1
|
Naman N, Wang M, Xu Z, Liu J, Chen X, Chen A, Zhang D. Synergistic catalytic removal of NO x and chlorobenzene by a combination punch of Lewis and Bronsted acid and redox sites. J Colloid Interface Sci 2025; 695:137741. [PMID: 40319513 DOI: 10.1016/j.jcis.2025.137741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Multi-pollutant control of nitrogen oxides (NOx) and chlorinated aromatics in industrial flue by synergistic catalysis is still a huge challenge. Tailoring well-defined interfacial structures of multi-component heterogeneous catalysts has become an effective strategy for facilitating reactions involving multiple reactants. Here, a coupling of copper and tin oxide with particle-particle heterostructure supported on H-ZSM5 is designed to achieve a high-performance catalyst for NOx and chlorobenzene synergistic elimination. Experimental and theoretical calculation (DFT) studies show that the particle-particle coupling Janus heterostructure induced Sn-O-Cu interfaces. The strong electronic interaction improves the interfacial charge redistribution and mediates the activated interfacial oxygen, supporting redox (R) sites for the redox reaction cycle. Together with the abundant intrinsic Lewis (L) acid sites from CuOx and Brønsted (B) acid sites from the H-ZSM-5 interface, a combination punch of ideal L-B-R sites was constructed for the synergistic catalysis of NOx reduction and chlorobenzene oxidation. The designed Sn-Cu/H-ZSM5 catalyst exhibits significant low-temperature synergistic catalytic activity, a wide temperature window, robust long-term stability, and excellent water resistance, which outperforms Sn/H-ZSM5 and Cu/H-ZSM5. Moreover, in situ infrared spectra of serial transient reactions evidenced that the NOx reduction reaction promotes chlorobenzene oxidation. This novel strategy of regulating the overall L acid, B acid, and redox properties to fabricate balanced L-B-R sites via interfacial engineering provides a distinct strategy for facilitating the synergistic abatement of NOx and chlorinated aromatics.
Collapse
Affiliation(s)
- Nuralim Naman
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Mengxue Wang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zixiang Xu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jun Liu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xin Chen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aling Chen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Bie X, Pan Y, Wang X, Zhang S, Hu J, Yang X, Li Q, Zhang Y, Przekop RE, Zhang Y, Zhou H. NH 3-Induced Challenges in CO 2 Hydrogenation over the Cu/ZnO/Al 2O 3 Catalyst. JACS AU 2025; 5:1243-1257. [PMID: 40151266 PMCID: PMC11937992 DOI: 10.1021/jacsau.4c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 03/29/2025]
Abstract
Gas sources rich in CO2 derived from biomass/waste gasification, anaerobic digestion, or industrial carbon capture often contain impurities such as H2S, H2O, and NH3, which can significantly hinder catalyst performance. Here, we show the role of NH3 on the reverse water-gas shift (RWGS) reaction over a commercial Cu/ZnO/Al2O3 catalyst, examining its effects on both the catalytic activity and the catalyst structure. We found that NH3 reversibly decreases CO2 conversion immediately by suppressing carbonate hydrogenation and CO desorption. This effect intensifies with an increase in NH3 concentration but decreases at higher temperatures. However, prolonged exposure (over 100 h) to RWGS conditions in the presence of 1.4% NH3 leads to near-total and irreversible deactivation of the Cu/ZnO/Al2O3 catalyst. Under NH3 exposure, the catalyst loses Cu+ sites on the surface, causing a spatial separation of Cu and ZnO. Finally, to address this challenge, we propose a novel strategy to mitigate NH3 inhibition by decomposing NH3 into N2 and H2.
