1
|
Wang Q, Zhang C, Tian B, Han L, Liu D, Li G, Gui S, Smagghe G, Chen X, Wu X. Consortia of Bacillus sp. LY05 and Bacillus cereus LGY06 immobilized on coconut shell charcoal remediates pendimethalin and cadmium contaminated sites in-situ and alleviates peanut's continuous cropping obstacles. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138168. [PMID: 40199080 DOI: 10.1016/j.jhazmat.2025.138168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
The use of artificial addition of microbial consortia into soils is a key strategy to simultaneously alleviate the common contamination and continuous cropping obstacles. This study established the coconut shell charcoal (CSC) LY05 +LGY06 by immobilizing Bacillus sp. LY05 and B. cereus LGY06 on CSC particles, which effectively accelerated the removal of pendimethalin as a possible human carcinogen (91.68 %) and Cd2 + (80.02 %) from the culture-solution, and displayed the prominent re-usability and stability compared with their free coculture consortium. This consortium could detoxify pendimethalin via serial nitro-reduction, oxidation, cyclization, carboxylation and hydroxylation reactions. CSC LY05 +LGY06 could rapidly degrade pendimethalin in sterile (90.01 %) and non-sterile (99.03 %) soils. Moreover, it notably reduced pendimethalin and Cd2+ residuals in pod kernels, pod shells, and plants of peanut growing in continuous cropping soil by 99.19 % and 94.02 %, 99.16 % and 93.94 %, and 98.94 % and 91.85 %, respectively, contrasted to the control. Meanwhile, it significantly promoted the pod yield (>1.28-fold) and quality of continuous cropping peanut by improving the plant agronomic trait, photosynthetic capacity, intracellular water metabolism, nutrient transport capacity, and metabolic activity. This study provides a novel insight into the safe production of agri-products in continuous cropping soils con-contaminated by pesticides and heavy metals.
Collapse
Affiliation(s)
- Qiuping Wang
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; Department of Food and Medicine, Guizhou Vocational College of Agriculture, Guiyang 551400, China
| | - Cheng Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guian 561113, China
| | - Bing Tian
- Key Laboratory of Environmental Pollution Monitoring and Disease of Ministry of Education, School of Public Health, Guizhou Medical University, Guian 561113, China; Guizhou Agricultural Ecology and Resource Protection Station, Agriculture and Rural Affairs Department of Guizhou Province, Guiyang 550001, China
| | - Lei Han
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Dongdong Liu
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Gang Li
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Shunhua Gui
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Guy Smagghe
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xiangsheng Chen
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Xiaomao Wu
- Guizhou Key Laboratory of Agricultural Biosecurity, Ministry of Education Key Laboratory of Karst Georesources and Environment, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Zhang J, Liang R, Ding X, Chen B, Tan Q, Wang M, Hu Y, Liu Q, Chen W, Zhou M. Dinitroaniline herbicide exposure, mitochondrial DNA copy number, and 10-year risk of atherosclerotic cardiovascular disease: A community-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126113. [PMID: 40138839 DOI: 10.1016/j.envpol.2025.126113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Dinitroaniline herbicides are widely used to control weed resistance, but their effects on atherosclerotic cardiovascular disease (ASCVD) are unknown. Serum trifluralin and pendimethalin, mitochondrial DNA copy number (mtDNAcn), and predictors of 10-year ASCVD risk were measured in participants from the Wuhan-Zhuhai cohort. Linear mixed model, restricted cubic spline (RCS) model, Bayesian kernel machine regression (BKMR) model, and weighted quantile sum (WQS) regression model were used for association analyses. Mediation models were used to estimate the potential role of mtDNAcn in the above associations. Cross-sectionally, each 1-unit increase in ln-transformed serum trifluralin and pendimethalin levels were associated with an increase in 10-year ASCVD risk of 0.272 % and 0.178 %, respectively (all P < 0.05). The BKMR and WQS models showed that trifluralin and pendimethalin co-exposure was associated with the increased 10-year ASCVD risk, with trifluralin being the primary contributor. Longitudinally, each 1-unit increase in ln-transformed serum trifluralin and pendimethalin levels were associated with the annual increase in 10-year ASCVD risk of 0.192 % and 0.156 %, respectively (all P < 0.05). Mediation analysis showed that mtDNAcn mediated 3.8 % of the trifluralin-associated increase in 10-year ASCVD risk. In conclusion, trifluralin and pendimethalin were cross-sectionally and longitudinally associated with the increased 10-year ASCVD risk, and mtDNAcn partially mediated the association.
Collapse
Affiliation(s)
- Jiake Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuejie Ding
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingdong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiyou Tan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengyi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxiang Hu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Ni H, Ye Y, He W, Chen Q, Long Z, Huang Y, Zou L, Fu X. Role of Bacillus sp. TF-1 in the Degradation and Detoxification of Trifluralin. Microorganisms 2025; 13:520. [PMID: 40142413 PMCID: PMC11945047 DOI: 10.3390/microorganisms13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Trifluralin, a widely utilized dinitroaniline herbicide, has emerged as a prevalent environmental contaminant that poses significant risks both to ecosystems and to human health. Microbial degradation represents the primary pathway for preventing trifluralin accumulation in the environment. Although much work has been conducted on the microbial breakdown of trifluralin, numerous challenges persist regarding the identification of efficient degrading strains, the elucidation of the metabolic pathways involved, and the application of bioremediation techniques. In this study, Bacillus sp. TF-1, a strain isolated from a paddy field that can utilize trifluralin as a source of carbon and energy, was applied. Remarkably, it eliminated 86.7% of 100 mg/L trifluralin within 6 h, and 99.7% of trifluralin was eliminated within 48 h. UPLC-MS analysis suggested that trifluralin degradation occurred first through mono-nitroreduction, followed by further nitroreduction and trifluoromethyl oxidation; trifluralin could also be metabolized through complete nitroreduction and N-dealkylation. Furthermore, Bacillus sp. TF-1 effectively mitigated the severe toxicity of trifluralin to sensitive crops. These findings not only expand the repertoire of efficient trifluralin-degrading microorganisms but also increase our understanding of trifluralin biodegradation pathways and highlight the biological importance of employing microbes to eradicate trifluralin residues from the environment.
