1
|
Wang Y, Shang Y, Fu Z, Li K, Shi J, Xu L, Jin P, Jin X, Wang XC. Enhanced selective removal of lead from battery industry wastewater using MoS 2@PbCO 3 composite seeds via a nucleation crystallization pelleting process. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137670. [PMID: 40043394 DOI: 10.1016/j.jhazmat.2025.137670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 04/16/2025]
Abstract
Removal of lead ions (Pb2 +) from wastewater produced by lead-acid batteries is crucial, however, limited due to low selectivity. This study used the MoS2@PbCO3-0.6 lead-specific seeds (LSS) as fillers in nucleation crystallization pelleting (NCP) process, resulting in a remarkable capacity for selective Pb2+ removal. After 180 h of continuous operation, the total removal efficiency of Pb2+ stabilized at 94.3 % in the form of lead carbonate (PbCO3), while the coexisting cobalt (Co2+) and cadmium (Cd2+) ions were removed at less than 10 %. Further investigation revealed that Pb2+ removal was enhanced by increasing the influent water temperature and maintaining a moderate pH (pH=8), whereas it was inhibited by higher concentrations of coexisting anions (SO42- and Cl-) due to the competition with carbonate ions for free Pb2+. The combination of FTIR, SEM-EDS, XPS analyses, and DFT calculations, revealed the molecular-level mechanisms for recovering Pb2+. This process is largely governed by the surface-selective enrichment and induced precipitation, attributed to the stronger affinity of LSS for Pb2+, evidenced by its significantly higher distribution coefficient Kd compared to other ions (7.2 ×107 mL/g). In addition, the experiments conducted with actual lead-containing wastewater also yield promising results. This study highlights a promising method for Pb2+ removal from lead-acid battery wastewater and provides insights into developing advanced LSS for improved Pb2+ enrichment through interface mechanisms.
Collapse
Affiliation(s)
- Yadong Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yabo Shang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Zhihao Fu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Keqian Li
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Juan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Lu Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| | - Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| |
Collapse
|
2
|
Bao S, Wang Y, Yang W, Christensen CSQ, Shang Y, Yu Y, Wei Z. Functionalized 2D multilayered MXene for selective and continuous recovery of rare earth elements from real wastewater matrix. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137277. [PMID: 39842119 DOI: 10.1016/j.jhazmat.2025.137277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Rare earth elements (REEs) are the "fuel" for high-tech industry, yet their selective recovery from complex waste matrices is challenging. Herein, we designed a 2D multilayered MXene Ti3C2Tx adsorbent for selective extraction of REEs in a broad pH range. By establishing strong Lewis acid-base interactions, extraction capacities of Ti3C2Tx to Eu(III) and Ho(III) reached 892.8 and 649.2 mg/g, respectively, even at pH 2.0. Following the Valence Matching Principle, the Ti3C2Tx adsorbent also demonstrated high selectivity for recovery of various REEs from real REEs processing wastewater and actual sludge from magnet manufacturing industry. To demonstrate the practical feasibility, a layer-stacked membrane of Ti3C2Tx supported on polyethersulfone substrate was fabricated for continuous recovery of REEs and exhibited excellent removal of Eu(III) (99.1 % at pH 5.0), showcasing its potential for large-scale applications. DFT calculations and material characterization demonstrated that chemisorption between Lewis acid (REEs cations) and Lewis base (F and O) sites is the main adsorption process involved in the uptake of Eu(III) and Ho(III). Finally, both the Ti3C2Tx adsorbent and membrane were successfully regenerated and reused via simple acid wash. Overall, the results demonstrate the Ti3C2Tx-based recovery as a promising path for sustainable harvesting of REEs.
Collapse
Affiliation(s)
- Shuangyou Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingjun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Weiwei Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Charlotte Skjold Qvist Christensen
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yongsheng Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark.
| |
Collapse
|
3
|
Zheng Q, Wang Z, Tian Z, Cai L, Jiang C, Deng L, Yang D, Wei Z. High-efficiency Pb 2+ removal by hydroxy-sodalite for point-of-use drinking water purification. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137191. [PMID: 39813933 DOI: 10.1016/j.jhazmat.2025.137191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The development of cost-effective point-of-use (POU) devices that effectively remove lead (Pb) from drinking water is imperative in mitigating the threat of Pb contamination to public health in underdeveloped regions. Herein, we have successfully transformed inexpensive natural kaolinite as hydroxy-sodalite (HySOD) via a simple hydrothermal process, achieving an impressive yield of 91.5 %. Remarkably, HySOD demonstrates excellent selectivity and affinity towards Pb2+ with an adsorption capacity of 476 mg/g in a single Pb2+ system and a high distribution coefficient of 5.0 × 107 mL/g in multi-cations system, several orders of magnitude higher than other cations, showing remarkable Pb2+ removal efficiency. Mechanism studies reveal that the preeminent Pb2+ capture capacity of HySOD is mainly attributed to the fast surface chemisorption effects and spontaneous phase change from Na8Al6Si6O24(OH)2·2H2O to Pb4Al6Si6O24(OH)2·5H2O caused by cation exchange effects. Through a continuous filtration test, a simplified HySOD-loaded POU device is employed to treat Pb-contaminated water with the Pb2+ concentration of 200 μg/L. At a high water flux of 477 L/m2/h, the Pb2+ effluent concentration is swiftly reduced below 10 μg/L, well meeting the security standard for drinking water. Overall, this work introduces a remarkable Pb2+ removal material, showing significant application potential for POU drinking water purification.
Collapse
Affiliation(s)
- Qian Zheng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Ziwei Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zhouyang Tian
- University of Helsinki, Department of Forest Sciences, Helsinki, Finland
| | - Lin Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengfeng Jiang
- Hubei Institute of Geosciences, Hubei Selenium-Rich Industry Research Institute, Wuhan, China
| | - Lili Deng
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Dazhong Yang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Zhenhua Wei
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Liu Y, Wang Y, Sengupta B, Kazi OA, Martinson ABF, Elam JW, Darling SB. Pillared Laminar Vermiculite Membranes with Tunable Monovalent and Multivalent Ion Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417994. [PMID: 40026056 PMCID: PMC11983263 DOI: 10.1002/adma.202417994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Effective membrane separation of Li+ from Na+ and Mg2+ is crucial for lithium extraction from water yet challenging for conventional polymeric membranes. Two dimensional (2D) membranes with ordered laminar structures and tunable physicochemical properties offer distinctive ion-sieving capabilities promising for lithium extraction. Recently, phyllosilicates are introduced as abundant and cost-effective source materials for such membranes. However, their water instability and low inherent ion transport selectivity hinder practical applications. Herein, a new class of laminar membranes with excellent stability and tunable ion sieving is reported by incorporating inorganic alumina pillars into vermiculite interlayers. Crosslinking vermiculite flakes with alumina pillars significantly strengthens interlamellar interactions, resulting in robust water stability. Doping of Na+ before the pillaring process reverses the membrane's surface charge, substantially boosting Li+ separation from multivalent cations via electrostatic interactions. Lithium extraction is often complicated by the presence of co-existing monovalent cations (e.g., Na+) at higher concentrations. Here, by introducing excess Na+ into the membrane after the pillaring process, the separation of Li+ from monovalent cations is enhanced through steric effects. This work realizes both monovalent/multivalent and monovalent/monovalent selective ion sieving with the same membrane platform. A separation mechanism is proposed based on Donnan exclusion and size exclusion, providing new insights for membrane design for resource recovery applications.
Collapse
Affiliation(s)
- Yining Liu
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Yuqin Wang
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Bratin Sengupta
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Applied Materials DivisionArgonne National LaboratoryLemontIL60439USA
- Northwestern Center for Water ResearchNorthwestern UniversityEvanstonIL60201USA
| | - Omar A. Kazi
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Alex B. F. Martinson
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Materials Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Jeffrey W. Elam
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Applied Materials DivisionArgonne National LaboratoryLemontIL60439USA
| | - Seth B. Darling
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| |
Collapse
|
5
|
Umar M, Khan H, Akbal F, Usama M, Tariq R, Hussain S, Zaman SU, Eroğlu HA, Kadıoğlu EN. Highly selective and reusable nanoadsorbent based on Fe 3O 4-embedded sodium alginate-based hydrogel for cationic dye adsorption: Adsorption interpretation using multiscale modeling. Int J Biol Macromol 2025; 289:138694. [PMID: 39689801 DOI: 10.1016/j.ijbiomac.2024.138694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/19/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
This study aims to develop a stable and efficient magnetic nanocomposite hydrogel (MNCH) for selective removal of methylene blue (MB) and crystal violet (CV). MNCHs with different Fe3O4 contents (0-9 wt%) were synthesized following graft co-polymerization method using sodium alginate, acrylamide, itaconic acid, ammonium persulfate and N,N-methylene bisacrylamide. Among them, MNCH5, with 5 wt% Fe3O4, showed highest removal efficiency (>95 %). Optimal dye removal occurred at pH 10, with 40 min for CV and 60 min for MB using 30 mg dose. MNCH was characterized using various techniques, with X-ray diffraction (XRD) revealing crystallite size of 30.5 nm, and Brunauer-Emmett-Teller (BET) indicating surface area of 59.80 m2 g-1. Adsorption kinetics followed fractal pseudo-first-order and fractal Vermeulen diffusion models, reflecting MNCH's heterogeneous nature as suggested by fractal exponent (h) ranging 0.38-0.44, significantly deviating from zero. Langmuir-Freundlich isotherm accurately described the process, demonstrating MNCH's superior affinity for MB (4216.69 mg g-1) over CV (3730.17 mg g-1). Thermodynamics of MB adsorption was exothermic as suggested by negative ΔH value, while CV adsorption was endothermic. Density functional theory confirmed stronger interaction between MNCH and MB (Eads = -49.29 kcal mol-1) compared to CV (Eads = -41.30 kcal mol-1). These findings underscore MNCH's excellent adsorption capacity, making it promising for removing dyes.