Collapse
Affiliation(s)
- Xuan Bie
- Key Laboratory
for Thermal Science and Power Engineering of Ministry of Education,
Beijing Key Laboratory of CO2 Utilization and Reduction Technology,
Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yukun Pan
- State
Key
Laboratory of Chemical Engineering, East
China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaowei Wang
- State
Key
Laboratory of Chemical Engineering, East
China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shiyu Zhang
- Key Laboratory
for Thermal Science and Power Engineering of Ministry of Education,
Beijing Key Laboratory of CO2 Utilization and Reduction Technology,
Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Jiahui Hu
- New Jersey
Institute of Technology, New Jersey 07102, United States
| | - Xiaoxiao Yang
- Key Laboratory
for Thermal Science and Power Engineering of Ministry of Education,
Beijing Key Laboratory of CO2 Utilization and Reduction Technology,
Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Qinghai Li
- Key Laboratory
for Thermal Science and Power Engineering of Ministry of Education,
Beijing Key Laboratory of CO2 Utilization and Reduction Technology,
Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P.R. China
- Shanxi
Research
Institute for Clean Energy, Tsinghua University, Shanxi, Taiyuan 030000, P.R. China
| | - Yanguo Zhang
- Key Laboratory
for Thermal Science and Power Engineering of Ministry of Education,
Beijing Key Laboratory of CO2 Utilization and Reduction Technology,
Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P.R. China
- Shanxi
Research
Institute for Clean Energy, Tsinghua University, Shanxi, Taiyuan 030000, P.R. China
| | - Robert E. Przekop
- Adam
Mickiewicz University, ul. Wieniawskiego 1, 61-712 Poznań, Poland
| | - Yayun Zhang
- State
Key
Laboratory of Chemical Engineering, East
China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hui Zhou
- Key Laboratory
for Thermal Science and Power Engineering of Ministry of Education,
Beijing Key Laboratory of CO2 Utilization and Reduction Technology,
Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P.R. China
- Shanxi
Research
Institute for Clean Energy, Tsinghua University, Shanxi, Taiyuan 030000, P.R. China
| |
Collapse
|
3
|
Chen Y, Liu X, Wang P, Mansoor M, Zhang J, Peng D, Han L, Zhang D. Challenges and Perspectives of Environmental Catalysis for NO x Reduction. JACS AU 2024; 4:2767-2791. [PMID: 39211630 PMCID: PMC11350593 DOI: 10.1021/jacsau.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Environmental catalysis has attracted great interest in air and water purification. Selective catalytic reduction with ammonia (NH3-SCR) as a representative technology of environmental catalysis is of significance to the elimination of nitrogen oxides (NO x ) emitting from stationary and mobile sources. However, the evolving energy landscape in the nonelectric sector and the changing nature of fuel in motor vehicles present new challenges for NO x catalytic purification over the traditional NH3-SCR catalysts. These challenges primarily revolve around the application limitations of conventional industrial NH3-SCR catalysts, such as V2O5-WO3(MoO3)/TiO2 and chabazite (CHA) structured zeolites, in meeting both the severe requirements of high activity at ultralow temperatures and robust resistance to the wide array of poisons (SO2, HCl, phosphorus, alkali metals, and heavy metals, etc.) existing in more complex operating conditions of new application scenarios. Additionally, volatile organic compounds (VOCs) coexisting with NO x in exhaust gas has emerged as a critical factor further impeding the highly efficient reduction of NO x . Therefore, confronting the challenges inherent in current NH3-SCR technology and drawing from the established NH3-SCR reaction mechanisms, we discern that the strategic manipulation of the properties of surface acidity and redox over NH3-SCR catalysts constitutes an important pathway for increasing the catalytic efficiency at low temperatures. Concurrently, the establishment of protective sites and confined structures combined with the strategies for triggering antagonistic effects emerge as imperative items for strengthening the antipoisoning potentials of NH3-SCR catalysts. Finally, we contemplate the essential status of selective synergistic catalytic elimination technology for abating NO x and VOCs. By virtue of these discussions, we aim to offer a series of innovative guiding perspectives for the further advancement of environmental catalysis technology for the highly efficient NO x catalytic purification from nonelectric industries and motor vehicles.