Collapse
Affiliation(s)
- Haiyan Ni
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Yue Ye
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Weiwei He
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Qing Chen
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China;
| | - Zhong’er Long
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Yunhong Huang
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Long Zou
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| | - Xueqin Fu
- Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (H.N.); (Y.Y.); (W.H.); (Z.L.); (Y.H.); (L.Z.)
| |
Collapse
|
4
|
Liu X, Lu Z, Huang S, Chen N, Xiao X, Zhu X, Zhang R. A practical fluorometric and colorimetric dual-mode sensing platform based on two-dimensional porous organic nanosheets for rapid determination of trifluralin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1188-1195. [PMID: 39820884 DOI: 10.1039/d4ay02200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Trifluralin, a widely used dinitroaniline herbicide, poses significant toxic risks, necessitating the development of rapid detection methods for food safety. In this study, we prepared ultrathin two-dimensional triphenylamine porous organic nanosheets (TPA-PONs) through a facile liquid-phase exfoliation process. The TPA-PONs, characterized by their exceptional fluorescence properties and nanoscale thickness (1.65 ± 0.3 nm), demonstrated a remarkable fluorescence quenching response upon exposure to trifluralin. Spectroscopic analysis combined with DFT calculations revealed that the quenching mechanism is driven by electron and energy transfer. TPA-PONs-based fluorescence sensor exhibited a linear response to trifluralin concentrations ranging from 0.01 to 10.0 μmol L-1 with a limit of detection as low as 3.50 nmol L-1. Additionally, the sensor was applied to detect trifluralin residues in vegetables, achieving recoveries of 89.08-102.84%. To facilitate on-site detection, a novel TPA-PONs-based colorimetric film sensor has been developed, enabling visual analysis of trifluralin using a smartphone. This dual-mode sensing platform holds significant potential for enhancing food safety monitoring.
Collapse
Affiliation(s)
- Xue Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Zhenyu Lu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Shijun Huang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Na Chen
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Xue Xiao
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Xiaohui Zhu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Runkun Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, PR China
| |
Collapse
|
5
|
Ahmadi AN, Ganjeali A, Mohassel MHR, Mashreghi M. Controlled release of trifluralin herbicide using luminescent Vibrio-derived polyhydroxyalkanoate (PHA) microcapsules. Int J Biol Macromol 2025; 289:138845. [PMID: 39694375 DOI: 10.1016/j.ijbiomac.2024.138845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
The controlled release of herbicides using new and safe materials can mitigate environmental pollution. Polyhydroxyalkanoate (PHA) is a type of biopolymer that can be produced by various bacteria. It has properties that make it suitable for encapsulation and controlled release applications. A luminescent bacterium, Vibrio sp. VLC strain was used as the PHA producer in this study. Initially, the polymer was synthesized by the bacterium following optimization of the culture medium, resulting in an approximate yield of 25 %. Subsequently, the produced polymer was analyzed using TEM, FTIR, and H-NMR techniques. Microcapsules were produced using the emulsion method. FE-SEM imaging revealed spherical microcapsules with an average diameter of 0.5-2 μm. The herbicide loading content and encapsulation efficiency were determined to be 16.64 % and 66.56 %, respectively. The herbicidal effect of the microcapsules containing trifluralin was investigated using Amaranthus retroflexus and Setaria viridis plants, demonstrating a significant reduction in various parameters after application. Furthermore, the impact of encapsulated herbicide on soil microbial population was assessed, revealing a less negative effect compared to its free form. These findings suggest that the PHA from a luminescent vibrio holds promise as an eco-friendly, biodegradable, nontoxic material for the controlled release of herbicides.
Collapse
Affiliation(s)
- Arefe N Ahmadi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
6
|
Zhao D, Wang L, Shen S, Lu E, Feng J, Bai N, Chen H, Li W. Degradation dynamics of Trifluralin in Qinghai-Tibet Plateau and screening of its degrading strains. Heliyon 2025; 11:e41770. [PMID: 39872456 PMCID: PMC11770549 DOI: 10.1016/j.heliyon.2025.e41770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Trifluralin (FLL) is extensively used in rapeseed fields in the Qinghai-Tibet Plateau (QTP) region. However, the degradation kinetics of FLL in this area and its impact on environmental microbial communities are not yet known. To investigate the degradation patterns and ecological benefits of FLL, this study established a comprehensive method for detecting FLL residues and selected efficient degrading bacterial strains. Degradation experiments were conducted in two typical soil types of the QTP, and the dynamic changes in microbial communities were explored. The results indicated that FLL degradation in soils from two different regions of the QTP followed first-order kinetics, with half-lives of 25 and 39 days, respectively. The application of FLL at 173 g/ha significantly increased bacterial richness and diversity in the soils of both regions. Three efficient degrading strains were selected from soil samples: FL-3 (Bacillus velezensis) with a degradation rate of 80.81 %, FL-5 (Bacillus velezensis) at 51.18 %, and FL-6 (Pseudomonas atacamensis) at 49.98 %. Moreover, the optimal degradation conditions for these strains were determined, and it was verified that they had no adverse effects on the germination and seedling growth of rapeseed, wheat, and barley. The findings of this study provide important data for the environmental risk assessment of FLL and suggest potential biological resources for the rational use and environmental remediation of this herbicide. These results are significant for developing safe use and environmental management strategies for FLL in the QTP.