Collapse
Affiliation(s)
- Muhammad Umar
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Swabi 23640, Pakistan; Department of Environmental Engineering, Ondokuz Mayıs Üniversitesi, Samsun, Turkey
| | - Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Swabi 23640, Pakistan.
| | - Feryal Akbal
- Department of Environmental Engineering, Ondokuz Mayıs Üniversitesi, Samsun, Turkey.
| | - Muhammad Usama
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Swabi 23640, Pakistan
| | - Ramesha Tariq
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Swabi 23640, Pakistan; Department of Chemical Engineering, The University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Swabi 23640, Pakistan
| | - Shafiq Uz Zaman
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Swabi 23640, Pakistan
| | - Handan Atalay Eroğlu
- Department of Environmental Engineering, Ondokuz Mayıs Üniversitesi, Samsun, Turkey
| | - Elif Nihan Kadıoğlu
- Department of Environmental Engineering, Ondokuz Mayıs Üniversitesi, Samsun, Turkey
| |
Collapse
|
6
|
Zhao W, Yin P, Wang Z, Huang J, Fu Y, Hu W. Recent advances in regulation methods for selective separation and precise control of two-dimensional (2D) lamellar membranes. Adv Colloid Interface Sci 2024; 334:103330. [PMID: 39486346 DOI: 10.1016/j.cis.2024.103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Selective separation and precise control of the structure and surface characterization for two-dimensional (2D) membranes is the key technology that needs to be revealed for further development of the material in practical application. Current researches focus on the cross-linking and modification of single nanosheet to improve and manipulate the performance of 2D lamellar membranes. In this paper, the selectivity principles such as size exclusion, charge properties, and surface chemical affinity in the separation process of 2D membranes were comprehensively and systematically reviewed, as well as the preparation of hybrid membranes combining the advantages of various raw materials. We also analyzed the practical application of the separation principles in relevant researches and discussed the development directions of 2D membranes. These inductions have certain summary and guiding significance for the selective regulation and goal-oriented design of 2D membranes.
Collapse
Affiliation(s)
- Weixuan Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Ping Yin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zulin Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Junnan Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yiming Fu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Wenjihao Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
7
|
Xie Y, Guo X, Wei Y, Hu H, Yang L, Xiao H, Li H, He G, Shao P, Yang G, Luo X. Stable and antibacterial tannic acid-based covalent polymeric hydrogel for highly selective Pb 2+ recovery from lead-acid battery industrial wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135654. [PMID: 39217941 DOI: 10.1016/j.jhazmat.2024.135654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The resource of trace lead (Pb2+) from wastewater bearing intricate components is imperative for sustainable progression of the lead-acid battery industry. Herein, we fabricated a tannic acid-based covalent polymeric hydrogel (TA@PMAM) with antimicrobial properties and stability via facile Michael addition reaction. The incorporation of tannic acid (TA) through robust covalent bond leads to a stable porous 3D covalent polymer network with almost no loss of mechanical properties even after 20 compression cycles. Batch adsorption experiments of TA@PMAM revealed an extraordinary adsorption capacity of Pb2+(Qe =196.6 mg/g), achieving 87.2 % of Pb2+ adsorption within the first 5 min owing to porous structure, numerous adsorption sites and good hydrophilicity. Moreover, TA@PMAM demonstrated a strong affinity for Pb2+ in the presence of the interfere metal ions (Cu2+, Co2+, Mn2+etc.) due to the carbonyl and phenolic hydroxyl that can specifically pair with Pb2+. Stable adsorption properties of TA@PMAM were confirmed in fixed bed column adsorption experiment using lead-acid batteries wastewater, retaining 79.56 % of initial adsorption capacity even after 10 times' reuse. Besides, TA@PMAM possesses a broad spectrum of antimicrobial properties. This study sheds novel light on the design and fabrication of adsorbent, which holds great potential for commercialization in recovering lead from battery industrial wastewater.
Collapse
Affiliation(s)
- Yaohui Xie
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xunsheng Guo
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yun Wei
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huiqin Hu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| | - Huiji Xiao
- School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| | - Hongyu Li
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Genhe He
- School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China.
| |
Collapse
|
8
|
Hoenig E, Han Y, Xu K, Li J, Wang M, Liu C. In situ generation of (sub) nanometer pores in MoS 2 membranes for ion-selective transport. Nat Commun 2024; 15:7911. [PMID: 39256368 PMCID: PMC11387774 DOI: 10.1038/s41467-024-52109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Ion selective membranes are fundamental components of biological, energy, and computing systems. The fabrication of solid-state ultrathin membranes that can separate ions of similar size and the same charge with both high selectivity and permeance remains a challenge, however. Here, we present a method, utilizing the application of a remote electric field, to fabricate a high-density of (sub)nm pores in situ. This method takes advantage of the grain boundaries in few-layer polycrystalline MoS2 to enable the synthesis of nanoporous membranes with average pore size tunable from <1 to ~4 nm in diameter (with in situ pore expansion resolution of ~0.2 nm2 s-1). These membranes demonstrate selective transport of monovalent ions (K+, Na+ and Li+) as well as divalent ions (Mg2+ and Ca2+), outperforming existing two-dimensional material nanoporous membranes that display similar total permeance. We investigate the mechanism of selectivity using molecular dynamics simulations and unveil that the interactions between cations and the sluggish water confined to the pore, as well as cation-anion interactions, result in the different transport behaviors observed between ions.
Collapse
Affiliation(s)
- Eli Hoenig
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Yu Han
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Kangli Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jingyi Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
9
|
Mei L, Sun M, Yang R, Zhang Y, Zhang Y, Zhang Z, Zheng L, Chen Y, Zhang Q, Zhou J, Zhu Y, Leung KMY, Zhang W, Fan J, Huang B, Zeng XC, Shin HS, Tang CY, Gu L, Voiry D, Zeng Z. Metallic 1T/1T' phase TMD nanosheets with enhanced chemisorption sites for ultrahigh-efficiency lead removal. Nat Commun 2024; 15:7770. [PMID: 39349434 PMCID: PMC11442624 DOI: 10.1038/s41467-024-52078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 10/02/2024] Open
Abstract
Two-dimensional (2D) materials, as adsorbents, have garnered great attention in removing heavy metal ions (HMIs) from drinking water due to their extensive exposed adsorption sites. Nevertheless, there remains a paucity of experimental research to remarkably unlock their adsorption capabilities and fully elucidate their adsorption mechanisms. In this work, exceptional lead ion (Pb2+) (a common HMI) removal capacity (up to 758 mg g-1) is achieved using our synthesized metallic 1T/1T' phase 2D transition metal dichalcogenide (TMD, including MoS2, WS2, TaS2, and TiS2) nanosheets, which hold tremendous activated S chemisorption sites. The residual Pb2+ concentration can be reduced from 2 mg L-1 to 2 μg L-1 within 0.5 min, meeting the drinking water standards following World Health Organization guideline (Pb2+ concentrations <10 μg L-1). Atomic-scale characterizations and calculations based on density functional theory unveil that Pb2+ bond to the top positions of transition metal atoms in a single-atom form through the formation of S-Pb bonds. Point-of-use (POU) devices fabricated by our reported metallic phase MoS2 nanosheets exhibit treatment capacity of 55 L-water g-1-adsorbent for feed Pb2+ concentration of 1 mg L-1, which is 1-3 orders of magnitude higher than other 2D materials and commercial activated carbon.
Collapse
Affiliation(s)
- Liang Mei
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ruijie Yang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Yaqin Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Yuefeng Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Zhen Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, 410083, Hunan, PR China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Jun Fan
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Hyeon Suk Shin
- Center for 2D Quantum Heterostructures, Institute for Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34000, Montpellier, France
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
10
|
Guan W, Zhang Z, Liu Y, Ji Y, Tong X, Liu Y, Chen J, Alvarez PJJ, Chen W, Zhang T. Crystalline Phase Regulates Microbial Methylation Potential of Mercury Bound to MoS 2 Nanosheets: Implications for Safe Design of Mercury Removal Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13110-13119. [PMID: 38989600 DOI: 10.1021/acs.est.4c01552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Transition-metal dichalcogenides (TMDs) have shown great promise as selective and high-capacity sorbents for Hg(II) removal from water. Yet, their design should consider safe disposal of spent materials, particularly the subsequent formation of methylmercury (MeHg), a highly potent and bioaccumulative neurotoxin. Here, we show that microbial methylation of mercury bound to MoS2 nanosheets (a representative TMD material) is significant under anoxic conditions commonly encountered in landfills. Notably, the methylation potential is highly dependent on the phase compositions of MoS2. MeHg production was higher for 1T MoS2, as mercury bound to this phase primarily exists as surface complexes that are available for ligand exchange. In comparison, mercury on 2H MoS2 occurs largely in the form of precipitates, particularly monovalent mercury minerals (e.g., Hg2MoO4 and Hg2SO4) that are minimally bioavailable. Thus, even though 1T MoS2 is more effective in Hg(II) removal from aqueous solution due to its higher adsorption affinity and reductive ability, it poses a higher risk of MeHg formation after landfill disposal. These findings highlight the critical role of nanoscale surfaces in enriching heavy metals and subsequently regulating their bioavailability and risks and shed light on the safe design of heavy metal sorbent materials through surface structural modulation.
Collapse
Affiliation(s)
- Wenyu Guan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Zhanhua Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yunyun Ji
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Xin Tong
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Jiubin Chen
- School of Earth System Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| |
Collapse
|
11
|
Fan D, Peng Y, He X, Ouyang J, Fu L, Yang H. Recent Progress on the Adsorption of Heavy Metal Ions Pb(II) and Cu(II) from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1037. [PMID: 38921913 PMCID: PMC11206449 DOI: 10.3390/nano14121037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
With the processes of industrialization and urbanization, heavy metal ion pollution has become a thorny problem in water systems. Among the various technologies developed for the removal of heavy metal ions, the adsorption method is widely studied by researchers and various nanomaterials with good adsorption performances have been prepared during the past decades. In this paper, a variety of novel nanomaterials with excellent adsorption performances for Pb(II) and Cu(II) reported in recent years are reviewed, such as carbon-based materials, clay mineral materials, zero-valent iron and their derivatives, MOFs, nanocomposites, etc. The novel nanomaterials with extremely high adsorption capacity, selectivity and particular nanostructures are summarized and introduced, along with their advantages and disadvantages. And, some future research priorities for the treatment of wastewater are also prospected.