Collapse
Affiliation(s)
- Yanqi Chen
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Xiangyu Liu
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Penglu Wang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Maryam Mansoor
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Jin Zhang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Dengchao Peng
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Lupeng Han
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| | - Dengsong Zhang
- International Joint Laboratory
of Catalytic Chemistry, Innovation Institute of Carbon Neutrality,
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People’s
Republic of China
| |
Collapse
|
4
|
Li G, Li G, Liao M, Liu W, Zhang H, Huang S, Huang T, Zhang S, Li Z, Peng H. Unlocking Mixed-Metal Oxides Active Centers via Acidity Regulation for K&SO 2 Poisoning Resistance: Self-Detoxification Mechanism of Zeolite-Confined deNO x Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10388-10397. [PMID: 38828512 DOI: 10.1021/acs.est.4c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) is an efficient NOx reduction strategy, while the denitrification (deNOx) catalysts suffer from serious deactivation due to the coexistence of multiple poisoning substances, such as alkali metal (e.g., K), SO2, etc., in industrial flue gases. It is essential to understand the interaction among various poisons and their effects on the deNOx process. Herein, the ZSM-5 zeolite-confined MnSmOx mixed (MnSmOx@ZSM-5) catalyst exhibited better deNOx performance after the poisoning of K, SO2, and/or K&SO2 than the MnSmOx and MnSmOx/ZSM-5 catalysts, the deNOx activity of which at high temperature (H-T) increased significantly (>90% NOx conversion in the range of 220-480 °C). It has been demonstrated that K would occupy both redox and acidic sites, which severely reduced the reactivity of MnSmOx/ZSM-5 catalysts. The most important, K element is preferentially deposited at -OH on the surface of ZSM-5 carrier due to the electrostatic attraction (-O-K). As for the K&SO2 poisoning catalyst, SO2 preferred to be combined with the surface-deposited K (-O-K-SO2ads) according to XPS and density functional theory (DFT) results, the poisoned active sites by K would be released. The K migration behavior was induced by SO2 over K-poisoned MnSmOx@ZSM-5 catalysts, and the balance of surface redox and acidic site was regulated, like a synergistic promoter, which led to K-poisoning buffering and activity recovery. This work contributes to the understanding of the self-detoxification interaction between alkali metals (e.g., K) and SO2 on deNOx catalysts and provides a novel strategy for the adaptive use of one poisoning substance to counter another for practical NOx reduction.
Collapse
Affiliation(s)
- Guobo Li
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Gang Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Meiyuan Liao
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenming Liu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Hongxiang Zhang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shan Huang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Ting Huang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shule Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Tianjin 300300, PR China
| | - Honggen Peng
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
5
|
Askari MJ, Kallick JD, McCrory CCL. Selective Reduction of Aqueous Nitrate to Ammonium with an Electropolymerized Chromium Molecular Catalyst. J Am Chem Soc 2024; 146:7439-7455. [PMID: 38465608 DOI: 10.1021/jacs.3c12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Nitrate (NO3-) is a common nitrogen-containing contaminant in agricultural, industrial, and low-level nuclear wastewater that causes significant environmental damage. In this work, we report a bioinspired Cr-based molecular catalyst incorporated into a redox polymer that selectively and efficiently reduces aqueous NO3- to ammonium (NH4+), a desirable value-added fertilizer component and industrial precursor, at rates of ∼0.36 mmol NH4+ mgcat-1 h-1 with >90% Faradaic efficiency for NH4+. The NO3- reduction reaction occurs through a cascade catalysis mechanism involving the stepwise reduction of NO3- to NH4+ via observed NO2- and NH2OH intermediates. To our knowledge, this is one of the first examples of a molecular catalyst, homogeneous or heterogenized, that is reported to reduce aqueous NO3- to NH4+ with rates and Faradaic efficiencies comparable to those of state-of-the-art solid-state electrocatalysts. This work highlights a promising and previously unexplored area of electrocatalyst research using polymer-catalyst composites containing complexes with oxophilic transition metal active sites for electrochemical nitrate remediation with nutrient recovery.
