribution and concentrations of heavy metals in each particle size changed in temporal. Over 85.00% of carcinogenic risks (CR) were from particles <74 μm, whereas CR from particles >250 μm were ignorable. Sources for health risks in each particle size were traffic exhaust, fuel combustion, construction, and use of pesticides and fertilizers. Proportions of sources to CR differed among particle sizes. Traffic exhaust and fuel combustion contributed over 90% to CR in particles <74 μm, whereas construction contributed the highest (31.68-54.14%) among all sources in particles 74-250 μm. Furthermore, the difference between health risks based on sifted road dust and that based on unsifted road dust was quantitatively analyzed. Source-specific health risk apportionment based on unsifted road dust was not presentative to all particle sizes, and true value of health risks could be over 2.5 times of the estimated value based on unsifted road dust, emphasized the importance of sifting of road dust.
Collapse
Affiliation(s)
- Cong Men
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Yifan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Leiping Cao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Lijun Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Lin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yue Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| |
Collapse
|
27
|
Zheng Z, Wang X, Jin J, Hao J, Nie Y, Chen X, Mou J, Emslie SD, Liu X. Fraction distribution and dynamic cycling of phosphorus in lacustrine sediment at Inexpressible Island, Antarctica. ENVIRONMENT INTERNATIONAL 2022; 164:107228. [PMID: 35468407 DOI: 10.1016/j.envint.2022.107228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/06/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) chemistry and its dynamic cycling are essential for understanding aquatic primary productivity and ecosystem structure. However, there is a lack of knowledge on P chemistry in pristine aquatic ecosystems, such as in Antarctica. Here, we applied the Standards, Measurements and Testing Program (SMT) procedure and nuclear magnetic resonance spectroscopy (NMR) to reveal P speciation in two types of lacustrine sediment cores collected from Inexpressible Island, Ross Sea, East Antarctica. The Positive Matrix Factorization Model and Generalized Additive Models were applied to quantitatively identify the P sources and estimate relative effects of various environmental factors on the speciation. Our results demonstrate that orthophosphate, mainly as Ca-P, is the major component and the ortho-monoesters are the predominant organic phosphorus (OP) form in lacustrine sediments. Ornithogenic lacustrine sediments have a higher content of P as Ca-P than sediments with little or no penguin influence. Our model further suggests that penguin guano is the most important source for Ca-P, accounting for 80%, while detrital input is the predominant source for Fe/Al-P (up to 90%). The content of ortho-monoesters, as revealed by NMR, declines with depth, reflecting mineralization process of OP in the sediments. Moreover, we observed higher relative proportions of organic P in the sediments with little guano influence and the deposition of organic P are likely facilitated by microbial mats. Overall, our data suggest that burial of P in Antarctic lakes is sensitive to different P sources and sedimentary environments. The relatively higher bioavailable phosphorus in lacustrine sediments largely controls growth of aquatic microbial mats in oligotrophic lakes and ponds in Antarctica. The sediment profile data also indicate that P burial increased during the Medieval Climate Anomaly period, and climate warming is more conducive to P burial through the expansion of penguin populations and productivity of microbial mats. Our findings represent the first systematic understanding of natural P cycling dynamics and its main controlling factors in pristine ponds with different organic sources in Antarctica.
Collapse
Affiliation(s)
- Zhangqin Zheng
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xueying Wang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Jin
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jihua Hao
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, USTC, Hefei 230026, Anhui, China.