Collapse
Affiliation(s)
- Dikang Fan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
| | - Yang Peng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Xi He
- Changsha Industrial Technology Research Institute (Environmental Protection) Co., Ltd., Changsha 410083, China;
- Aerospace Kaitian Environmental Technology Co., Ltd., Changsha 410083, China
| | - Jing Ouyang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
| | - Liangjie Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
12
|
Li L, Wang M, Pan Y, Liu B, Chen B, Zhang M, Liu X, Wang Z. Simultaneous decomplexation of Pb-EDTA and elimination of free Pb ions by MoS 2/H 2O 2: Mechanisms and applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134292. [PMID: 38631254 DOI: 10.1016/j.jhazmat.2024.134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The critical challenge of effectively removing Pb-EDTA complexes and Pb(II) ions from wastewater is pivotal for environmental remediation. This research introduces a cutting-edge bulk-MoS2/H2O2 system designed for the simultaneous decomplexation of Pb-EDTA complexes and extraction of free Pb(II) ions, streamlining the process by eliminating the need for subsequent treatment stages. The system exhibits outstanding efficiency, achieving 98.1% decomplexation of Pb-EDTA and 98.6% removal of Pb. Its effectiveness is primarily due to the generation of reactive oxygen species, notably •OH and O2•- radicals, facilitated by bulk-MoS2 and H2O2. Key operational parameters such as reagent dosages, Pb(II): EDTA molar ratios, solution pH, and the presence of coexisting ions were meticulously evaluated to determine their impact on the system's performance. Through a suite of analytical techniques, the study confirmed the disruption of Pb-O and Pb-N bonds, further elucidating the decomplexation process. It also underscored the synergistic role of bulk-MoS2's adsorption properties and the formation of PbMoO4-like precipitates in enhancing Pb elimination. Demonstrating the bulk-MoS2/H2O2 system as a robust, one-step solution that meets stringent Pb emission standards, this study provides in-depth insights into the removal mechanisms of Pb-EDTA, affirming its potential for broader application in wastewater treatment practices.
Collapse
Affiliation(s)
- Li Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mengxia Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, PR China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Beizhao Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xun Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, PR China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
13
|
Yang T, Gao N, Li B. Biomass hydrothermal carbonization solution-assisted synthesis of intercalation-expanded core-shell structured molybdenum disulfide for efficient adsorption of Cr (VI) in electroplating wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 401:130761. [PMID: 38692370 DOI: 10.1016/j.biortech.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Cr (VI) is a common heavy metal pollutant in electroplating wastewater. This study introduces the liquid-phase product from the hydrothermal reaction of coffee grounds (CGHCL) into the synthesis process of molybdenum disulfide, assisting in the fabrication of an intercalated, expanded core-shell structured molybdenum disulfide adsorbent (C-MoS2), designed for the adsorption and reduction of Cr (VI) from electroplating wastewater. The addition of CGHCL significantly enhances the adsorption performance of MoS2. Furthermore, C-MoS2 exhibits exceedingly high removal efficiency and excellent regenerative capability for Cr (VI)-containing electroplating wastewater. The core-shell structure effectively minimizes molybdenum leaching to the greatest extent, while the oleophobic interface is unaffected by oily substances in water, and the expanded interlayer structure ensures the long-term stability of C-MoS2 in air (90 days). This study provides a viable pathway for the resource utilization of biomass and the application of molybdenum disulfide-based materials in wastewater treatment.
Collapse
Affiliation(s)
- Tianyu Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Na Gao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Low Carbon Technology Research Center, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
14
|
Liu L, Lan H, Cui Y, Tang Q, Bai J, An X, Sun M, Liu H, Qu J. A Janus membrane with electro-induced multi-affinity interfaces for high-efficiency water purification. SCIENCE ADVANCES 2024; 10:eadn8696. [PMID: 38787943 PMCID: PMC11122666 DOI: 10.1126/sciadv.adn8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Drinking water with micropollutants is a notable environmental concern worldwide. Membrane separation is one of the few methods capable of removing micropollutants from water. However, existing membranes face challenges in the simultaneous and efficient treatment of small-molecular and ionic contaminants because of their limited permselectivity. Here, we propose a high-efficiency water purification method using a low-pressure Janus membrane with electro-induced multi-affinity. By virtue of hydrophobic and electrostatic interactions between the functional interfaces and contaminants, the Janus membrane achieves simultaneous separation of diverse types of organics and heavy metals from water via single-pass filtration, with an approximately 100% removal efficiency, high water flux (>680 liters m-2 hour-1), and 98% lower energy consumption compared with commercial nanofiltration membranes. The electro-induced switching of interfacial affinity enables 100% regeneration of membrane performance; thus, our work paves a sustainable avenue for drinking water purification by regulating the interfacial affinity of membranes.
Collapse
Affiliation(s)
- Lie Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | | | - Yuqi Cui
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingwen Tang
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaqi Bai
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Meng Sun
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Wang M, Song YJ, Jiang W, Fornasiero F, Urban JJ, Mi B. Layer-by-layer Assembly of Nanosheets with Matching Size and Shape for More Stable Membrane Structure than Nanosheet-Polymer Assembly. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26568-26579. [PMID: 38717139 PMCID: PMC11129114 DOI: 10.1021/acsami.4c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024]
Abstract
Layer-by-layer (LbL) assembly of oppositely charged materials has been widely used as an approach to make two-dimensional (2D) nanosheet-based membranes, which often involves 2D nanosheets being alternately deposited with polymer-based polyelectrolytes to obtain an electrostabilized nanosheet-polymer structure. In this study, we hypothesized that using 2D nanosheets with matching physical properties as both polyanions and polycations may result in a more ordered nanostructure with better stability than a nanosheet-polymer structure. To compare the differences between nanosheet-nanosheet vs nanosheet-polymer structures, we assembled negatively charged molybdenum disulfide nanosheets (MoS2) with either positively charged graphene oxide (PrGO) nanosheets or positively charged polymer (PDDA). Using combined measurements by ellipsometer and quartz crystal microbalance with dissipation, we discovered that the swelling of MoS2-PrGO in ionic solutions was 60% lower than that of MoS2-PDDA membranes. Meanwhile, the MoS2-PrGO membrane retained its permeability upon drying, whereas the permeability of MoS2-PDDA decreased by 40% due to the restacking of MoS2. Overall, the MoS2-PrGO membrane demonstrated a better filtration performance. Additionally, our X-ray photoelectron spectroscopy results and analysis on layer density revealed a clearer transition in material composition during the LbL synthesis of MoS2-PrGO membranes, and the X-ray diffraction pattern suggested its resemblance to an ordered, layer-stacked structure. In conclusion, the MoS2-PrGO membrane made with nanosheets with matching size, shape, and charge density exhibited a much more aligned stacking structure, resulting in reduced membrane swelling under high salinity solutions, controlled restacking, and improved separation performance.
Collapse
Affiliation(s)
- Monong Wang
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Young-Jin Song
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Wenli Jiang
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Francesco Fornasiero
- Biosciences
and Biotechnology Division, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| | - Jeffrey J. Urban
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Baoxia Mi
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Wang M, Han Q, Zhang M, Liu X, Liu B, Wang Z. Efficient remediation of mercury-contaminated groundwater using MoS 2 nanosheets in an in situ reactive zone. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104347. [PMID: 38657473 DOI: 10.1016/j.jconhyd.2024.104347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Mercury contamination in groundwater is a serious global environmental issue that poses threats to human and environmental health. While MoS2 nanosheets have been proven promising in removing Hg from groundwater, an effective tool for in situ groundwater remediation is still needed. In this study, we investigated the transport and retention behavior of MoS2 nanosheets in sand column, and employed the formed MoS2in situ reactive zone (IRZ) for the remediation of Hg-contaminated groundwater. Breakthrough test revealed that high flow velocity and MoS2 initial concentration promoted the transport of MoS2 in sand column, while the addition of Ca ions increased the retention of MoS2. In Hg removal experiments, the groundwater flow velocity did not influence the Hg removal capacity due to the fast reaction rate between MoS2 and Hg. With an optimized MoS2 loading, MoS2IRZ effectively reduced the Hg effluent concentration down to <1 μg/L without apparent Hg remobilization. Additionally, flake-like MoS2 employed in this study showed much better Hg removal performance than flower-like and bulk MoS2, as well as other reported materials, with the Hg removal capacity a few to tens of times higher than those materials. These results suggest that MoS2 nanosheets have the potential to be an efficient IRZ reactive material for in situ remediation of Hg in contaminated groundwater.
Collapse
Affiliation(s)
- Mengxia Wang
- School of Environment, Harbin Institute of Technology, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xun Liu
- School of Environment, Harbin Institute of Technology, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
17
|
Dischinger S, Miller DJ, Vermaas DA, Kingsbury RS. Unifying the Conversation: Membrane Separation Performance in Energy, Water, and Industrial Applications. ACS ES&T ENGINEERING 2024; 4:277-289. [PMID: 38357245 PMCID: PMC10862477 DOI: 10.1021/acsestengg.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Dense polymer membranes enable a diverse range of separations and clean energy technologies, including gas separation, water treatment, and renewable fuel production or conversion. The transport of small molecular and ionic solutes in the majority of these membranes is described by the same solution-diffusion mechanism, yet a comparison of membrane separation performance across applications is rare. A better understanding of how structure-property relationships and driving forces compare among applications would drive innovation in membrane development by identifying opportunities for cross-disciplinary knowledge transfer. Here, we aim to inspire such cross-pollination by evaluating the selectivity and electrochemical driving forces for 29 separations across nine different applications using a common framework grounded in the physicochemical characteristics of the permeating and rejected solutes. Our analysis shows that highly selective membranes usually exhibit high solute rejection, rather than fast solute permeation, and often exploit contrasts in the size and charge of solutes rather than a nonelectrostatic chemical property, polarizability. We also highlight the power of selective driving forces (e.g., the fact that applied electric potential acts on charged solutes but not on neutral ones) to enable effective separation processes, even when the membrane itself has poor selectivity. We conclude by proposing several research opportunities that are likely to impact multiple areas of membrane science. The high-level perspective of membrane separation across fields presented herein aims to promote cross-pollination and innovation by enabling comparisons of solute transport and driving forces among membrane separation applications.