Collapse
Affiliation(s)
- Maiko J Askari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeremy D Kallick
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles C L McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Zhang P, Chen A, Lan T, Qu W, Hu X, Zhang K, Zhang D. Revealing the Dynamic Behavior of Active Sites on Acid-Functionalized CeO 2 Catalysts for NO x Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37314863 DOI: 10.1021/acs.langmuir.3c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Unraveling the dynamics of the active sites upon CeO2-based catalysts in selective catalytic reduction of nitrogen oxides by ammonia (NH3-SCR) is challenging. In this work, we prepared tungsten-acidified and sulfated CeO2 catalysts and used operando spectroscopy to reveal the dynamics of acid sites and redox sites on catalysts during NH3-SCR reaction. We found that both Lewis and Brønsted acid sites are needed to participate in the catalytic reaction. Notably, Brønsted acid sites are the main active sites after a tungsten-acidified or sulfated treatment, and the change of Brønsted acid sites significantly affects the NOx removal. Moreover, acid functionalization promotes the cerium species cycle between Ce4+ and Ce3+ for the NOx reduction. This work is critical to deeply understanding the natural properties of active sites, and it also provides new insights into the mechanism for NH3-SCR over CeO2-based catalysts.
Collapse
Affiliation(s)
- Pan Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Aling Chen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Tianwei Lan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Wenqiang Qu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Xiaonan Hu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Kai Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Li S, Yu H, Lan T, Shi L, Cheng D, Han L, Zhang D. NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
Zhang P, Chen A, Lan T, Liu X, Yan T, Ren W, Zhang D. Balancing acid and redox sites of phosphorylated CeO 2 catalysts for NO x reduction: The promoting and inhibiting mechanism of phosphorus. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129867. [PMID: 36115091 DOI: 10.1016/j.jhazmat.2022.129867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The role of phosphorus in metal oxide catalysts is still controversial. The precise tuning of the acidic and redox properties of metal oxide catalysts for the selective catalytic reduction in NOx using NH3 is also a great challenge. Herein, CeO2 catalysts with different degrees of phosphorylation were used to study the balance between the acidity and redox property by promoting and inhibiting effects of phosphorus. CeO2 catalysts phosphorylated with lower phosphorus content (5 wt%) exhibited superior NOx reduction performance with above 90% NOx conversion during 240-420 °C due to the balanced acidity and reducibility derived from the highest content of Brønsted acid sites on PO43- to adsorb NH3 and surface adsorbed oxygen species. Plenty of PO3- over CeO2 catalysts phosphorylated with the higher phosphorus content (≥ 10 wt%) significantly disrupted the balance between the acidity and the redox property due to the reduced acid/redox sites, which resulted in the less active NOx species. The mechanism of different structural phosphorus species (PO43- and PO3-) in promoting or inhibiting the NOx reduction over CeO2 catalysts was revealed. This work provides a novel method for qualitative and quantitative study of the relationship between acidity/redox property and activity of catalysts for NOx reduction.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Aling Chen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Wei Ren
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No.99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
9
|
Song K, Zhao S, Li Z, Li K, Xu Y, Zhang Y, Cheng Y, Shi JW. Zinc and phosphorus poisoning tolerance of Cu-SSZ-13 and Ce-Cu-SSZ-13 in the catalytic reduction of nitrogen oxides. J Colloid Interface Sci 2023; 629:243-255. [DOI: 10.1016/j.jcis.2022.08.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
10
|
Zhang P, Wang P, Impeng S, Lan T, Liu X, Zhang D. Unique Compensation Effects of Heavy Metals and Phosphorus Copoisoning over NO x Reduction Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12553-12562. [PMID: 35960931 DOI: 10.1021/acs.est.2c02255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selective catalytic reduction (SCR) of NOx from the flue gas is still a grand challenge due to the easy deactivation of catalysts. The copoisoning mechanisms and multipoisoning-resistant strategies for SCR catalysts in the coexistence of heavy metals and phosphorus are barely explored. Herein, we unexpectedly found unique compensation effects of heavy metals and phosphorus copoisoning over NOx reduction catalysts and the introduction of heavy metals results in a dramatic recovery of NOx reduction activity for the P-poisoned CeO2/TiO2 catalysts. P preferentially combines with Ce as a phosphate species to reduce the redox capacity and inhibit NO adsorption. Heavy metals preferentially reduced the Brønsted acid sites of the catalyst and inhibited NH3 adsorption. It has been demonstrated that heavy metal phosphate species generated over the copoisoned catalyst, which boosted the activation of NH3 and NO, subsequently bringing about more active nitrate species to relieve the severe impact by phosphorus and maintain the NOx reduction over CeO2/TiO2 catalysts. The heavy metals and P copoisoned catalysts also possessed more acidic sites, redox sites, and surface adsorbed oxygen species, which thus contributed to the highly efficient NOx reduction. This work elaborates the unique compensation effects of heavy metals and phosphorus copoisoning over CeO2/TiO2 catalysts for NOx reduction and provides a perspective for further designing multipoisoning-resistant CeO2-based catalysts to efficiently control NOx emissions in stationary sources.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Sarawoot Impeng
