1
|
Han Y, Chen C, Liu W, He Y, Yin F, Chen Q. Health risks and sources of PCDD/Fs and PCBs residue in cultured crabs. Sci Rep 2024; 14:24633. [PMID: 39428418 PMCID: PMC11491457 DOI: 10.1038/s41598-024-75660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
The Chinese mitten crab (Eriocheir sinensis) holds significant importance as a popular aquaculture food source; however, there are concerns about its potential contamination with polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) from both food and aquatic environment. To assess the associated health risks and identify potential sources of contamination in crabs, a comprehensive investigation was conducted, including a total of 70 samples from the crab food web. The results demonstrated that crabs predominantly exhibited elevated concentrations of PCBs and dl-PCBs, with mean concentrations of 12 207 ± 11 962 pg g-1 and 554 ± 203 pg g-1, respectively, while PCDD/Fs concentrations were comparatively lower at 20 ± 17 pg g-1. The accumulation of PCBs in crabs significantly surpassed that of PCDD/Fs. The material balance of PCDD/Fs and PCBs in the crab food web was estimated, indicating that sediments and feeds likely constitute the two primary sources of PCDD/Fs and PCBs in crabs. The monthly intake of PCDD/Fs and PCBs through crab consumption accounted for 30% of the dietary intake, which was well below the provisional tolerable monthly intake (PTMI) limit. The weekly intake of PCDD/Fs and PCBs for adults consuming one crab (100 g) does not pose health risks and the recommended weekly intake of white crabmeat and brown crabmeat is 443 g and 21 g, respectively.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Chunci Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Yunchen He
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fei Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Quan Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
2
|
Tran HT, Hoang HG, Chacha WE, Mukherjee S, Duong TVH, Nguyen NSH, Nguyen KN, Naidu R. A review of advanced bioremediation technologies for dioxin-contaminated soil treatment: Current and future outlook. CHEMOSPHERE 2024; 366:143400. [PMID: 39321885 DOI: 10.1016/j.chemosphere.2024.143400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), namely known as dioxins, are persistent organic compounds with high toxicity. The presence of dioxins in soil is a major environmental issue worldwide, as it negatively impacts both ecosystems and human health. Thus, several advanced techniques have been applied to overcome this issue, offering promising treatment efficiency and cost-effectiveness. This review employs a meta-analysis strategy to provide an up-to-date assessment of the global situation of dioxin-contaminated soil. Dioxin concentrations are commonly higher in industrial and urban areas than in rural areas, primarily due to anthropogenic activities such as chemical manufacturing and waste incineration. Furthermore, several advanced bioremediation technologies for dioxin treatment, including biosurfactants, composting, and phytoremediation were highlighted and thoroughly discussed. Aerobic composting has proven to be robust in removing dioxins, achieving treatment efficiencies ranging from 65% to 85%. Whereas, phytoremediation, particularly when involving agricultural crops like zucchini, cucumber, and wheat, shows great promise in dioxin removal through various mechanisms, including root uptake and transpiration. Notably, biosurfactants such as rhamnolipids and sophorolipids have been effectively used to remediate dioxin-contaminated soil due to their significantly enhanced bioavailability of dioxins and their interaction with microbes. This review provides a comprehensive understanding of advanced biotechnologies for remediating dioxin-contaminated soil. It also addresses the technical and economic aspects of dioxin treatment and identifies future directions and research perspectives to fill knowledge gaps in this field.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, 70000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Viet Nam
| | - Hong Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam.
| | - Wambura E Chacha
- Civil, Environmental, and Architectural Engineering, University of Kansas, 1530 W 15th St., Lawrence, KS, 66045, USA
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Tran Vo Hai Duong
- Department of Agriculture and Rural Development, Bac Lieu Technical and Economic College, Bac Lieu province, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 24000, Viet Nam
| | - Khoi Nghia Nguyen
- Faculty of Soil Science, College of Agriculture, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho City, Viet Nam.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
3
|
Chojnacka K, Moustakas K, Mikulewicz M. The combined rhizoremediation by a triad: plant-microorganism-functional materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90500-90521. [PMID: 37477813 PMCID: PMC10439854 DOI: 10.1007/s11356-023-28755-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
The article describes new strategies for the remediation of soils contaminated with organic and inorganic pollutants. The aim of this study is to investigate the synergistic effects of combining plant-microorganism-functional materials for a more effective reduction of soil contamination with toxic chemicals. The innovative triad involves functional materials as a habitat for microorganisms, which helps to control the release of pollutants into the soil solution from the adsorbed form. This, in turn, reduces the toxic effect on microorganisms and plants. Microorganisms play a complex role, consisting of partial biodegradation of pollutants, stimulation of plant growth, and support for nutrient supply. Plants synthesize root exudates that facilitate microorganisms in biodegrading organic pollutants and stimulate their growth. The plant takes up pollutants through the root system, which can be further supported by endophytic microorganisms. The cooperation of the three players produces a synergistic effect that enhances the effectiveness of rhizodegradation supported by functional materials, which is more effective than using microorganisms, phytoremediation, or functional materials alone. The combination of physicochemical methods (functional materials) and microbiological methods (bacteria and fungi, rhizosphere, symbiotic and non-symbiotic) supported by plants (hyperaccumulators) is a promising approach for reducing chemicals from soil. Key examples of the synergistic effects of combining plant-microorganism-functional materials have been provided in this article.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland.