Collapse
Affiliation(s)
- Sarah
M. Dischinger
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Daniel J. Miller
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - David A. Vermaas
- Department
of Chemical Engineering, Delft University
of Technology, 2629HZ Delft, The
Netherlands
| | - Ryan S. Kingsbury
- Energy
Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering and the Andlinger Center for
Energy and the Environment, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
18
|
Li D, Li Y, He S, Hu T, Li H, Wang J, Zhang Z, Zhang Y. Resourcization of Argillaceous Limestone with Mn 3O 4 Modification for Efficient Adsorption of Lead, Copper, and Nickel. TOXICS 2024; 12:72. [PMID: 38251027 PMCID: PMC10820775 DOI: 10.3390/toxics12010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Argillaceous limestone (AL) is comprised of carbonate minerals and clay minerals and is widely distributed throughout the Earth's crust. However, owing to its low surface area and poorly active sites, AL has been largely neglected. Herein, manganic manganous oxide (Mn3O4) was used to modify AL by an in-situ deposition strategy through manganese chloride and alkali stepwise treatment to improve the surface area of AL and enable its utilization as an efficient adsorbent for heavy metals removal. The surface area and cation exchange capacity (CEC) were enhanced from 3.49 to 24.5 m2/g and 5.87 to 31.5 cmoL(+)/kg with modification, respectively. The maximum adsorption capacities of lead (Pb2+), copper (Cu2+), and nickel (Ni2+) ions on Mn3O4-modified argillaceous limestone (Mn3O4-AL) in mono-metal systems were 148.73, 41.30, and 60.87 mg/g, respectively. In addition, the adsorption selectivity in multi-metal systems was Pb2+ > Cu2+ > Ni2+ in order. The adsorption process conforms to the pseudo-second-order model. In the multi-metal system, the adsorption reaches equilibrium at about 360 min. The adsorption mechanisms may involve ion exchange, precipitation, electrostatic interaction, and complexation by hydroxyl groups. These results demonstrate that Mn3O4 modification realized argillaceous limestone resourcization as an ideal adsorbent. Mn3O4-modified argillaceous limestone was promising for heavy metal-polluted water and soil treatment.
Collapse
Affiliation(s)
- Deyun Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Shuran He
- College of Resource and Environment, Yunnan Agricultural University, Kunming 650201, China;
| | - Tian Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Hanhao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (D.L.); (Y.L.); (H.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; (T.H.); (J.W.); (Z.Z.)
| |
Collapse
|
19
|
Wang M, Sadhukhan T, Lewis NHC, Wang M, He X, Yan G, Ying D, Hoenig E, Han Y, Peng G, Lee OS, Shi F, Tiede DM, Zhou H, Tokmakoff A, Schatz GC, Liu C. Anomalously enhanced ion transport and uptake in functionalized angstrom-scale two-dimensional channels. Proc Natl Acad Sci U S A 2024; 121:e2313616121. [PMID: 38165939 PMCID: PMC10786305 DOI: 10.1073/pnas.2313616121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/01/2023] [Indexed: 01/04/2024] Open
Abstract
Emulating angstrom-scale dynamics of the highly selective biological ion channels is a challenging task. Recent work on angstrom-scale artificial channels has expanded our understanding of ion transport and uptake mechanisms under confinement. However, the role of chemical environment in such channels is still not well understood. Here, we report the anomalously enhanced transport and uptake of ions under confined MoS2-based channels that are ~five angstroms in size. The ion uptake preference in the MoS2-based channels can be changed by the selection of surface functional groups and ion uptake sequence due to the interplay between kinetic and thermodynamic factors that depend on whether the ions are mixed or not prior to uptake. Our work offers a holistic picture of ion transport in 2D confinement and highlights ion interplay in this regime.
Collapse
Affiliation(s)
- Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Tumpa Sadhukhan
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu603203, India
| | - Nicholas H. C. Lewis
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, IL60637
| | - Maoyu Wang
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Xiang He
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center and Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Gangbin Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Dongchen Ying
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Eli Hoenig
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Yu Han
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Guiming Peng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - One-Sun Lee
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Fengyuan Shi
- Electron Microscopy Core, University of Illinois Chicago, Chicago, IL60607
| | - David M. Tiede
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center and Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Hua Zhou
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, IL60637
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| |
Collapse
|
20
|
Yuan M, Liu D, Shang S, Song Z, You Q, Huang L, Cui S. A novel magnetic Fe 3O 4/cellulose nanofiber/polyethyleneimine/thiol-modified montmorillonite aerogel for efficient removal of heavy metal ions: Adsorption behavior and mechanism study. Int J Biol Macromol 2023; 253:126634. [PMID: 37678684 DOI: 10.1016/j.ijbiomac.2023.126634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
To efficiently remove heavy metals from wastewater, designing an adsorbent with high adsorption capacity and ease of recovery is necessary. This paper presents a novel magnetic hybridized aerogel, Fe3O4/cellulose nanofiber/polyethyleneimine/thiol-modified montmorillonite (Fe3O4/CNF/PEI/SHMMT), and explores its adsorption performance and mechanism for Pb2+, Cu2+, and Cd2+ in aqueous solutions. The hybrid aerogel has a slit-like porous structure and numerous exposed active sites, which facilitates the uptake of metal ions by adsorption. Pb2+, Cu2+, and Cd2+ adsorption by the hybridized aerogel followed the second-order kinetics and the Langmuir isotherm model, the maximum adsorption of Pb2+, Cu2+, and Cd2+ at 25 °C, pH = 6, 800 mg/L was 429.18, 381.68 and 299.40 mg/g, respectively. The adsorption process was primarily attributed to monolayer chemical adsorption, a spontaneous heat-absorption reaction. FTIR, XPS and DFT studies confirmed that the adsorption mechanisms of Fe3O4/CNF/PEI/SHMMT on Pb2+, Cu2+, and Cd2+ were mainly chelation, coordination, and ion exchange. The lowest adsorption energy of Pb2+ on the hybrid aerogel was calculated to be -2.37 Ha by DFT, which indicates that the sample has higher adsorption affinity and preferential selectivity for Pb2+. After 5 cycles, the adsorption efficiency of the aerogel was still >85 %. The incorporation of Fe3O4 improved the mechanical properties of the aerogel. The Fe3O4/CNF/PEI/SHMMT has fast magnetic responsiveness, and it is easy to be separated and recovered after adsorption, which is a promising potential for the treatment of heavy metal ions.
Collapse
Affiliation(s)
- Man Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Dongsheng Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Sisi Shang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Zihao Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Qi You
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Longjin Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Sheng Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China.
| |
Collapse
|
21
|
Sheng X, Chen S, Zhao Z, Li L, Zou Y, Shi H, Shao P, Yang L, Wu J, Tan Y, Lai X, Luo X, Cui F. Rationally designed calcium carbonate multifunctional trap for contaminants adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166142. [PMID: 37574061 DOI: 10.1016/j.scitotenv.2023.166142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Adsorption technology has been widely developed to control environmental pollution, which plays an important role in the sustainable development of modern society. Calcium carbonate (CaCO3) is characterized by its flexible pore design and functional group modification, which meet the high capacity and targeting requirements of adsorption. Therefore, its charm of "small materials for great use" makes it a suitable candidate for adsorption. Firstly, we comprehensively review the research progress of controlled synthesis and surface modification of CaCO3, and its application for adsorbing contaminants from water and air. Then, we systematically examine the structure-effect relationship between CaCO3 adsorbents and contaminants, while also intrinsic mechanism of remarkable capacity and targeted adsorption. Finally, from the perspective of material design and engineering application, we offer insightful discussion on the prospects and challenges of calcium carbonate adsorbents, providing a valuable reference for the further research in this field.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Shengnan Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Li Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanpeng Zou
- School of Foreign Languages and Cultures, Chongqing University, 400044, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingsheng Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yaofu Tan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xinyuan Lai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| | - Fuyi Cui
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
22
|
Liu L, Lan H, Cui Y, An X, Sun M, Liu H, Qu J. Electrically Redox-Active Membrane with Switchable Selectivity to Contaminants for Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17640-17648. [PMID: 37906121 DOI: 10.1021/acs.est.3c07030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Membrane technology provides an attractive approach for water purification but faces significant challenges in separating small molecules due to its lack of satisfactory permselectivity. In this study, a polypyrrole-based active membrane with a switchable multi-affinity that simultaneously separates small ionic and organic contaminants from water was created. Unlike conventional passive membranes, the designed membrane exhibits a good single-pass filtration efficiency (>99%, taking 1-naphthylamine and Pb2+ as examples) and high permeability (227 L/m2/h). Applying a reversible potential can release the captured substances from the membrane, thus enabling membrane regeneration and self-cleaning without the need for additives. Advanced characterizations reveal that potential switching alters the orientation of the doped amphipathic molecules with the self-alignment of the hydrophobic alkyl chains or the disordered sulfonate anions to capture the target organic molecules or ions via hydrophobic or electrostatic interactions, respectively. The designed smart membrane holds great promise for controllable molecular separation and water purification.