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
11
|
Xu S, Yin L, Wang H, Gao L, Tian X, Chen J, Zhang Q, Ning P. Improved Alkali-Tolerance of FeOx-WO3 Catalyst for NO Removal via in situ Reserving FeOx Active Species. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Li S, Hu W, Xu Z, Yu H, Lan T, Han L, Zhang D. Revealing the Promotion Effects of Nb on Alkali Resistance of FeVO4/TiO2 Catalysts for NOx Reduction. ChemCatChem 2022. [DOI: 10.1002/cctc.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuangxi Li
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Weiwei Hu
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Ziqiang Xu
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Huijun Yu
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Tianwei Lan
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Lupeng Han
- Shanghai University International Joint Laboratory of Catalytic Chemistry CHINA
| | - Dengsong Zhang
- Shanghai University Department of Chemistry P.O.Box 111No. 99 Shangda Road 200444 Shanghai CHINA
| |
Collapse
|
13
|
Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42--TiO2. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Zhou J, Wang P, Chen A, Qu W, Zhao Y, Zhang D. NO x Reduction over Smart Catalysts with Self-Created Targeted Antipoisoning Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6668-6677. [PMID: 35500206 DOI: 10.1021/acs.est.2c00758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective catalytic reduction of NOx in the presence of alkali (earth) metals and heavy metals is still a challenge due to the easy deactivation of catalysts. Herein, NOx reduction over smart catalysts with self-created targeted antipoisoning sites is originally demonstrated. The smart catalyst consisted of TiO2 pillared montmorillonite with abundant cation exchange sites to anchor poisoning substances and active components to catalyze NOx into N2. It was not deactivated during the NOx reduction process in the presence of alkali (earth) metals and heavy metals. The enhanced surface acidity, reducible active species, and active chemisorbed oxygen species of the smart catalyst accounted for the remarkable NOx reduction efficiency. More importantly, the self-created targeted antipoisoning sites expressed specific anchoring effects on poisoning substances and protected the active components from poisoning. It was demonstrated that the tetrahedrally coordinated aluminum species of the smart catalyst mainly acted as self-created targeted antipoisoning sites to stabilize the poisoning substances into the interlayers of montmorillonite. This work paves a new way for efficient reduction of NOx from the complex flue gas in practical applications.
Collapse
Affiliation(s)
- Jialun Zhou
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aling Chen
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wenqiang Qu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Zhao
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
15
|
Shen Z, Liu X, Impeng S, Zhang C, Yan T, Wang P, Zhang D. Alkali and Heavy Metal Copoisoning Resistant Catalytic Reduction of NO x via Liberating Lewis Acid Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5141-5149. [PMID: 35369691 DOI: 10.1021/acs.est.1c08096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The catalyst deactivation caused by the coexistence of alkali and heavy metals remains an obstacle for selective catalytic reduction of NOx with NH3. Moreover, the copoisoning mechanism of alkali and heavy metals is still unclear. Herein, the copoisoning mechanism of K and Cd was revealed from the adsorption and variation of reaction intermediates at a molecular level through time-resolved in situ spectroscopy combined with theoretical calculations. The alkali metal K mainly decreased the adsorption of NH3 on Lewis acid sites and altered the reaction more depending on the formation of the NH4NO3 intermediate, which is highly related to NOx adsorption and activation. However, Cd further inhibited the generation of active nitrate intermediates and thus decreased the NOx abatement about 60% on potassium-poisoned CeTiOx catalysts. Physically mixing with acid additives for CeTiOx catalysts could significantly liberate the active Lewis acid sites from the occupation of alkali metals and relieve the high dependence on NOx adsorption and activation, thus recovering the NOx removal rate to the initial state. This work revealed the copoisoning mechanism of K and Cd on Ce-based de-NOx catalysts and developed a facile anti-poisoning strategy, which paves a way for the development of durable catalysts among alkali and heavy metal copoisoning resistant catalytic reduction of NOx.