Collapse
Affiliation(s)
- Dong Zhao
- Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
- Key Laboratory of Integrated Management of Agricultural Pest in Qinghai Province, Xining, 810016, China
| | - Lei Wang
- Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
- Key Laboratory of Integrated Management of Agricultural Pest in Qinghai Province, Xining, 810016, China
| | - Shuo Shen
- Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
- Key Laboratory of Integrated Management of Agricultural Pest in Qinghai Province, Xining, 810016, China
| | - Enyu Lu
- Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
- Key Laboratory of Integrated Management of Agricultural Pest in Qinghai Province, Xining, 810016, China
| | - Junlong Feng
- Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
- Key Laboratory of Integrated Management of Agricultural Pest in Qinghai Province, Xining, 810016, China
| | - Nima Bai
- Haibei Tibetan Autonomous Prefecture of Qinghai Province Agriculture and Animal Husbandry Comprehensive Service Center, China
| | - Hongyu Chen
- Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
- Key Laboratory of Integrated Management of Agricultural Pest in Qinghai Province, Xining, 810016, China
| | - Wei Li
- Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China
- Key Laboratory of Integrated Management of Agricultural Pest in Qinghai Province, Xining, 810016, China
| |
Collapse
|
7
|
Xu F, Zhang Y, Su L, Guo Z, Cheng Q, Xu L, Wang F, Sheng G. Solar-Light-Mediated Phototransformation of Herbicide Tribenuron-Methyl Initiated by Its Coexisting Nitrate Ion in Sunlit Agricultural Drainages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:342-353. [PMID: 39720920 DOI: 10.1021/acs.jafc.4c09764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Understanding the environmental fate of chemical herbicides is crucial to sustainable agriculture. Due to their joint-use with nitrogen fertilizers, their residues often coexist with NO3- in agricultural drainages. In this study, tribenuron-methyl was used as a model to evaluate the role of NO3- in the phototransformation of chemical herbicides, which was characterized by a two-stage process. Initially, a slow hydrolysis occurs (kobs = 2.573 × 10-4 min-1), producing two hydrolysis products: methyl-2-(aminosulfonyl)-benzoate (MSB) and 2-methyl-4-methylamino-6-methoxy-1, 3, 5-triazine (MMT), which can be significantly accelerated by solar irradiation (kobs = 2.152 × 10-2 min-1). Subsequently, MSB undergoes a rapid NO3--initiated photodegradation process (kobs = 2.251 × 10-2 min-1). MMT was identified as the refractory unit and undergoes a slow NO3--initiated photodegradation process (kobs = 4.494 × 10-4 min-1). The underlying mechanisms were elucidated through electron paramagnetic resonance spectroscopy and reactive species quenching experiments. This study fills a knowledge gap on the interaction between NO3- and chemical herbicides, highlighting the pivotal role of NO3- in the phototransformation of chemical herbicides.
Collapse
Affiliation(s)
- Fang Xu
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yukuai Zhang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Longfei Su
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhenxing Guo
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Cheng
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liqiang Xu
- Department of Resource Science and Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Feng Wang
- Department of Pharmaceutical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guoping Sheng
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
8
|
Zhang J, Ding X, Tan Q, Liang R, Chen B, Yu L, Wang M, Qing M, Yang S, Li Y, Chen W, Zhou M. Associations of dinitroaniline herbicide exposure, genetic susceptibility, and lifestyle with glucose dysregulation: A gene-environment interaction study from the Wuhan-Zhuhai cohort. ENVIRONMENTAL RESEARCH 2024; 262:119938. [PMID: 39241856 DOI: 10.1016/j.envres.2024.119938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE To assess the association of dinitroaniline herbicides as well as their interactions with genetic susceptibility and lifestyle with glucose dysregulation. METHODS A total of 4310 Chinese urban adults from the baseline of the Wuhan-Zhuhai Cohort were included in the cross-sectional study. A follow-up panel from the cohort was included in the longitudinal study, including 158 participants with 432 observations. Glucose dysregulation, including fasting plasma glucose (FPG), homeostasis model assessment of insulin resistance (HOMA-IR), type 2 diabetes mellitus (T2DM), and impaired fasting glucose (IFG) were assessed. Serum dinitroaniline herbicides including benfluralin, trifluralin, and pendimethalin were measured. T2DM-related polygenic risk score (PRS) and healthy life scores were constructed. RESULTS Cross-sectionally, each 2-fold increase in serum benfluralin was associated with a 1.12%, 2.03%, and 9% increase in FPG, HOMA-IR, and IFG risk, respectively. Each 2-fold increase in serum trifluralin was associated with a 0.70% increase in FPG. Each 2-fold increase in serum pendimethalin was associated with a 2.53% and 24% increase in FPG and IFG risk, respectively (all P < 0.05). Positive associations were found between the dinitroaniline herbicide mixture and glucose dysregulation. Longitudinally, serum benfluralin and pendimethalin were associated with the annual increases in FPG and HOMA-IR (P < 0.05). Joint and interaction effect analysis showed that compared with participants with high benfluralin/trifluralin/pendimethalin, high PRS, and unhealthy lifestyle, those with low benfluralin/trifluralin/pendimethalin, low PRS, and healthy lifestyle showed the greatest declines in FPG, i.e., -15.46%, -13.58%, and -10.51% changes, respectively; and the greatest reductions in IFG risks, i.e., 75%, 61%, and 73% reductions, respectively (all P < 0.05). CONCLUSIONS This study highlighted the importance of controlling dinitroaniline herbicide exposure and following healthy lifestyles in glucose dysregulation prevention, especially among individuals with high genetic risk of T2DM.
Collapse
Affiliation(s)
- Jiake Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuejie Ding
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiyou Tan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingdong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengyi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengxia Qing
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shijie Yang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Centre for Disease Control and Prevention, Wuhan, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Rivenbark KJ, Nikkhah H, Wang M, Beykal B, Phillips TD. Toxicity of representative organophosphate, organochlorine, phenylurea, dinitroaniline, carbamate, and viologen pesticides to the growth and survival of H. vulgaris, L. minor, and C. elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21781-21796. [PMID: 38396181 PMCID: PMC11257079 DOI: 10.1007/s11356-024-32444-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Pesticides are commonly found in the environment and pose a risk to target and non-target species; therefore, employing a set of bioassays to rapidly assess the toxicity of these chemicals to diverse species is crucial. The toxicity of nine individual pesticides from organophosphate, organochlorine, phenylurea, dinitroaniline, carbamate, and viologen chemical classes and a mixture of all the compounds were tested in three bioassays (Hydra vulgaris, Lemna minor, and Caenorhabditis elegans) that represent plant, aquatic, and soil-dwelling species, respectively. Multiple endpoints related to growth and survival were measured for each model, and EC10 and EC50 values were derived for each endpoint to identify sensitivity patterns according to chemical classes and target organisms. L. minor had the lowest EC10 and EC50 values for seven and five of the individual pesticides, respectively. L. minor was also one to two orders of magnitude more sensitive to the mixture compared to H. vulgaris and C. elegans, where EC50 values were calculated to be 0.00042, 0.0014, and 0.038 mM, respectively. H. vulgaris was the most sensitive species to the remaining individual pesticides, and C. elegans consistently ranked the least sensitive to all tested compounds. When comparing the EC50 values across all pesticides, the endpoints of L. minor were correlated with each other while the endpoints measured in H. vulgaris and C. elegans were clustered together. While there was no apparent relationship between the chemical class of pesticide and toxicity, the compounds were more closely clustered based on target organisms (herbicide vs insecticide). The results of this study demonstrate that the combination of these plant, soil, and aquatic specie can serve as representative indicators of pesticide pollution in environmental samples.