Collapse
Affiliation(s)
- Lie Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuqi Cui
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Rego RM, Ajeya KV, Jung HY, Kabiri S, Jafarian M, Kurkuri MD, Kigga M. Nanoarchitectonics of Bimetallic MOF@Lab-Grade Flexible Filter Papers: An Approach Towards Real-Time Water Decontamination and Circular Economy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302692. [PMID: 37469019 DOI: 10.1002/smll.202302692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Indexed: 07/21/2023]
Abstract
This study presents a novel approach to decontaminate ferrocyanide-contaminated wastewater. The work effectively demonstrates the use of bimetallic Mo/Zr-UiO-66 as a super-adsorbent for rapid sequestration of Prussian blue, a frequently found iron complex in cyanide-contaminated soils/groundwater. The exceptional performance of Mo/Zr-UiO-66 is attributed to the insertion of secondary metallic sites, which deliver synergistic effects, benefiting the inherent qualities of the framework. Moreover, to extend the industrial applications of metal-organic frameworks (MOFs) in real-world scenarios, an approach is delivered to structure the nanocrystalline powders into MOF-based macrostructures. The work demonstrates an interfacial process to develop continuous MOF nanostructures on ordinary laboratory-grade filter papers. The novelty of the work lies in the development of robust free-standing filtration materials to purify PB dye-contaminated water. Additionally, the work embraces a circular economy concept to address problems related to resource scarcity, excessive waste production, and maintenance of economic benefits. Consequently, the PB dye-loaded adsorbent waste is re-employed for the adsorption of heavy metals (Pb2+ and Cd2+ ). Simultaneously, the study aims to address the problems related to the real-time handling of powdered adsorbents, and the generation of ecologically harmful secondary waste, thereby, progressing toward a more sustainable system.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, The University of Adelaide, PMB 1 Waite Campus, Glen Osmond, SA, 5005, Australia
| | - Mehdi Jafarian
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mahaveer D Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| |
Collapse
|
24
|
Zou W, Ma S, Ma H, Zhang G, Cao Z, Zhang X. Componential and molecular-weight-dependent effects of natural organic matter on the colloidal behavior, transformation, and toxicity of MoS2 nanoflakes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132186. [PMID: 37531770 DOI: 10.1016/j.jhazmat.2023.132186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The potential widespread applications in water processing have rendered the necessity for investigations of the fate and hazard of molybdenum disulfide (MoS2) nanosheets. Herein, it was found that humic acid (HA) had better performances toward stabilizing pure 2H phase MoS2 and chemical-exfoliated MoS2 (ce-MoS2) in electrolyte solutions than fulvic acid (FA), and molecular weight (MW)-dependent manners were disclosed due to steric repulsions. Compared with darkness, the extent to which the aggregation and sedimentation of ce-MoS2 facilitated by visible light irradiation was greater in the presence of HA and FA fractions, likely due to the introduction of stronger plasmonic dipole-dipole interaction and Van der Waals attraction forces. HA-triggered structural disintegration of nanosheets was performed after irradiation and it was observed to be more significant with the increase in MWs, whereas the MW-dependent dissolution of MoS2 caused by FA was much quicker than that by HA owing to the higher generation of singlet oxygen. Moreover, FA lowered the bioavailability of MoS2 and relieved its toxicity to zebrafish more effectively than HA. Our findings boost the insights into the effects of organic molecules on the fates and hazards of MoS2, providing guidance for the MoS2-based nanotechnological development on environment.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Sai Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Haiwen Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Guoqing Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
25
|
Li M, Tuo Y, Wu Q, Lin H, Feng Q, Duan Y, Wei J, Chen Z, Lv J, Li L. One-step synthesis of thiol-functionalized metal coordination polymers: effective and superfast removal of Hg (II) in the different matrices to ppb level. CHEMOSPHERE 2023; 338:139618. [PMID: 37487976 DOI: 10.1016/j.chemosphere.2023.139618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The mercury in water bodies has posed a great threat to the environment and humans, and removing mercury and purifying wastewater has become a global environmental issue. Adopting Zn(II) coordination polymers (Zn-CPs) emerged as a new approach, however, the kind of Zn-CPs, which solely consisted of amino groups, exhibited unsatisfactory performance in capturing Hg(II) at a low level and causing the subsequent leaching of Zn(II) after adsorption. In this study, we fabricated the thiol-modified Zn-based coordination polymers (Zn-CPs-SH) through a one-step solvothermal reaction to efficiently capture Hg(II) from wastewater. Its preeminent adsorption performance could be maintained across a broad range of pH (2-7), ion strength (Cl-, SO42-, and NO3- at 0-10,000 mg/L), and dissolved organic matter (0-100 mg/L). The impressive properties, including fast kinetics (k2∼1.01 × 10-4 L/min), outstanding adsorption capacity (1278.72 mg/g, 298 K), superior selectivity (Kd∼2.3 × 104 mL/g), and excellent regeneration capability (Re = 93.54% after 5 cycles), were attributed to the ultra-abundance of adsorption sites donating from thiol groups, which was revealed by XPS analysis, DFT calculations, and molecular orbital theory. Noteworthy, the high practical application potential of Zn-CPs-SH was demonstrated by its outstanding Hg(II) removal efficiency (Re ≥ 99.10%) in various Hg(II)-spiked water matrices, e.g., tap water, river water, and industrial wastewater. Importantly, the residual Hg(II) in the treated water declined to the ppb level without any Zn(II) leaching. Overall, it is highly anticipated that the incorporation of Zn-CPs-SH would facilitate the practical implementation of highly efficient Hg(II) removal in wastewater treatment owing to its exhibiting high selective affinity, superior adsorption capacity, and enhanced efficiency.
Collapse
Affiliation(s)
- Mingzhi Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yongjie Tuo
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Qiuxia Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Haiying Lin
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, China.
| | - Qingge Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, China
| | - Yu Duan
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Junqi Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Zixuan Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Jiatong Lv
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Lianghong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|
26
|
Hu H, Tang CS, Shen Z, Pan X, Gu K, Fan X, Lv C, Mu W, Shi B. Enhancing lead immobilization by biochar: Creation of "surface barrier" via bio-treatment. CHEMOSPHERE 2023; 327:138477. [PMID: 36966928 DOI: 10.1016/j.chemosphere.2023.138477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
The long-term effectiveness of heavy metal immobilization is always a concern. This study proposes a completely novel approach to enhance the stability of heavy metals by combined biochar and microbial induced carbonate precipitation (MICP) technology, to create a "surface barrier" of CaCO3 layer on biochar after lead (Pb2+) immobilization. Aqueous sorption studies and chemical and micro-structure tests were used to verify the feasibility. Rice straw biochar (RSB700) was produced at 700 °C, which shows high immobilization capacity of Pb2+ (maximum of 118 mg g-1). But the stable fraction only accounts for 4.8% of the total immobilized Pb2+ on biochar. After MICP treatment, the stable fraction of Pb2+ significantly increased to a maximum of 92.5%. Microstructural tests confirm the formation of CaCO3 layer on biochar. The CaCO3 species are predominantly calcite and vaterite. Higher Ca2+ and urea concentrations in cementation solution resulted in higher CaCO3 yield but lower Ca2+ utilization efficiency. The main mechanism of the "surface barrier" to enhance Pb2+ stability on biochar was likely the encapsulation effect: it physically blocked the contact between acids and Pb2+ on biochar, and chemically buffer the acidic attack from the environment. The performance of the "surface barrier" depends on both the yield of CaCO3 and their distribution uniformity on biochar's surface. This study shed lights on the potential application of the "surface barrier" strategy combining biochar and MICP technologies for enhanced heavy metal immobilization.
Collapse
Affiliation(s)
- Huicong Hu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Chao-Sheng Tang
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
| | - Zhengtao Shen
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xiaohua Pan
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Kai Gu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaoliang Fan
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Chao Lv
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Wen Mu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Bin Shi
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
27
|
Li S, Yang L, Wu J, Yao L, Han D, Liang Y, Yin Y, Hu L, Shi J, Jiang G. Efficient and selective removal of Hg(II) from water using recyclable hierarchical MoS 2/Fe 3O 4 nanocomposites. WATER RESEARCH 2023; 235:119896. [PMID: 36965293 DOI: 10.1016/j.watres.2023.119896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Developing practical and cost-effective adsorbents with satisfactory mercury (Hg) remediation capability is indispensable for aquatic environment safety and public health. Herein, a recyclable hierarchical MoS2/Fe3O4 nanocomposite (by in-situ growth of MoS2 nanosheets on the surface of Fe3O4 nanospheres) is presented for the selective removal of Hg(II) from aquatic samples. It exhibited high adsorption capacity (∼1923.5 mg g -1), fast kinetics (k2 ∼ 0.56 mg g -1 min-1), broad working pH range (2-11), excellent selectivity (Kd > 1.0 × 107 mL g -1), and great reusability (removal efficiency > 90% after 20 cycles). In particular, removal efficiencies of up to ∼97% for different Hg(II) concentrations (10-1000 μg L -1) in natural water and industrial effluents confirmed the practicability of MoS2/Fe3O4. The possible mechanism for effective Hg(II) removal was discussed by a series of characterization analyses, which was attributed to the alteration of the MoS2 structure and the surface coordination of Hg-S. The accessibility of surface sulfur sites and the diffusion of Hg(II) in the solid-liquid system were enhanced due to the advantage of the expanded interlayer spacing (0.96 nm) and the hierarchical structure. This study suggests that MoS2/Fe3O4 is a promising material for Hg(II) removal in actual scenarios and provides a feasible approach by rationally constructing hierarchical structures to promote the practical applications of MoS2 in sustainable water treatments.
Collapse
Affiliation(s)
- Shiyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialong Wu
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Deming Han
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Xie S, Pan C, Yao Y, Yu X, Xu Z, Yuan W, Zhang Y, Guo N, Li X, Mao X, Xiao S, Li J, Guo Y. Ultra-high-efficiency capture of lead ions over acetylenic bond-rich graphdiyne adsorbent in aqueous solution. Proc Natl Acad Sci U S A 2023; 120:e2221002120. [PMID: 37036993 PMCID: PMC10120024 DOI: 10.1073/pnas.2221002120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/01/2023] [Indexed: 04/12/2023] Open
Abstract
A satisfactory material with high adsorption capacity is urgently needed to solve the serious problem of environment and human health caused by lead pollution. Herein, hydrogen-substituted graphdiyne (HsGDY) was successfully fabricated and employed to remove lead ions from sewage and lead-containing blood. The as-prepared HsGDY exhibits the highest adsorption capacity of lead among the reported materials with a maximum adsorption capacity of 2,390 mg/g, i.e., ~five times larger than that of graphdiyne (GDY). The distinguished hexagonal hole and stack mode of HsGDY allows the adsorption of more lead via its inner side adsorption mode in one single unit space. In addition, the Pb 6s and H 1s hybridization promotes the strong bonding of lead atom adsorbed at the acetylenic bond of HsGDY, contributing to the high adsorption capacity. HsGDY can be easily regenerated by acid treatment and showed excellent regeneration ability and reliability after six adsorption-regeneration cycles. Langmuir isotherm model, pseudo second order, and density functional theory (DFT) demonstrated that the lead adsorption process in HsGDY is monolayer chemisorption. Furthermore, the HsGDY-based portable filter can handle 1,000 μg/L lead-containing aqueous solution up to 1,000 mL, which is nearly 6.67 times that of commercial activated carbon particles. And, the HsGDY shows good biocompatibility and excellent removal efficiency to 100 μg/L blood lead, which is 1.7 times higher than that of GDY. These findings suggest that HsGDY could be a promising adsorbent for practical lead and other heavy metal removal.