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, 15780, Athens, Greece
| | - Marcin Mikulewicz
- Department of Dentofacial Orthopaedics and Orthodontics, Division of Facial Abnormalities, Medical University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
4
|
Song S, Chen K, Huang T, Ma J, Wang J, Mao X, Gao H, Zhao Y, Zhou Z. New emission inventory reveals termination of global dioxin declining trend. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130357. [PMID: 36444062 DOI: 10.1016/j.jhazmat.2022.130357] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Accurate estimates of spatiotemporally resolved Polychlorinated dibenzo-p-dioxins (PCDD/Fs, or dioxins) emissions are critical for understanding their environmental fate and associated health risks. In this study, by utilizing an empirical regression model for PCDD/Fs emissions, we developed a global emission inventory for 17 toxic PCDD/Fs congeners from 8 source sectors with a spatial resolution of 1° × 1° from 2002 to 2018. The results show that PCDD/Fs emissions decreased by 25.7 % (12.5 kg TEQ) between 2002 and 2018, mostly occurring in upper- and lower-middle income countries. Globally, open-burning processes, waste incineration, ferrous and nonferrous metal production sectors and heat and power generation were the major source sectors of PCDD/Fs. Spatially, high PCDD/Fs emissions were mainly identified in East and South Asia, Southeast Asia, and part of Sub-Saharan Africa. We find that the declining trend of dioxin emissions over the past decades terminated from the early 2010s due to increasing significance of wildfire induced emissions in the total emission. The PCDD/Fs emission inventory developed in the present study was verified by inputting the inventory as initial conditions into an atmospheric transport model, the Canadian Model for Environmental Transport of Organochlorine Pesticides (CanMETOP), to simulate PCDD/Fs concentrations in air and soil. The predicted concentrations were compared to field sampling data. The good agreement between the modeled and measured concentrations demonstrates the reliability of the inventory.
Collapse
Affiliation(s)
- Shijie Song
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Kaijie Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Jiaxin Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaoxuan Mao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Key Laboratory of Western China's Environmental Systems Stems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhifang Zhou
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
5
|
Remelli S, Scibona A, Nizzoli D, Mantovani L, Tribaudino M, Celico F, Menta C. Vermiremediation applied to PCB and PCDD/F contaminated soils and its implications for percolating water. ENVIRONMENTAL RESEARCH 2022; 214:113765. [PMID: 35792169 DOI: 10.1016/j.envres.2022.113765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans) and PCBs (polychlorinated biphenyls) are ubiquitous persistent pollutants with reduced bioavailability, which bioremediation using soil fauna is still managed to treat. This research set out to: (i) study the suitability of earthworms (Eisenia fetida), alone and associated with plants (Lepidium sativum), for the decontamination of PCDD/F and PCB polluted soils in Brescia-Caffaro (Italy), at total and congener concentration levels; (ii) simulate the action of earthworms in groundwater contamination process and nutrient mobility. Five treatments were set up: (i) uncontaminated soil with E. fetida (NC); (ii) contaminated soil (C); (iii) contaminated soil with E. fetida (CEf); (iv) contaminated soil with L. sativum (CLs); (v) contaminated soil with E. fetida and L. sativum (CEfLs). PCBs and PCDD/Fs in the soil prior to testing were measured. Analysis was repeated in soil treatments and percolating water at the end of the test period (4 months). Dissolved nutrient concentrations were measured in percolated water. PCB and PCDD/F concentrations, initially 259333.33 ± 10867.89 ng/kg and 176 ± 10.69 ngTE/kg, were significantly reduced after 4 months in all treatments. Treatments did not differ in total PCBs concentration (from 160,000 ng/kg to 194,000 ng/kg), but CEfLs congeners concentrations were less environmentally threatening; CEf and CLs resulted in lower PCDD/Fs concentration (79.43 ± 3.34 ngTE/kg and 73.03 ± 4.09 ngTE/kg, respectively). The action of earthworms could enhance contaminants and soluble reactive phosphorous content in percolating water.