Collapse
Affiliation(s)
- Kelly J Rivenbark
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Hasan Nikkhah
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, USA
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Burcu Beykal
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, USA
| | - Timothy D Phillips
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA.
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Zhang Y, Zhou A, Xu J, Ouyang Z, Han L, Liu Y. Using compound-specific isotope analysis to identify the mechanism of acetochlor degradation during oxygenation of hyporheic zone sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122855. [PMID: 37923051 DOI: 10.1016/j.envpol.2023.122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Biodegradation is recognized as the main pathway for acetochlor attenuation in aquatic environments. However, the potential abiotic degradation of acetochlor by hydroxyl radicals (•OH) generated during oxygenation of hyporheic zone sediments has not been investigated. This study aims to examine the production of •OH during oxygenation of hyporheic zone sediments and its effects on acetochlor attenuation. A significant decrease of acetochlor, ranging from 77.9% to 100%, was observed in the water-sediment systems with extensive •OH production. The primary sources of •OH production were found to be the oxidation of Fe(II) and reduced humic acids. Furthermore, a •OH quenching experiment suggests that •OH driven oxidation is the dominant pathway for acetochlor attenuation. Carbon isotope fractionation of acetochlor degradation during oxygenation of sediments (εbulk,C ranged from -1.5‰ to -0.5 ± 0.3‰) was close to that during acetochlor degradation by •OH in a H2O2-Fe3O4 Fenton system (εbulk,C = -0.5 ± 0.1‰), but significantly smaller than that during acetochlor biodegradation (εbulk,C = -5.8 ± 0.9‰). Compound-specific isotope analysis (CSIA) further suggests that •OH produced by sediment oxygenation plays a critical role in acetochlor attenuation in aquatic environments. Results of calculated apparent kinetic isotope effect of carbon (AKIEC) and transformation products indicate that SN1 and SN2-type nucleophilic substitution are the first steps in acetochlor attenuation through •OH driven oxidation (AKIEC = 1.007 ± 0.001) and aerobic biodegradation (AKIEC = 1.088 ± 0.013), respectively. Our findings highlight the potential of CSIA to assess the acetochlor degradation in water-sediment system, which can help to elucidate the fate of herbicide in aquatic environments.
Collapse
Affiliation(s)
- Yuanzheng Zhang
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042, Nanjing, PR China
| | - Aiguo Zhou
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China
| | - Jian Xu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042, Nanjing, PR China
| | - Ziyu Ouyang
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China
| | - Li Han
- Hubei Institute of Food Quality and Safety Supervision and Inspection, 430074, Wuhan, PR China
| | - Yunde Liu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China.
| |
Collapse
|
11
|
Che Hussian CHA, Leong WY. Thermostable enzyme research advances: a bibliometric analysis. J Genet Eng Biotechnol 2023; 21:37. [PMID: 36971917 PMCID: PMC10043094 DOI: 10.1186/s43141-023-00494-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
Thermostable enzymes are enzymes that can withstand elevated temperatures as high as 50 °C without altering their structure or distinctive features. The potential of thermostable enzymes to increase the conversion rate at high temperature has been identified as a key factor in enhancing the efficiency of industrial operations. Performing procedures at higher temperatures with thermostable enzymes minimises the risk of microbial contamination, which is one of the most significant benefits. In addition, it helps reduce substrate viscosity, improve transfer speeds, and increase solubility during reaction operations. Thermostable enzymes offer enormous industrial potential as biocatalysts, especially cellulase and xylanase, which have garnered considerable amount of interest for biodegradation and biofuel applications. As the usage of enzymes becomes more common, a range of performance-enhancing applications are being explored. This article offers a bibliometric evaluation of thermostable enzymes. Scopus databases were searched for scientific articles. The findings indicated that thermostable enzymes are widely employed in biodegradation as well as in biofuel and biomass production. Japan, the United States, China, and India, as along with the institutions affiliated with these nations, stand out as the academically most productive in the field of thermostable enzymes. This study's analysis exposed a vast number of published papers that demonstrate the industrial potential of thermostable enzymes. These results highlight the significance of thermostable enzyme research for a variety of applications.
Collapse
Affiliation(s)
| | - Wai Yie Leong
- INTI International University & Colleges, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
12
|
A chemiluminescent probe for highly sensitive detection of trifluralin based on cobalt ion-complexed boron nitride quantum dots as efficient nanocatalysts. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Lara-Moreno A, Morillo E, Merchán F, Madrid F, Villaverde J. Bioremediation of a trifluralin contaminated soil using bioaugmentation with novel isolated bacterial strains and cyclodextrin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156695. [PMID: 35709999 DOI: 10.1016/j.scitotenv.2022.156695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Trifluralin (TFL) is a highly persistent with a strong adsorption capacity on soil particles herbicide. This study was to isolate microbial consortia and bacterial strains from a soil with a historical application of pesticides to evaluate their potential to degrade TFL in soil. Different bioremediation techniques were considered for increasing the effectiveness of TFL degradation in soil. These techniques consisted of: i) biostimulation, using a nutrients solution (NS); ii) bioaugmentation, using a natural microbial consortium (NMC), seven individual bacterial strains isolated from NMC, and an artificial bacterial consortium formed by the seven TFL-degrading bacterial strains (ABC); iii) bioavailability enhancement, using a biodegradable compound, a randomly methylated cyclodextrin, RAMEB. Biostimulation using NS leads up to 34 % of soil TFL biodegraded after 100 d. When the contaminated soil was inoculated with NMC or ABC consortia, TFL loss increased up to 62 % and 74 %, respectively, with DT50 values (required time for the pollutant concentration to decline to half of its initial value) of 5.9 and 11 d. In the case of soil inoculation with the isolated individual bacterial strains, the extent of TFL biodegradation ranged widely from 2.3 % to 55 %. The most efficient bacterial strain was Arthrobacter aurescens CTFL7 which had not been previously described in the literature as a TFL-degrading bacterium. Bioaugmentation with CTFL7 bacterium was also tested in the presence of RAMEB, provoking a drastic increase in herbicide biodegradation up to 88 %, achieving a DT50 of only 19 d. Cyclodextrins had never been tested before for enhancement of TFL biodegradation. An ecotoxicity assay was performed to confirm that the proposed bioremediation techniques were also capable to reduce toxicity. A Microtox® test showed that after application A. aurescens CTF7 and A. aurescens CTF7 + RAMEB, the TFL-contaminated soil, which initially presented acute toxicity, became non-toxic at the end of the biodegradation experiments.