Collapse
Affiliation(s)
- Shuanglei Xie
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Yuan Yao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Ze Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan430074, China
| | - Weidong Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Yi Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Ning Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing100081, China
| | - Shengqiang Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan430074, China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan430079, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei430082, China
| |
Collapse
|
29
|
Godínez-García FJ, Guerrero-Rivera R, Martínez-Rivera JA, Gamero-Inda E, Ortiz-Medina J. Advances in two-dimensional engineered nanomaterials applications for the agro- and food-industries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 36922737 DOI: 10.1002/jsfa.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional nanomaterials, such as graphene, transition metal dichalcogenides, MXenes, and other layered compounds, are the subject of intense theoretical and experimental research for applications in a wide range of advanced technological solutions, given their outstanding physical, chemical, and mechanical properties. In the context of food science and technology, their contributions are starting to appear, based on the advantages that two-dimensional nanostructures offer to agricultural- and food-related key topics, such as sustainable water use, nano-agrochemicals, novel nanosensing devices, and smart packaging technologies. These application categories facilitate the grasping of the current and potential uses of such advanced nanomaterials in the field, backed by their advantageous physical, chemical, and structural properties. Developments for water cleaning and reuse, efficient nanofertilizers and pesticides, ultrasensitive sensors for food contamination, and intelligent nanoelectronic disposable food packages are among the most promising application examples reviewed here and demonstrate the tremendous impact that further developments would have in the area as the fundamental and applied research of two-dimensional nanostructures continues. We expect this work will contribute to a better understanding of the promising characteristics of two-dimensional nanomaterials that could be used for the design of novel and feasible solutions in the agriculture and food areas. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco Javier Godínez-García
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Rubén Guerrero-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - José Antonio Martínez-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Eduardo Gamero-Inda
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Josué Ortiz-Medina
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| |
Collapse
|
30
|
Barzkar M, Ghiasvand A, Safdarian M. A simple and cost-effective synthesis route using itaconic acid to prepare a magnetic ion-imprinted polymer for preconcentration of Pb (II) from aqueous media. Talanta 2023; 259:124501. [PMID: 37031540 DOI: 10.1016/j.talanta.2023.124501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
A new Pb (II) magnetic ion-imprinted polymer (Pb-MIIP) was successfully investigated for the selective extraction of Pb (II) from an aqueous solution. MIIP nanostructures were developed using itaconic acid-coated iron oxide nanoparticles (Fe3O4@ITA) as a novel magnetic core, ITA as a functional monomer and chelating agent, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and 2,2-azobisisobutyronitrile (AIBN) as an initiator. The triple application of ITA in the synthesis and reduction of the number of compounds in the preparation of the MIIP, in addition to being economical, reduces the possibility of side reactions. The synthesized products were followed and confirmed in each step by instrumental and microscopic methods. The limit of detection of the Pb (II)-MIIP method was 0.21 μg L-1. Under the optimal conditions, the recovery (R%) was >90% with a relative standard deviation (RSD%) of <4.9%. The synthesized MIIP was reusable and successfully used to extract Pb (II) from tap water samples.
Collapse
Affiliation(s)
- Minoo Barzkar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Ghiasvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Mehdi Safdarian
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
31
|
Zuo Q, Zheng H, Zhang P, Zhang Y, Zhang J, Zhang B. Facile green preparation of single- and two-component modified activated carbon fibers for efficient trace heavy metals removal from drinking water. CHEMOSPHERE 2023; 316:137799. [PMID: 36634718 DOI: 10.1016/j.chemosphere.2023.137799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Trace heavy metals exist in drinking water, having great adverse effects on human health and making it a huge challenge to remove. Herein, novel materials have been prepared by a simple and green method using single- (polydopamine (PDA) or 2,3-dimercaptopropanesulfonic sodium (DMPS)) (PDA-OACF or DMPS-OACF) and two-component (PDA and DMPS) (DMPS-PDA-OACF) functionalized activated carbon fibers pretreated by hydrogen peroxide for the removal of trace heavy metals. The as-prepared DMPS-OACF (7.5,20) under DMPS addition of 7.5 mg and sonication time of 20 min retained large specific surface area, micro-mesoporous structure and rich functional groups and showed better adsorption performance for trace lead and mercury. It also exhibited wide applicable ranges of pH (3.50-10.50) and concentration (50-1136 μg L-1), rapid adsorption kinetics, and excellently selective removal performance for trace lead. The maximum lead adsorption capacity reached 16.03 mg g-1 when the effluent lead concentration met World Health Organization (WHO) standard and the adsorbent can be regenerated by EDTA solution. The fitting results of adsorption kinetics and isotherm models revealed that the lead adsorption process was multi-site adsorption on heterogeneous surfaces and chemical adsorption. The excellent adsorption properties for trace heavy metals were attributed that the sulfur/oxygen/nitrogen-containing functional groups boosted diffusion and adsorption by electrostatic attraction and coordination, suggesting that DMPS-OACF (7.5,20) has great application potential in the removal of trace heavy metals.
Collapse
Affiliation(s)
- Qi Zuo
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Pengyi Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yu Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiejing Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Baichao Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
32
|
Wang R, Luo S, Zheng R, Shangguan Y, Feng X, Zeng Q, Liang J, Chen Z, Li J, Yang D, Chen H. Interfacial Coordination Bonding-Assisted Redox Mechanism-Driven Highly Selective Precious Metal Recovery on Covalent-Functionalized Ultrathin 1T-MoS 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9331-9340. [PMID: 36780328 DOI: 10.1021/acsami.2c20802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rational design of functional material interfaces with well-defined physico-chemical-driven forces is crucial for achieving highly efficient interfacial chemical reaction dynamics for resource recovery. Herein, via an interfacial structure engineering strategy, precious metal (PM) coordination-active pyridine groups have been successfully covalently integrated into ultrathin 1T-MoS2 (Py-MoS2). The constructed Py-MoS2 shows highly selective interfacial coordination bonding-assisted redox (ICBAR) functionality toward PM recycling. Py-MoS2 shows state-of-the-art high recovery selectivity toward Au3+ and Pd4+ within 13 metal cation mixture solutions. The related recycling capacity reaches up to 3343.00 and 2330.74 mg/g for Au3+ and Pd4+, respectively. More importantly, above 90% recovery efficiencies have been achieved in representative PMs containing electronic solid waste leachate, such as computer processing units (CPU) and spent catalysts. The ICBAR mechanism developed here paves the way for interface engineering of the well-documented functional materials toward highly efficient PM recovery.
Collapse
Affiliation(s)
- Ranhao Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Luo
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Renji Zheng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangzi Shangguan
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang Zeng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaxin Liang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhijie Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Li
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhong Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
33
|
Saias E, Ismach A, Zucker I. Engineering the Performance and Stability of Molybdenum Disulfide for Heavy Metal Removal. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6603-6611. [PMID: 36574365 DOI: 10.1021/acsami.2c17367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Molybdenum disulfide (MoS2) has recently emerged as one of the most promising water nano-based adsorbent materials for heavy metal removal with the potential to provide an alternative to conventional water decontamination technologies. In this study, we demonstrate the trade-off between mercuric removal capacity and overall MoS2 adsorbent stability, both driven by MoS2 synthesis parameters. A bottom-up hydrothermal synthesis setup at various growth temperatures was employed to grow flower-like MoS2 films onto planar alumina supports. A thorough material characterization suggests that an increase in growth temperature from 150 to 210 °C results in higher MoS2 crystallinity. Interestingly, elevated growth temperatures resulted in poor mercuric removal (525 mg g-1, K = 2.2 × 10-3 h-1), yet showed enhanced chemical stability (i.e., minimal molybdenum leaching during exposure to mercury). On the other hand, low growth temperatures produce amorphous supported MoS2, exhibiting superb mercuric removal capabilities (5158 mg g-1, K = 36.1 × 10-3 h-1) but displaying poor stability, resulting in substantial byproduct molybdate leaching. Mercuric removal by crystalline MoS2 was accomplished by adsorption and electrostatic attraction-based removal mechanisms, whereas redox reactions and HgS crystallization-based removal mechanisms were more dominant when using amorphous MoS2 for mercury removal. Overall, our study provides essential insights into the delicate balance between MoS2 mercuric removal capabilities and MoS2 degradation, both related to material synthesis growth conditions. Employment of nano-enabled water treatments in general, and MoS2 for heavy metal removal in particular, requires us to better understand these important fundamental trade-off behaviors to achieve sustainable, effective, and responsible implementation of nanotechnologies in large scale systems.
Collapse
Affiliation(s)
- Eilom Saias
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv6997801, Israel
| | - Ariel Ismach
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv6997801, Israel
| | - Ines Zucker
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv6997801, Israel
- The Porter School of Environmental and Earth Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| |
Collapse
|
34
|
Deshwal N, Singh MB, Bahadur I, Kaushik N, Kaushik NK, Singh P, Kumari K. A review on recent advancements on removal of harmful metal/metal ions using graphene oxide: Experimental and theoretical approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159672. [PMID: 36306838 DOI: 10.1016/j.scitotenv.2022.159672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide is a two-dimensional carbon nanomaterial and has gained huge popularity over the last decade. Because, the graphene oxide can be dispersed in water easily and it is one of the most researched two-dimensional materials in the current time. The extraordinary properties shown by graphene oxide (GO) are due to its unique chemical structure; includes various hydrophilic functional groups containing oxygen such as carboxyl, hydroxyl, carbonyl and tiny sp2 carbon domains surrounded by sp3 domains. These groups are very peculiar for various applications as they allow covalent functionalisation with a plethora of compounds. Large surface area, intrinsic fluorescence, excellent surface functionality, amphiphilicity, improved conductivity, high adsorption capacity and superior biocompatibility are some of the chemical properties have drawn research from various fields. Graphene oxide has various interactions such as coordination, chelation, hydrogen bonding, electrostatic interaction, hydrophobic effects, π-π interaction, acid base interaction etc., with various metal ions. This review is focused on the removal of metals and metal ions due to their interactions mentioned above. Further, potential of composites of graphene oxide in the removal of metal and metal ions is also discussed. Further, the current challenges in this field at industrial-scale are also discussed.