Collapse
Affiliation(s)
- Zhi Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Sarawoot Impeng
- National Nanotechnology Center, National Science and Technology Development Agency, Klong Luang, Pathum Thani 12120, Thailand
| | - Chengbiao Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
16
|
Hu W, He J, Liu X, Yu H, Jia X, Yan T, Han L, Zhang D. SO 2- and H 2O-Tolerant Catalytic Reduction of NO x at a Low Temperature via Engineering Polymeric VO x Species by CeO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5170-5178. [PMID: 35369692 DOI: 10.1021/acs.est.1c08715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective catalytic reduction (SCR) of NOx over V2O5-based oxide catalysts has been widely used, but it is still a challenge to efficiently reduce NOx at low temperatures under SO2 and H2O co-existence. Herein, SO2- and H2O-tolerant catalytic reduction of NOx at a low temperature has been originally demonstrated via engineering polymeric VOx species by CeO2. The polymeric VOx species were tactfully engineered on Ce-V2O5 composite active sites via the surface occupation effect of Ce, and the obtained catalysts exhibited remarkable low-temperature activity and strong SO2 and H2O tolerance at 250 °C. The strong interaction between Ce and V species induced the electron transfer from V to Ce and tuned the SCR reaction via the E-R pathway between the NH4+/NH3 species and gaseous NO. In the presence of SO2 and H2O, the polymeric VOx species had not been hardly influenced, while the formation of sulfate species on Ce sites not only promoted the adsorption of NH4+ species and the reaction between gaseous NO and NH4+ but also facilitated the decomposition of ammonium bisulfate through weakening the strong bond between HSO4- and NH4+. This work provided a new strategy for SO2- and H2O-tolerant catalytic reduction of NOx at a low temperature.
Collapse
Affiliation(s)
- Weiwei Hu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Jiebing He
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Xiangyu Liu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Huijun Yu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Xinyu Jia
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
17
|
Zhao Y, Shi L, Shen Y, Zhou J, Jia Z, Yan T, Wang P, Zhang D. Self-Defense Effects of Ti-Modified Attapulgite for Alkali-Resistant NO x Catalytic Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4386-4395. [PMID: 35262342 DOI: 10.1021/acs.est.1c07996] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nowadays, the serious deactivation of deNOx catalysts caused by alkali metal poisoning was still a huge bottleneck in the practical application of selective catalytic reduction of NOx with NH3. Herein, alkali-resistant NOx catalytic reduction over metal oxide catalysts using Ti-modified attapulgite (ATP) as supports has been originally demonstrated. The self-defense effects of Ti-modified ATP for alkali-resistant NOx catalytic reduction have been clarified. Ti-modified ATP with self-defense ability was obtained by removing alkaline metal cation impurities in the natural ATP materials without destroying its initial layered-chain structure through the ion-exchange procedure, accompanied with an obvious enrichment of Brønsted acid and Lewis acid sites. The self-defense effects embodied that both ion-exchanged Ti octahedral centers and abundant Si-OH sites in the Ti-ion-exchange-modified ATP could effectively anchor alkali metals via coordinate bonding or ion-exchange process, which induced alkali metals to be immobilized by the Ti-ion-exchange-modified ATP carrier rather than impair active species. Under this special protection of self-defense effects, Ti-ion-exchange-modified ATP supported catalysts still retained plentiful acidic sites and superior redox ability even after alkali metal poisoning, giving rise to the maintenance of sufficient NHx and NOx adsorption and the subsequent efficient reaction, which in turn resulted in high NOx catalytic reduction capacity of the catalyst. The strategy provided new inspiration for the development of novel and efficient selective catalytic reduction of NOx with NH3 (NH3-SCR) catalysts with high alkali resistance.