Collapse
Affiliation(s)
- A Lara-Moreno
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - E Morillo
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain
| | - F Merchán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - F Madrid
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain
| | - J Villaverde
- Institute of Natural Resources and Agrobiology of Seville, Spanish National Research Council (IRNAS-CSIC), Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Seville, Spain.
| |
Collapse
|
14
|
Silva Ribeiro D, Vilela Corrêa F, Rafanele França Pinto P, Thebaldi MS, Ponciano De Deus F, Valentim Diotto A. Modeling and simulation of trifluralin herbicide movement due to its application on soils by chemigation. REVISTA BRASILEIRA DE ENGENHARIA DE BIOSSISTEMAS 2022. [DOI: 10.18011/bioeng.2022.v16.1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The Trifluralin (TFN) is a pre-emergent herbicide which is widely used in agriculture. Usually, this pesticide is directly applied to the soil, where it can remain for long periods or can be transported. In this sense, knowing the dynamics of an herbicide soil transport is essential to avoid environmental contamination problems and risks to human health. Thus, this study aims to model and simulate TFN movement on soils with two different textures, a sandy loam and clay loam soil. It was considered that the herbicide was applied via chemigation trough a subsurface drip irrigation system, under a non-steady regime. Therefore, the transport parameters of TFN in these soils and physical-hydric characteristics of these were used, while the physical environment modeling were conducted using the Hydrus 2D software. The results showed that both in sandy and clayey soils, the TFN tends to be retained by the soil, close to where it was applied, not exceeding a layer greater than 2.5 mm outside the dripper radius, even in more favorable conditions such as the presence of irrigation. Finally, it could be concluded that this herbicide movement in the soil is of low potential, due to this product high solid-liquid partition coefficient (Kd), even in sandy soil, which has low cation exchange capacity (CEC).
Collapse
|
15
|
Zhang X, Li S, Yang Y, Zhao Y, Qu J, Li C. Predicting reaction rate constants of ozone with ionic/non-ionic compounds in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155501. [PMID: 35483457 DOI: 10.1016/j.scitotenv.2022.155501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Ozonation is a significant technology for the mitigation of pollutants in water. The second-order reaction rate constant (kO3) of ozone (O3) with compounds is essential for measuring their reactivity toward O3 and understanding their fate during ozonation. However, there is a huge gap between the number of existing chemicals and the available experimental kO3 values. Moreover, the reactivity of ionizable compounds with different ionization forms toward O3 may differ greatly. In this study, two quantitative structure activity relationship (QSAR) models for non-ionic and ionic species, are respectively established with partial least squares (PLS) and support vector machine (SVM) methods based on the large datasets (324 non-ionic states and 188 ionic states). These models exhibit good fitting ability (non-ionic model: R2tr > 0.760; ionic model: R2tr > 0.780), robustness (Q2CUM > 0.700), predictive performance (non-ionic model: R2ext > 0.760; ionic model: R2ext > 0.810) and wide applicability domain. The molecular parameters in two models are revealed to be significantly different, which may be attributed to the significant difference in molecular structures in two datasets and different reactivities of uncharged and charged states toward O3. Additionally, the overall kO3 for compounds at certain pH can be estimated by combining the two single QSAR models. These models and methods can become the effective tools for predicting the conversion rate of pollutants by O3 in the urban sewage and drinking water treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Shaochen Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yandong Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
16
|
Wang X, Sun Y, Wang Q, Liu F, Yang W, Sui X, Yang J, Zhang M, Wang S, Xiao Z, Luo Y, Wang Y, Zhu T. Potential Common Mechanisms of Cytotoxicity Induced by Amide Herbicides via TRPA1 Channel Activation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7985. [PMID: 35805655 PMCID: PMC9266004 DOI: 10.3390/ijerph19137985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
The “Multi-Threat Medical Countermeasure (MTMC)” strategy was proposed to develop a single drug with therapeutic efficacy against multiple pathologies or broad-spectrum protection against various toxins with common biochemical signals, molecular mediators, or cellular processes. This study demonstrated that cytotoxicity, expression of transient receptor potential cation channel subfamily A member 1 (TRPA1) mRNA, and intracellular calcium influx were increased in A549 cells exposed to amide herbicides (AHs), in which the order of cytotoxicity was metolachlor > acetochlor > propisochlor > alachlor > butachlor > propanil > pretilachlor, based on IC50 values of 430, 524, 564, 565, 619, 831, and 2333 μM, respectively. Inhibition/knockout of TRPA1 efficiently protected against cytotoxicity, decreased TRPA1 mRNA expression, and reduced calcium influx. The results suggested that the TRPA1 channel could be a key common target for AHs poisoning. The order of TRPA1 affinity for AHs was propanil > pretilachlor > metolachlor > (propiso/ala/aceto/butachlor), based on KD values of 16.2, 309, and 364 μM, respectively. The common molecular mechanisms of TRPA1-AHs interactions were clarified, including toxicity-effector groups (benzene ring, nitrogen/oxygen-containing functional groups, halogen) and residues involved in interactions (Lys787, Leu982). This work provides valuable information for the development of TRPA1 as a promising therapeutic target for broad-spectrum antitoxins.