Collapse
Affiliation(s)
- Sara Remelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Alessandro Scibona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Daniele Nizzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Luciana Mantovani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Mario Tribaudino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Fulvio Celico
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Cristina Menta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| |
Collapse
|
6
|
El Wanny N, Le Roux Y, Fournier A, Baroudi M, Woignier T, Feidt C, Delannoy M. Organochlorine POPs sequestration strategy by carbonaceous amendments of contaminated soils: Toward a better understanding of the transfer reduction to laying hens. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128871. [PMID: 35430457 DOI: 10.1016/j.jhazmat.2022.128871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
PCBs, PCDD/Fs, and Chlordecone (CLD) are POPs found in soils and transferred to animals through involuntary soil ingestion. In this frame, the amendment of contaminated soil with porous matrices, like Biochars (BCs) and Activated Carbons (ACs), is a promising technique for reducing this transfer. In this study, the efficiency of 3 biochars and 3 activated carbons was assessed by amending 2% (by weight) of these matrices on (i) CLD or (ii) PCBs and PCDD/Fs contaminated artificial soils. Porosity of the carbon-based materials and molecules physico-chemical characteristics were then linked to the obtained results. The concentrations of pollutants were then measured in the egg yolks of laying hens (n = 3), which were fed on a daily basis pellets containing 10% of soil for 20 days. Overall, no significant transfer reduction was observed with the biochar and the granular AC amendments for all the compounds. However, significant reductions were obtained with the two efficient activated carbons for PCDD/Fs and DL-PCB up to 79-82% (TEQ basis), whereas only a slight reduction of concentrations was obtained with these activated carbons for CLD and NDL-PCBs. Thus, (i) biochars were not proven efficient to reduce halogenated pollutants transfer to animals, (ii) powdered AC amendments resulted in reducing the bioavailability of soil POPs, and (iii) the effectiveness of such strategy depended on both characteristics of the matrix and of the pollutants.
Collapse
Affiliation(s)
- Nadine El Wanny
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France; Lebanese University - Faculty of Public Health-Section III, L.S.E.E., BP 246 Tripoli, Lebanon
| | - Yves Le Roux
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France
| | - Agnès Fournier
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France
| | - Moomen Baroudi
- Lebanese University - Faculty of Public Health-Section III, L.S.E.E., BP 246 Tripoli, Lebanon
| | - Thierry Woignier
- UMR IMBE - Aix Marseille Université, CNRS, IRD, Avignon Université Campus, Lebanon
| | - Cyril Feidt
- Université de Lorraine, INRAE, URAFPA, F-54000 Nancy, France
| | | |
Collapse
|
7
|
Rolli E, Vergani L, Ghitti E, Patania G, Mapelli F, Borin S. 'Cry-for-help' in contaminated soil: a dialogue among plants and soil microbiome to survive in hostile conditions. Environ Microbiol 2021; 23:5690-5703. [PMID: 34139059 PMCID: PMC8596516 DOI: 10.1111/1462-2920.15647] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
An open question in environmental ecology regards the mechanisms triggered by root chemistry to drive the assembly and functionality of a beneficial microbiome to rapidly adapt to stress conditions. This phenomenon, originally described in plant defence against pathogens and predators, is encompassed in the ‘cry‐for‐help’ hypothesis. Evidence suggests that this mechanism may be part of the adaptation strategy to ensure the holobiont fitness in polluted environments. Polychlorinated biphenyls (PCBs) were considered as model pollutants due to their toxicity, recalcitrance and poor phyto‐extraction potential, which lead to a plethora of phytotoxic effects and rise environmental safety concerns. Plants have inefficient detoxification processes to catabolize PCBs, even leading to by‐products with a higher toxicity. We propose that the ‘cry‐for‐help’ mechanism could drive the exudation‐mediated recruitment and sustainment of the microbial services for PCBs removal, exerted by an array of anaerobic and aerobic microbial degrading populations working in a complex metabolic network. Through this synergistic interaction, the holobiont copes with the soil contamination, releasing the plant from the pollutant stress by the ecological services provided by the boosted metabolism of PCBs microbial degraders. Improving knowledge of root chemistry under PCBs stress is, therefore, advocated to design rhizoremediation strategies based on plant microbiome engineering.
Collapse
Affiliation(s)
- Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Elisa Ghitti
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Giovanni Patania
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Via Celoria 2, Milan, 20133, Italy
| |
Collapse
|
8
|
Xu Y, Ge Y, Lou Y, Meng J, Shi L, Xia F. Assembly strategies of the wheat root-associated microbiome in soils contaminated with phenanthrene and copper. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125340. [PMID: 33951882 DOI: 10.1016/j.jhazmat.2021.125340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Plants can cope with stressful conditions by indirectly regulating root-associated microbial structures. However, the recruitment strategies of the root-associated microbiome in combined organic and inorganic contaminated soils are not well known, especially for common agricultural crops. In this study, we performed greenhouse experiments to investigate the interactive effects of joint copper (Cu) and phenanthrene (PHE) pollution on wheat growth and microbial detoxication processes. Results show that heavy metals did not affect PHE dissipation in the rhizosphere but significantly enhanced the accumulation of PHE in the endosphere. In contrast, the addition of PHE did not influence the absorption of Cu by wheat roots. Cu was the primary factor affecting the variation of microbial communities in cocontaminated treatments among each rhizocompartment while the interactive effects of combined pollutants were only detected in unplanted bulk soil. Microbes are known to degrade polycyclic aromatic hydrocarbons and tolerant heavy metal stress e.g. Novosphingobium, Sphingomonas, Sphingobium and Pseudomonas enriched in the contaminated treatments. Our results provide an integrated understanding of the synthetic effects of combined pollutants on the root-microbial assemblage process in plant-soil systems and offer useful information on the selection of effective bioremediating root-associated microbes for the application of self-remediation by common crops.
Collapse
Affiliation(s)
- Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yi Ge
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yinghua Lou
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jun Meng
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lei Shi
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Fang Xia
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|