Collapse
Affiliation(s)
- Yufei Zhao
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jialun Zhou
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhaozhao Jia
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
18
|
Recent progress of Pd/zeolite as passive NOx adsorber: Adsorption chemistry, structure-performance relationships, challenges and prospects. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Yang J, Ren S, Wang M, Chen Z, Chen L, Liu L. Time-resolved in situ DRIFTS study on NH3-SCR of NO on a CeO2/TiO2 catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02089g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ce–Ti catalysts were considered as a promising replacement for V–Ti based catalysts for selective catalytic reduction (SCR) of nitrogen oxides (NO and NO2) with NH3.
Collapse
Affiliation(s)
- Jie Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Shan Ren
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Mingming Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Zhichao Chen
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Lin Chen
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Lian Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Liu J, Cheng H, Zheng H, Zhang L, Liu B, Song W, Liu J, Zhu W, Li H, Zhao Z. Insight into the Potassium Poisoning Effect for Selective Catalytic Reduction of NOx with NH3 over Fe/Beta. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jixing Liu
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huifang Cheng
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huiling Zheng
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Lu Zhang
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huaming Li
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People’s Republic of China
| |
Collapse
|
21
|
Guo A, Xie K, Lei H, Rizzotto V, Chen L, Fu M, Chen P, Peng Y, Ye D, Simon U. Inhibition Effect of Phosphorus Poisoning on the Dynamics and Redox of Cu Active Sites in a Cu-SSZ-13 NH 3-SCR Catalyst for NO x Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12619-12629. [PMID: 34510889 DOI: 10.1021/acs.est.1c03630] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) stemming from biodiesel and/or lubricant oil additives is unavoidable in real diesel exhausts and deactivates gradually the Cu-SSZ-13 zeolite catalyst for ammonia-assisted selective catalytic NOx reduction (NH3-SCR). Here, the deactivation mechanism of Cu-SSZ-13 by P-poisoning was investigated by ex situ examination of the structural changes and by in situ probing the dynamics and redox of Cu active sites via a combination of impedance spectroscopy, diffuse reflection infrared Fourier transform spectroscopy, and ultraviolet-visible spectroscopy. We unveiled that strong interactions between Cu and P led to not only a loss of Cu active sites for catalytic turnovers but also a restricted dynamic motion of Cu species during low-temperature NH3-SCR catalysis. Furthermore, the CuII ↔ CuI redox cycling of Cu sites, especially the CuI → CuII reoxidation half-cycle, was significantly inhibited, which can be attributed to the restricted Cu motion by P-poisoning disabling the formation of key dimeric Cu intermediates. As a result, the NH3-SCR activity at low temperatures (200 °C and below) decreased slightly for the mildly poisoned Cu-SSZ-13 and considerably for the severely poisoned Cu-SSZ-13.
Collapse
Affiliation(s)
- Anqi Guo
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Kunpeng Xie
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Valentina Rizzotto
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yue Peng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| |
Collapse
|
22
|
Feng C, Wang P, Liu X, Wang F, Yan T, Zhang J, Zhou G, Zhang D. Alkali-Resistant Catalytic Reduction of NO x via Naturally Coupling Active and Poisoning Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11255-11264. [PMID: 34323076 DOI: 10.1021/acs.est.1c02061] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Releasing the poisoning effect of alkali metals over catalysts is still an intractable issue for selective catalytic reduction (SCR) of NOx with ammonia. The presence of K in fly ash always dramatically suppressed catalytic activity by impairing acidity and redox properties, leading to severe reduction of lifetime for SCR catalysts. Herein, alkali-resistant NOx reduction over TiO2-supported Fe2(SO4)3 catalysts was originally demonstrated via naturally coupling active and poisoning sites. Notably, TiO2-supported Fe2(SO4)3 catalysts expressed admirable NOx conversion and K resistance within a quite broad temperature window of 200-500 °C. The catalysts with more conserved sulfate species revealed that sulfate groups preferred to migrate from the bulk phase to surface, thus effectively binding with K poisons to release the damage on iron active sites. Because of protection effects of migrated sulfates and closely coupling effects with Fe active sites, NH3 and NO adsorption amounts and rates were well maintained. In this way, Fe metal sites and sulfate species closely coupled together on a self-preserved TiO2-supported Fe2(SO4)3 catalyst played essential roles as highly active sites and unique poisoning sites. This work paves a new way to design SCR catalysts with superior alkali resistance that are more reliable in practical deNOx application.