Collapse
Affiliation(s)
- Xiaoning Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Qian Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Fengying Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Weijie Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Minmin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Shuai Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (Y.S.); (Q.W.); (F.L.); (W.Y.); (X.S.); (J.Y.); (M.Z.); (S.W.); (Z.X.); (Y.W.)
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
| |
Collapse
|
17
|
Yu M, Dong H, Zheng Y, Liu W. Trimetallic carbon-based catalysts derived from metal-organic frameworks for electro-Fenton removal of aqueous pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151747. [PMID: 34826458 DOI: 10.1016/j.scitotenv.2021.151747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Pesticide overuse has posed a threat to agricultural community as well as aquatic animals. Heterogeneous electro-Fenton (HEF) processes have received considerable attention for aqueous contaminants removal, and metal-organic frameworks (MOFs) serve as promising templates for fabrication of carbon-based HEF catalysts with low Fe leaching and enhanced stability. Herein, multimetallic MOF-derived HEF catalysts CMOFs@PCM have been demonstrated as efficient and stable HEF catalysts for aqueous pesticide degradation and mineralization. The porous carbon monolith (PCM) substrate effectively catalyzed 2-electron oxygen reduction reaction (ORR) over the pH range of 4-10 to in situ generate H2O2, which was then activated by the anchored Fe3O4, Fe3C and NiO into OH for pesticide degradation. Fe8Al7Ni5-CMOF@PCM achieved over 90% napropamide degradation within 60 min in the pH range of 4-10, and 96% degradation at neutral condition, 39% higher than monometallic CMIL-88(Fe)@PCM. Meanwhile, the embedded NiO and γ-Al2O3 showed synergistic effect in promoting the catalytic activity of Fe sites, resulting in substantially enhanced performance of trimetallic FexAlyNiz-CMOF@PCM compared to the monometallic counterparts. On the other hand, the unique core-shell structure and Fe3C interlayer formed by co-pyrolyzing Fe-containing MOFs-NH2 with PCM greatly minimized the metal leaching and enhanced the stability of the electrocatalysts.
Collapse
Affiliation(s)
- Menglin Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310018, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Heng Dong
- Linde+Robinson Laboratories California Institute of Technology, Pasadena, CA 91125, United States
| | - Yingdie Zheng
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
18
|
Mai Y, Peng S, Lai Z, Wang X. Seasonal and inter-annual variability of bacterioplankton communities in the subtropical Pearl River Estuary, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21981-21997. [PMID: 34775557 DOI: 10.1007/s11356-021-17449-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
It is widely recognized that environmental factors substantially influence on the seasonal and inter-annual variability of bacterioplankton communities, yet little is known about the seasonality of bacterioplankton communities in subtropical estuaries at longer-term time scales. Here, the bacterioplankton communities from the eight major outlets of the subtropical Pearl River Estuary were investigated across 3 years (2017-2019) using full-length 16S rRNA gene sequencing. Significant seasonal and inter-annual variation was observed in bacterioplankton community compositions across the 3 years (p < 0.05). In addition, the inferred functional composition of the communities varied with seasons, although not significantly, suggesting that functional redundancy existed among communities and across seasons that could help to cope with environmental changes. Five evaluated environmental parameters (temperature, salinity, pH, total dissolved solids (TDS), total phosphorus (TP)) were significantly correlated with community composition variation, while only three environmental parameters (temperature, pH, and TDS) were correlated with variation in inferred functional composition. Moreover, community composition tracked the seasonal temperature gradients, indicating that temperature was a key environmental factor that affected bacterioplankton community's variation along with seasonal succession patterns. Gammaproteobacteria and Alphaproteobacteria were the most dominant classes in the surface waters of Pearl River Estuary, and their members exhibited divergent responses to temperature changes, while several taxa within these group could be indicators of low and high temperatures that are associated with seasonal changes. These results strengthen our understanding of bacterioplankton community variation in association with temperature-dependent seasonal changes in subtropical estuarine ecosystems.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510070, China.
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 100 Xianlie Middle Road, 510070, China.
| |
Collapse
|
19
|
Bu Q, Li Q, Zhang H, Wu D, Yu G. Using a fugacity model to determine the degradation rate of typical polycyclic musks in the field: A case study in the North Canal River watershed of Beijing, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114096. [PMID: 34775339 DOI: 10.1016/j.jenvman.2021.114096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
To quantitate the degradation rate of 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[g]-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) under field conditions, a level III fugacity model combined with a least-squares method was used to determine the degradation rate of HHCB and AHTN in the North Canal River watershed of Beijing, China. Model fitting, validation, sensitivity, and uncertainty analyses revealed that the established model was stable and robust. The degradation rates of HHCB and AHTN were 4.16 × 10-3 h-1 (t1/2 = 167 h) and 1.68 × 10-2 h-1 (t1/2 = 41.3 h), respectively. The calculated degradation rates were extrapolated to the Liangshui River, and indicated that the differences between the measured and predicted concentrations were less than 0.32 and 0.34 log units for HHCB and AHTN, respectively. The attenuation rates of HHCB and AHTN were calculated, and the results indicated that degradation was an important yet not the sole contributor to the degradation of the polycyclic musks. Results of uncertainty analyses indicated that the inflow and outflow concentrations of the polycyclic musks in the surface water of each segment strongly influenced the model outputs, followed by environmental factors (water depth and flow rate). It is essential to measure the degradation rate in the field because of the influence of the surrounding environment. The present study reveals the utility of fugacity models to quantify the degradation rate of organic micropollutants in the field.