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xin Chen
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinhua Mou
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong, China
| | - Steven D Emslie
- Department of Biology and Marine Biology, University of North Carolina, 601 S. College Road, Wilmington, NC 28403, USA
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
28
|
Men C, Liu R, Wang Y, Cao L, Jiao L, Li L, Shen Z. A four-way model (FEST) for source apportionment: Development, verification, and application. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128009. [PMID: 34923386 DOI: 10.1016/j.jhazmat.2021.128009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
In studying the spatial, temporal, and particle size variations heavy metal sources, a source apportionment model for a four-way array of data is required. In this study, referencing two-way and three-way models, a four-way (particle fractions, elements, sites, and time) source apportionment model (FEST) was developed. Errors in the three-way models solving four-way problems verified the necessity of developing the FEST model. The results showed that the FEST model had a higher accuracy than the existing models, which was probably because of more constraints and input data in the FEST model. Based on the sampled data in Beijing, sources were apportioned for the four-way array of data using the FEST model, and the spatial, temporal, and particle size variations of sources were evaluated. The main sources of heavy metals were similar to those in our prior studies, whereas the contributions of sources to specific heavy metals differed. Traffic exhaust and fuel combustion contributed more to fine particles than coarse particles, indicating that the two should be controlled preferentially among all sources. The management of traffic exhaust should be focused on the central and northern areas in each season, and the control of fuel combustion should be strengthened in the southern area in winter.
Collapse
Affiliation(s)
- Cong Men
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Yifan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Leiping Cao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Lijun Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Lin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
29
|
Fan C, Liu Y, Liu C, Zhao W, Hao N, Guo W, Yuan J, Zhao J. Water quality characteristics, sources, and assessment of surface water in an industrial mining city, southwest of China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:259. [PMID: 35257266 DOI: 10.1007/s10661-022-09908-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/25/2022] [Indexed: 05/14/2023]
Abstract
This study analyzed the physiochemical factors, spatial-seasonal variations, and correlations of main pollutants, water quality evaluation and possible sources of nitrogen in the surface water of Anning, an industrial mining city, southwest of China. Seventy surface water samples were examined through an analysis of 41 physiochemical indices in the dry and wet seasons in April and July 2019, respectively, while a part of water site samples collected in July 2020 was taken for isotope detections. To identify the water quality, single-factor pollution index (SI), Nemerow pollution index (NPI), and water quality comprehensive pollution index (CPI) were calculated based on 13 pollutants using GB 3838-2002 class III water standard values. Results pointed to typical pollutants of TN, TP, and F with ranges of l.d.-44.8 (2.00 ± 3.69) mg/L, l.d.-250 (2.07 ± 15.35) mg/L, and l.d.-11 (1.48 ± 7.34) mg/L respectively with high spatial variability. The concentrations of heavy metals present in the water samples followed the sequence: Zn > Ni > Cu > As > Pb > Cd > Hg, and most of the samples showed low values relative to the standard permissible limits. In three methods, the water quality evaluation results of SI method were obviously worse than NPI and CPI methods. The NPI and CPI values had ranges of 0.116-887.40 (8.12 ± 74.89) and 0.03-111.54 (1.17 ± 9.40), respectively; consequently, the water quality was considered generally well, with more than 65% of sites classified as "cleanness" or "sub-cleanness." Most of the values of δ15N and δ18O had ranges of 6.62-20.05‰ and - 6.53-4.70‰, which suggested the livestock manure resources were the possible sources of nitrogen that entered the surface water causing more pollution in the wet season. Part of sites with serious water pollution had very high concentrations of P, F, or heavy metals and might be closely correlated with the point source pollution of phosphate chemical industry or iron ore mining and smelting. The results of this study can provide the basic data for efficient water management and human health protection for local government.
Collapse
Affiliation(s)
- Chenzi Fan
- National Research Center for Geoanalysis, Beijing, China
| | - Yongbing Liu
- National Research Center for Geoanalysis, Beijing, China.
| | - Chenghai Liu
- National Research Center for Geoanalysis, Beijing, China
| | - Wenbo Zhao
- National Research Center for Geoanalysis, Beijing, China
| | - Naixuan Hao
- National Research Center for Geoanalysis, Beijing, China
| | - Wei Guo
- National Research Center for Geoanalysis, Beijing, China
| | - Jihai Yuan
- National Research Center for Geoanalysis, Beijing, China
| | - Jiujiang Zhao
- National Research Center for Geoanalysis, Beijing, China
| |
Collapse
|