Collapse
Affiliation(s)
- Nidhi Deshwal
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Madhur Babu Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, South Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
35
|
Guo J, Fu K, Pei J, Qiu Z, Sun J, Yin K, Luo S. Macro-constructing zeolitic imidazole frameworks functionalized sponge for enhanced removal of heavy metals: The significance of morphology and structure modulation. J Colloid Interface Sci 2023; 630:666-675. [DOI: 10.1016/j.jcis.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
36
|
Mahmoudian M, Sarrafi AHM, Konoz E, Niazi A. Magnetic Dispersive Solid‐Phase Extraction Using Toner Powder for Trace Determination of Heavy Metals in Vegetables and Aqueous Media by FAAS: Box‐Behnken Design. ChemistrySelect 2022. [DOI: 10.1002/slct.202203738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Masoumeh Mahmoudian
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| | | | - Elaheh Konoz
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| | - Ali Niazi
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
| |
Collapse
|
37
|
Xu Y, Xiang S, Zhang X, Zhou H, Zhang H. High-performance pseudocapacitive removal of cadmium via synergistic valence conversion in perovskite-type FeMnO 3. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129575. [PMID: 35863230 DOI: 10.1016/j.jhazmat.2022.129575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/12/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Cadmium pollution is a serious threat for the global drink water and natural environment. Herein, a poly-pyrrole coated dual-metal perovskite-type oxide FeMnO3 (PFMO@PPy) was developed firstly as pseudocapacitive cathode for the reversible capture and release of cadmium ions by asymmetry pseudocapacitive deionization (APCDI) technology, extending the library of CDI electrodes. Our work highlighted several points: (i) PFMO@PPy achieved a maximum Cd-removal capacity of 144.6 mg g-1, and maintained the retention rate of 93.4% after 15-cycle CDI process for up to 150 h, far beyond other previous work. (ii) PFMO@PPy showed the superior removal ratio (~90%) under different real water environments such as tap water, lake water and the groundwater. (iii) The superior Cd(II) electrosorption and desorption behavior is ascribed to the reversible synergistic valence conversion (Fe3+/Fe0 and Mn3+/Mn2+), which is confirmed by ex-situ XPS measurement and electrochemical tests. (iv) DFT calculations confirmed the synergistic effect from Mn and Fe elements in perovskite-type bimetallic oxide FeMnO3. This study paves a new way for promising future applications of perovskite-type oxides containing dual Faradic redox-activity for wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Yingsheng Xu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
| | - Shuhong Xiang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
| | - Xinyuan Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China.
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
38
|
Chen X, Wang W, Song Y, Zhou Y, Li H, Pan J. Fabrication of 2D nanosheet sorbents through metastable emulsion droplets and subsequent two-step grafting polymerization for efficient blood lead removal in vitro. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129522. [PMID: 35816801 DOI: 10.1016/j.jhazmat.2022.129522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Hemoperfusion is a powerful and yet simple method for lead poisoning treatment, but creation of safe and effective sorbents with excellent selectivity remains a real challenge. To address this, we here construct 2D nanosheet sorbents (BM-SH) through metastable emulsion droplets and subsequent two-step grafting polymerization for efficient blood lead removal in vitro. Metastable emulsion droplets endow typical nanosized sheet-like structure (thickness of 30 nm) and relatively round shape. The consecutive two grafting processes using hydroxyethyl methacrylate (HEMA) and L-cysteine monomer (D-SH) provide BM-SH with a high density of accessible binding sites towards lead ions (Pb2+). A high adsorption capacity of 390.5 mg g-1 and quick capture 97.35 % of Pb2+ within initial 10 min are obtained, surpassing most of the reported sorbents for lead removal. Besides, adsorption distribution coefficient (Kd) of BM-SH among four coexisting metal ions achieved 7792 mL g-1, showing outstanding selectivity toward Pb2+. Importantly, a possible adsorption mechanism is recognized as coordination with carboxyl, sulfydryl and imino groups from L-cysteine, and mercapto ligand as the key chelating agent may be the reason for high Pb2+ affinity. And what's more, BM-SH displays good hemocompatibility and high efficiency of blood lead removal rate (above 86 % in vitro).
Collapse
Affiliation(s)
- Xueping Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenqing Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yulin Song
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongquan Zhou
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
39
|
Qiu Z, Fu K, Yu D, Luo J, Shang J, Luo S, Crittenden JC. Radix Astragali residue-derived porous amino-laced double-network hydrogel for efficient Pb(II) removal: Performance and modeling. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129418. [PMID: 35780735 DOI: 10.1016/j.jhazmat.2022.129418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Valorizing solid waste for heavy metal adsorption is highly desirable to avoid global natural resources depletion. In this study, we developed a new protocol to valorize Radix Astragali residue (one of the Chinese medicine residues) into a low-cost, chemically robust, and highly permeable (ca. 90%) amino-laced porous double-network hydrogel (NH2-CNFs/PAA) for efficient Pb(II) adsorption. The NH2-CNFs/PAA showed (i) excellent Pb(II) adsorption capacity (i.e., 994.5 mg g-1, ~4.8 mmol g-1), (ii) fast adsorption kinetics (kf = 2.01 ×10-5 m s-1), (iii) broad working pH range (2.0-6.0), and (iv) excellent regeneration capability (~15 cycles). (v) excellent performance in various real water matrices on Pb(II) removal. Moreover, its high selectivity (distribution coefficient Kd ~2.4 ×106 mL g-1) toward Pb(II) was owing to the present of abundant amino groups (-NH2). Furthermore, the fix-bed column test indicated the NH2-CNFs/PAA can effectively remove 114.6 bed volumes (influent concentration ~5000 μg L-1) with an enrichment factor 10.9. The full-scale system modeling (i.e., pore surface diffusion model (PSDM)) has been applied to predict the NH2-CNFs/PAA performance on Pb(II) removal. Overall, we have provided an alternative "win-win" scenario that can resolve the Chinese medicine residues disposal issue by valorizing it into high performance gel-based adsorbents for efficient heavy metal removal.
Collapse
Affiliation(s)
- Zhiyuan Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaixing Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jingge Shang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
40
|
Fu K, Zhang Y, Liu H, Lv C, Guo J, Luo J, Yin K, Luo S. Construction of metal-organic framework/polymer beads for efficient lead ions removal from water: Experiment studies and full-scale performance prediction. CHEMOSPHERE 2022; 303:135084. [PMID: 35618066 DOI: 10.1016/j.chemosphere.2022.135084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) show great promise in heavy metal removal; however, their applications are restricted by the poor separability and water instability. Herein, granular Zr-based MOF-polymer composite beads (MPCB(Zr)) (mean diameter ∼ 1.74 mm) were synthesized using a facile dropping method, and applied on efficient lead ions (Pb(II)) removal. The as-prepared MPCB(Zr) demonstrated deep Pb(II) removal capability by reducing its concentration to ∼ 0.002 mg L-1 after adsorption equilibrium at 360 min. The distribution coefficient for Pb(II) reached 8.0 × 106 mL g-1, and the theoretical adsorption capacity for Pb(II) was 144.5 mg g-1 (0.70 mmol g-1, 30 °C). The resulting MPCB(Zr) was highly selective for Pb(II), with the selectivity coefficient up to ∼ 1.0-3.6 × 103 for the background cations (Na(I), K(I), Ca(II), and Mg(II)). Moreover, the MPCB(Zr) exhibited a broad working pH range (3.0-6.0) and satisfactory anti-interference to dissolved organic matters (humic acid and fuvic acid). Notably, the MPCB(Zr) also demonstrated excellent reusability with the Pb(II) removal efficiency over 99.0% after 20 cycles. Combined physicochemical characterizations unveiled that the thiol and oxygen-containing groups (e.g., hydroxyl, carboxylate) were responsible for the effective Pb(II) removal. To provide guidance for engineering application, the full-scale performance of the MPCB(Zr) under varying operation conditions was systematically evaluated via the validated pore surface diffusion model. This work provides an effective methodology to construct macroscopic MOF-polymer beads for effective Pb(II) removal, and promote the actual application of MOFs in water treatment.
Collapse
Affiliation(s)
- Kaixing Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Youqin Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China
| | - Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan Province, 411105, PR China
| | - Chunyu Lv
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kai Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China.
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China.
| |
Collapse
|
41
|
Facile Synthesis and Environmental Applications of Noble Metal-Based Catalytic Membrane Reactors. Catalysts 2022. [DOI: 10.3390/catal12080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Noble metal nanoparticle-loaded catalytic membrane reactors (CMRs) have emerged as a promising method for water decontamination. In this study, we proposed a convenient and green strategy to prepare gold nanoparticle (Au NPs)-loaded CMRs. First, the redox-active substrate membrane (CNT-MoS2) composed of carbon nanotube (CNT) and molybdenum disulfide (MoS2) was prepared by an impregnation method. Water-diluted Au(III) precursor (HAuCl4) was then spontaneously adsorbed on the CNT-MoS2 membrane only through filtration and reduced into Au(0) nanoparticles in situ, which involved a “adsorption–reduction” process between Au(III) and MoS2. The constructed CNT-MoS2@Au membrane demonstrated excellent catalytic activity and stability, where a complete 4-nitrophenol transformation can be obtained within a hydraulic residence time of <3.0 s. In addition, thanks to the electroactivity of CNT networks, the as-designed CMR could also be applied to the electrocatalytic reduction of bromate (>90%) at an applied voltage of −1 V. More importantly, by changing the precursors, one could further obtain the other noble metal-based CMR (e.g., CNT-MoS2@Pd) with superior (electro)catalytic activity. This study provided new insights for the rational design of high-performance CMRs toward various environmental applications.