Collapse
Affiliation(s)
- Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing, 100083, PR China.
| | - Qingshan Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing, 100083, PR China
| | - Handan Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing, 100083, PR China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Dongkui Wu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing, 100083, PR China; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Gang Yu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
20
|
Lin YT, Ali HS, de Visser S. Biodegradation of herbicides by a plant nonheme iron dioxygenase: mechanism and selectivity of substrate analogues. Chemistry 2021; 28:e202103982. [PMID: 34911156 DOI: 10.1002/chem.202103982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/11/2022]
Abstract
Aryloxyalkanoate dioxygenases are unique herbicide biodegrading nonheme iron enzymes found in plants and hence, from environmental and agricultural point of view they are important and valuable. However, they often are substrate specific and little is known on the details of the mechanism and the substrate scope. To this end, we created enzyme models and calculate the mechanism for 2,4-dichlorophenoxyacetic acid biodegradation and 2-methyl substituted analogs by density functional theory. The work shows that the substrate binding is tight and positions the aliphatic group close to the metal center to enable a chemoselective reaction mechanism to form the C 2 -hydroxy products, whereas the aromatic hydroxylation barriers are well higher in energy. Subsequently, we investigated the metabolism of R - and S -methyl substituted inhibitors and show that these do not react as efficiently as 2,4-dichlorophenoxyacetic acid substrate due to stereochemical clashes in the active site and particularly for the R -isomer give high rebound barriers.
Collapse
Affiliation(s)
- Yen-Ting Lin
- UoM: The University of Manchester, Chemical Engineering and Analytical Science, UNITED KINGDOM
| | - Hafiz S Ali
- UoM: The University of Manchester, Chemistry, UNITED KINGDOM
| | - Samuel de Visser
- The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM
| |
Collapse
|
21
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
22
|
Li Y, Li C, Li B, Ma Z. Trifluralin residues in soils from main cotton fields of China and associated ecological risk. CHEMOSPHERE 2021; 284:131300. [PMID: 34225126 DOI: 10.1016/j.chemosphere.2021.131300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Trifluralin is a widely used dinitroaniline herbicide in cotton fields of China but is highly persistent in the environment and can act as a biotoxin and cause genotoxicity to terrestrial organisms, including humans. In this study, the concentrations and distribution of trifluralin residues in 139 soil samples from the major cotton-producing areas of China were investigated. The trifluralin concentrations ranged from ND (not detected) to 66.39 μg/kg dry weight (dw), with a geometric mean of 4.13 μg/kg dw. The detection frequency of trifluralin in Hebei (75%) was higher than that in Xinjiang (66%) and Shandong (40%), but the mean trifluralin concentration was highest in Xinjiang (5.98 μg/kg dw), followed by Hebei (5.06 μg/kg dw) and Shandong (3.19 μg/kg dw). No trifluralin residues were detected in cotton soil in Anhui, Jiangxi and Hunan. The residual amount of trifluralin in soil was significantly correlated with the soil organic matter content. The risk quotient method was used to evaluate the ecological risks associated with trifluralin. Results indicated that trifluralin in all the samples had a low risk to earthworms, but trifluralin in same cotton soils showed high risks to wheat, barley and lucerne. Overall, our work is helpful to understand the residual situation of trifluralin in Chinese cotton soil, to assess the environmental risk of trifluralin, and to control the use and safety of trifluralin in cotton field cultivation.
Collapse
Affiliation(s)
- Yang Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture PR China, Beijing, 100097, China
| | - Cheng Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture PR China, Beijing, 100097, China
| | - Bingru Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture PR China, Beijing, 100097, China
| | - Zhihong Ma
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture PR China, Beijing, 100097, China.
| |
Collapse
|
23
|
Mudassir MA, Aslam HZ, Ansari TM, Zhang H, Hussain I. Fundamentals and Design-Led Synthesis of Emulsion-Templated Porous Materials for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102540. [PMID: 34553500 PMCID: PMC8596121 DOI: 10.1002/advs.202102540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Indexed: 05/06/2023]
Abstract
Emulsion templating is at the forefront of producing a wide array of porous materials that offers interconnected porous structure, easy permeability, homogeneous flow-through, high diffusion rates, convective mass transfer, and direct accessibility to interact with atoms/ions/molecules throughout the exterior and interior of the bulk. These interesting features together with easily available ingredients, facile preparation methods, flexible pore-size tuning protocols, controlled surface modification strategies, good physicochemical and dimensional stability, lightweight, convenient processing and subsequent recovery, superior pollutants remediation/monitoring performance, and decent recyclability underscore the benchmark potential of the emulsion-templated porous materials in large-scale practical environmental applications. To this end, many research breakthroughs in emulsion templating technique witnessed by the recent achievements have been widely unfolded and currently being extensively explored to address many of the environmental challenges. Taking into account the burgeoning progress of the emulsion-templated porous materials in the environmental field, this review article provides a conceptual overview of emulsions and emulsion templating technique, sums up the general procedures to design and fabricate many state-of-the-art emulsion-templated porous materials, and presents a critical overview of their marked momentum in adsorption, separation, disinfection, catalysis/degradation, capture, and sensing of the inorganic, organic and biological contaminants in water and air.
Collapse
Affiliation(s)
- Muhammad Ahmad Mudassir
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology (KFUEIT)Rahim Yar Khan64200Pakistan
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Hafiz Zohaib Aslam
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| | - Tariq Mahmood Ansari
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
| | - Haifei Zhang
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Irshad Hussain
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| |
Collapse
|
24
|
Li Z, Niu S. Modeling pesticides in global surface soils: Evaluating spatiotemporal patterns for USEtox-based steady-state concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148412. [PMID: 34412385 DOI: 10.1016/j.scitotenv.2021.148412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
To better manage pesticide pollution in surface soils, we introduced a first-order-kinetics-based screening model to evaluate the steady-state concentrations of pesticides in surface soils while considering degradation, volatilization, plant uptake, and precipitation processes. For each process, we developed a spatiotemporal-pattern-based model using spatiotemporal variables, including air temperature (TA), relative humidity (RHA), and rainfall intensity (IRA), to characterize the overall dissipation rates (kT) of pesticides in the soil. These dissipation rates were converted to fate factors (FFs), which are commonly used in life cycle analyses. The results indicate that, in general, the kT values increase with increasing TA and IRA and decrease with increasing RHA. This is because increased TA boosts the degradation, volatilization, and plant uptake processes, whereas increased RHA lowers the plant transpiration rate. Also, the simulation for over 700 pesticides indicated that the degradation process dominates the overall dissipation of most pesticides in the soil, and the volatilization process contributes the least. In addition, we simulated chlorpyrifos FFs for Brazil, China, the US, and the European Union (EU) using the annual average TA, RHA, and IRA values. The results indicate that, in general, Brazilian federal units have the smallest FFs and the narrowest simulated FF range because of their humid tropical climates. Meanwhile, the EU member states have the largest FFs and the widest FF range because of their range in locations. In addition, our simulated results show that the surface soils in the high-latitude regions could accumulate more chlorpyrifos than those in low-latitude regions because of the larger simulated FFs. Furthermore, we parameterized our model using 737 pesticides with the USEtox, thereby providing an alternative approach to simulate the steady-state concentration of pesticides in surface soils from the USEtox available data. The model developed herein is a useful screening tool for predicting pesticide concentrations in surface soil worldwide to improve soil and ecological health risk management.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China.