Collapse
|
42
|
Dual signal-based electrochemical aptasensor for simultaneous detection of Lead(II) and Mercury(II) in environmental water samples. Biosens Bioelectron 2022; 209:114280. [DOI: 10.1016/j.bios.2022.114280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
|
43
|
Highly efficient removal and sequestration of Cr(VI) in confined MoS2 interlayer Nanochannels: Performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Rehman F, Hussain Memon F, Ullah S, Jafar Mazumder MA, Al-Ahmed A, Khan F, Hussain Thebo K. Recent Development in Laminar Transition Metal Dichalcogenides-based Membranes Towards Water Desalination: A Review. CHEM REC 2022; 22:e202200107. [PMID: 35701111 DOI: 10.1002/tcr.202200107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Indexed: 11/12/2022]
Abstract
Transition metal dichalcogenides (TMDCs)-based laminar membranes have gained significant interest in energy storage, fuel cell, gas separation, wastewater treatment, and desalination applications due to single layer structure, good functionality, high mechanical strength, and chemical resistivity. Herein, we review the recent efforts and development on TMDCs-based laminar membranes, and focus is given on their fabrication strategies. Further, TMDCs-based laminar membranes for water purification and seawater desalination are discussed in detail. Finally, present their merits, limits and future challenges needed in this area.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics, College of EME, National University of Sciences and Technology (NUST), Peshawar Road, Rawalpindi, Pakistan.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, Virginia, USA
| | - Fida Hussain Memon
- Department of Electrical Engineering, Sukkur IBA University, Sindh, Pakistan
| | - Sami Ullah
- K.A. CARE Energy Research & Innovation Center (ERIC), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad A Jafar Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Amir Al-Ahmed
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang, China
| |
Collapse
|
45
|
Han Q, Cao H, Sun Y, Wang G, Poon S, Wang M, Liu B, Wang Y, Wang Z, Mi B. Tuning phase compositions of MoS 2 nanomaterials for enhanced heavy metal removal: performance and mechanism. Phys Chem Chem Phys 2022; 24:13305-13316. [PMID: 35608012 DOI: 10.1039/d2cp00705c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional MoS2 nanosheets have shown great potential in heavy metal remediation due to their unique properties. MoS2 has two primary phases: 1T and 2H. Each has different physiochemical properties, but the impact of these differences on the overall material's heavy metal removal performance and associated mechanisms is rarely reported. In this study, we synthesized morphologically similar but phase-distinct MoS2 samples via hydrothermal synthesis, which comprised dominantly either a metallic 1T phase or a semiconducting 2H phase. 1T-MoS2 samples exhibited higher removal capacities for Ag+ and Pb2+ cations relative to 2H-MoS2. In particular, an eight-fold increase in the Pb2+ adsorption capacity was observed in the 1T-MoS2 samples (i.e. ∼632.9 mg g-1) compared to the 2H-MoS2 samples (∼81.6 mg g-1). The mechanisms driving the enhanced performance of 1T-MoS2 were investigated through detailed characterization of metal-laden MoS2 samples and DFT modelling. We found that 1T-MoS2 intrinsically had a larger interlayer spacing than 2H-MoS2 because water molecules were retained between the hydrophilic 1T nanosheets during hydrothermal synthesis. The widened interlayer spacing in 1T-MoS2 allowed the diffusion of heavy metal ions into the nanochannels, increasing the number of adsorption sites and total removal capacities. On the other hand, DFT modelling revealed the energy-favorable adsorption complex of Ag+ and Pb2+ for 1T-MoS2, in which each metal atom was bonded with three S atoms leading to much higher adsorption energies relative to 2H-MoS2 for Ag+ and Pb2+. This study unravels the underlying mechanisms of phase-dependent heavy metal remediation by MoS2 nanosheets, providing an important guide for the use of 2D nanomaterials in environmental applications which include heavy metal removal, contaminant sensing, and membrane separation.
Collapse
Affiliation(s)
- Qi Han
- Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Hao Cao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchen Sun
- Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Gang Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sidney Poon
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, USA
| | - Monong Wang
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, USA
| | - Bei Liu
- Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yanggang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongying Wang
- Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Baoxia Mi
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
46
|
Ji C, Xu M, Yu H, Lv L, Zhang W. Mechanistic insight into selective adsorption and easy regeneration of carboxyl-functionalized MOFs towards heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127684. [PMID: 34774352 DOI: 10.1016/j.jhazmat.2021.127684] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The development of heavy metal adsorbents with high selectivity has become a research hotspot due to the interference of coexisting ions (e.g., Na+, Ca2+) in the actual wastewater, but the more difficult regeneration caused by high adsorption selectivity severely limits its practical applications. Herein, a carboxyl adsorbent, MIL-121, demonstrated high adsorption selectivity for heavy metals at 10,000 mg/L of Na+ (removal > 99% for Cu2+) as well as unexpected easy regeneration (desorption > 99%) at low H+ concentration (10-3.5-10-3.0 M), which is hundreds of times lower than that of ever reported selective adsorbents (> 10-1 M H+). X-ray photoelectron spectrometry (XPS), extended X-ray absorption fine structure (EXAFS) coupled with Density functional theory (DFT) simulation unveil that the -COOH groups in MIL-121 for heavy metals adsorption is specific inner-sphere coordination with higher binding energy (1.31 eV for Cu), and less energy required for regeneration (0.26 eV for H). Similar high selectivity and easy regeneration were also satisfied with other heavy metals (e.g., Pb2+, Ni2+), and removal of heavy metals remained > 99% in 10 consecutive adsorption-desorption cycles. For actual copper electroplating wastewater treatment, MIL-121 could produce ~ 3600 mL clean water/g sample, outperforming 300 mL that of the benchmark commercial adsorbent D-113. This study shows the potential of MIL-121 for heavy metal wastewater treatment and provides mechanistic insight for developing adsorbents with high selective adsorption and easy regeneration.
Collapse
Affiliation(s)
- Chenghan Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mujian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210046, China.
| |
Collapse
|
47
|
Temperature- and light-dependent photoconductivity studies of thermally evaporated WTe2 thin film for photodetection application. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
48
|
Qiu S, Wang X, Zhang Q, Nie G. Development of MoS2/cellulose aerogels nanocomposite with superior application capability for selective lead(II) capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Du XJ, Chen Y, Qin LY, Luo HQ, Li NB, Li BL. Plasmonic Gold Nanoparticles Stain Hydrogels for the Portable and High-Throughput Monitoring of Mercury Ions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1041-1052. [PMID: 34964603 DOI: 10.1021/acs.est.1c07217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hybrid of l-cysteine and agarose can reduce HAuCl4 and support the rapid growth of plasmonic gold nanoparticles (Au NPs) in the hydrogel phase. The l-cysteine-doped agarose hydrogel (C-AGH) not only offers the substrate the capacity to reduce Au(III) ions but also stabilizes and precisely modulates the in situ grown Au NPs with high repeatability, easy operation, and anti-interference performance. Herein, before the incubation of HAuCl4, the improved hydrogel is preincubated in the aqueous solution containing mercury ions, and the cysteine can specifically conjugate with mercury via the thiol groups. Subsequently, the responsive allochroic bands from dark blue to red can be identified in the solid hydrogel after the incubation of HAuCl4, which is attributed to the formation of regulated Au-Hg nanoamalgams. As a proof-of-concept, toxic Hg2+ ions are exploited as targets for constructing novel sensing assays based on the improved C-AGH protocol. Based on naked-eye recognition, Hg2+ could be rapidly and simply measured. Additionally, the high-throughput and trace analysis with a low limit of detection (3.7 nM) is performed using a microplate reader. On the basis of the filtering technique and remodeling of hydrogels, C-AGH working as the filtering membrane can even achieve the integration of enrichment and measurement with enhanced sensitivity. Significantly, the strategy of using an allochroic hydrogel with the staining of Au NPs can promote the rapid and primary assessment of water quality in environmental analysis.
Collapse
Affiliation(s)
- Xiao Juan Du
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yang Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
- School of Architecture and Urban Planning, Chongqing University, Chongqing 400030, P. R. China
| | - Ling Yun Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Bang Lin Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
50
|
Liu B, Han Q, Li L, Zheng S, Shu Y, Pedersen JA, Wang Z. Synergistic Effect of Metal Cations and Visible Light on 2D MoS 2 Nanosheet Aggregation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16379-16389. [PMID: 34559504 DOI: 10.1021/acs.est.1c03576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aggregation significantly influences the transport, transformation, and bioavailability of engineered nanomaterials. Two-dimensional MoS2 nanosheets are one of the most well-studied transition-metal dichalcogenide nanomaterials. Nonetheless, the aggregation behavior of this material under environmental conditions is not well understood. Here, we investigated the aggregation of single-layer MoS2 (SL-MoS2) nanosheets under a variety of conditions. Trends in the aggregation of SL-MoS2 are consistent with classical Derjaguin-Landau-Verwey-Overbeek (DLVO) colloidal theory, and the critical coagulation concentrations of cations follow the order of trivalent (Cr3+) < divalent (Ca2+, Mg2+, Cd2+) < monovalent cations (Na+, K+). Notably, Pb2+ and Ag+ destabilize MoS2 nanosheet suspensions much more strongly than do their divalent and monovalent counterparts. This effect is attributable to Lewis soft acid-base interactions of cations with MoS2. Visible light irradiation synergistically promotes the aggregation of SL-MoS2 nanosheets in the presence of cations, which was evident even in the presence of natural organic matter. The light-accelerated aggregation was ascribed to dipole-dipole interactions due to transient surface plasmon oscillation of electrons in the metallic 1T phase, which decrease the aggregation energy barrier. These results reveal the phase-dependent aggregation behaviors of engineered MoS2 nanosheets with important implications for environmental fate and risk.
Collapse
Affiliation(s)
- Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sunxiang Zheng
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Joel A Pedersen
- Departments of Soil Science, Civil & Environmental Engineering, and Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|