| | - Shan Niu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
25
|
Li X, Yang B, Xiao K, Duan H, Wan J, Zhao H. Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. WATER RESEARCH 2021; 203:117541. [PMID: 34416650 DOI: 10.1016/j.watres.2021.117541] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Efficient removal of low-concentration refractory pollutants is a crucial problem to ensuring water safety. The use of heterogeneous catalysis of molecular imprinting technology combined with traditional catalysts is a promising method to improve removal efficiency. Presently, the research into molecular imprinting targeting catalysts focuses mainly on material preparation and performance optimization. However, more researchers are investigating other applications of imprinting materials. This review provides recent progress in photocatalyst preparation, electrocatalyst, and Fenton-like catalysts synthesized by molecular imprinting. The principle and control points of target catalysts prepared by precipitation polymerization (PP) and surface molecular imprinting (S-MIP) are introduced. Also, the application of imprinted catalysts in targeted degradation of drugs, pesticides, environmental hormones, and other refractory pollutants is summarized. In addition, the reusability and stability of imprinted catalyst in water treatment are discussed, and the possible ecotoxicity risk is analyzed. Finally, we appraised the prospects, challenges, and opportunities of imprinted catalysts in the advanced oxidation process. This paper provides a reference for the targeted degradation of refractory pollutants and the preparation of targeted catalysts.
Collapse
Affiliation(s)
- Xitong Li
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huabo Duan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
26
|
Zhang M, Dou M, Xia Y, Hu Z, Zhang B, Bai Y, Xie J, Liu Q, Xie C, Lu D, Hou S, He J, Tao J, Sun R. Photostable 1-Trifluoromethyl Cinnamyl Alcohol Derivatives Designed as Potential Fungicides and Bactericides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5435-5445. [PMID: 33945271 DOI: 10.1021/acs.jafc.1c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the current work, a series of 1-trifluoromethyl cinnamyl alcohol derivatives were designed and synthesized and their antifungal activities were evaluated. The bioassay result showed that most compounds exhibited excellent antifungal activity in vitro at 10 μg mL-1. Next, photostable and easily synthesized compound 2 with broad-spectrum antifungal activity in vitro was selected as a potential candidate to evaluate its antibacterial and antifungal activities. The EC50 values of compound 2 against eight fungal plant pathogens in vitro ranged from 3.806 to 17.981 μg mL-1; at the same time, compound 2 could effectively control Podosphaera xanthii, Odium heveae Steinm, Puccinia striiformis West, and Puccinia sorghi in pot experiments. In addition, compound 2 exhibited excellent antibacterial activities in vitro and in vivo against Xanthomonas oryzae pv. oryzae. Furthermore, the absorption and translocation of compound 2 in wheat plants were determined by the high-performance liquid chromatography method. The result showed that compound 2 could be translocated acropetally as well as basipetally in wheat plants. Finally, it was found that compound 2 had no cross-resistance with carbendazim, azoxystrobin, and boscalid.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Menglan Dou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Yingying Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Haikou, Hainan 570228, People's Republic of China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Beijing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Yongxia Bai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Jia Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Qifeng Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Changping Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Dadong Lu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Shuai Hou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Jianguo He
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Jun Tao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Haikou, Hainan 570228, People's Republic of China
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| |
Collapse
|
27
|
Chowdhury IF, Rohan M, Stodart BJ, Chen C, Wu H, Doran GS. Persistence of atrazine and trifluralin in a clay loam soil undergoing different temperature and moisture conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116687. [PMID: 33621732 DOI: 10.1016/j.envpol.2021.116687] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 05/21/2023]
Abstract
Dissipation kinetics of atrazine and trifluralin in a clay loam soil was investigated in a laboratory incubation experiment under different temperature and moisture conditions. The soil was spiked with diluted atrazine and trifluralin concentrations at 4.50 and 4.25 mg/kg soil, respectively, the moisture content adjusted to 40, 70, and 100% of field capacity (FC) and then incubated in three climatic chambers at 10, 20, and 30 °C. For each of the herbicides, soil samples were collected at 0, 7, 21, 42, 70, and 105 days and analysed by Gas Chromatography-Electron Capture Detector (GC-ECD). A stochastic gamma model was used to model the dissipation of herbicides from the clay loam soil by incorporating environmental factors as covariates to determine half-life and days to complete dissipation. Results showed that temperature played a greater role on atrazine persistence than soil moisture; while the interaction effect of temperature and moisture was significant on the persistence of trifluralin over time. Atrazine dissipated more rapidly at 30 °C compared to 10 and 20 °C, with a half-life of 7.50 days and 326.23 days to reach complete dissipation. Rapid loss of trifluralin was observed at 70% moisture content when incubated at 30 °C, with a half-life of 5.80 days and 182.01 days to complete dissipation. It was observed that the half-life of both herbicides tended to double with every 10 °C decreases of temperature over the range tested. The model indicated that both atrazine and trifluralin have the potential to persist in clay loam soil for several years at temperature ≤20 °C; which could potentially affect following crops in rotation.
Collapse
Affiliation(s)
- Imtiaz Faruk Chowdhury
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Maheswaran Rohan
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia
| | - Benjamin J Stodart
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Chengrong Chen
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Hanwen Wu
- Graham Centre for Agricultural Innovation, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia
| | - Gregory S Doran
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|