Collapse
Affiliation(s)
- Chong Feng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Fuli Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Guangyuan Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
23
|
Kang K, Yao X, Huang Y, Cao J, Rong J, Zhao W, Luo W, Chen Y. Insights into the co-doping effect of Fe 3+ and Zr 4+ on the anti-K performance of CeTiO x catalyst for NH 3-SCR reaction. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125821. [PMID: 33866288 DOI: 10.1016/j.jhazmat.2021.125821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
A novel K-resistant Fe3+ and Zr4+ co-doped CeTiOx catalyst was first prepared by co-precipitation method for the ammonia-selective catalytic reduction (NH3-SCR) of NOx. On the premise of retaining the outstanding catalytic activity of CeTiOx catalyst, Fe3+ and Zr4+ co-doping efficiently improves its K-resistance with superior NOx conversion up to 84% after K-poisoning. Specially, the grain growth during the second calcination after K poisoning is successfully inhibited by Fe3+ and Zr4+ co-doping. Consequently, the large specific surface area with increased acid sites and efficiently retained reducibility over K-poisoned FeZrCeTiOx catalyst are realized, which prompt NH3 activation and NO oxidation, further benefit NH3-SCR. Besides, NH3-SCR reaction over CeTiOx and FeZrCeTiOx catalysts follows a possible L-H mechanism, and K-poisoning makes no change to it. Finally, a reasonable anti-K poisoning mechanism of FeZrCeTiOx catalyst is proposed: the excellent K-resistance is attributed to part of Fe and Zr are sacrificed to form Fe-O-K and Zr-O-K species protecting the active site Ce-O-Ti from K-poisoning, as well as the additional reducibility and surface acidity brought from Fe-O species with Zr prompting its uniform distribution.
Collapse
Affiliation(s)
- Keke Kang
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojiang Yao
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yike Huang
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Jun Cao
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China
| | - Jing Rong
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China
| | - Wanxia Zhao
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China
| | - Wen Luo
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Chen
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
24
|
Abstract
Regulating the acid property of zeolite is an effective strategy to improve dehydration of intermediate alcohol, which is the rate-determining step in hydrodeoxygenation of lignin-based phenolic compounds. Herein, a commercial Hβ (SiO2/Al2O3 = 25) was modified by phosphoric acid, and evaluated in the catalytic performance of guaiacol to cyclohexane, combined with Ni/SiO2 prepared by the ammonia evaporation hydrothermal (AEH) method. Incorporating a small amount of phosphorus had little impact on the morphology, texture properties of Hβ, but led to dramatic variations in acid property, including the amount of acid sites and the ratio of Brønsted acid sites to Lewis acid sites, as confirmed by NH3-TPD, Py-IR, FT-IR and 27Al MAS NMR. Phosphorus modification on Hβ could effectively balance competitive adsorption of guaiacol on Lewis acid sites and intermediate alcohol dehydration on Brønsted acid sites, and then enhanced the catalytic performance of guaiacol hydrodeoxygenation to cyclohexane. By comparison, Hβ containing 2 wt.% phosphorus reached the highest activity and cyclohexane selectivity.
Collapse
|
25
|
Li Y, Cai S, Wang P, Yan T, Zhang J, Zhang D. Improved NO x Reduction over Phosphate-Modified Fe 2O 3/TiO 2 Catalysts Via Tailoring Reaction Paths by In Situ Creating Alkali-Poisoning Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9276-9284. [PMID: 34142799 DOI: 10.1021/acs.est.1c01722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The deactivation issue arising from alkali poisoning over catalysts is still a challenge for the selective catalytic reduction of NOx by NH3. Herein, improved NOx reduction in the presence of alkaline metals over phosphate-modified Fe2O3/TiO2 catalysts has been originally demonstrated via tailoring the reaction paths by in situ creating alkali-poisoning sites. The introduction of phosphate results in the partial formation of iron phosphate species and makes the catalyst to mainly exhibit the characteristics of FePO4, which is responsible for the widened temperature window and enhanced alkali resistance. The tetrahedral [FeO4]/[PO4] structures in iron phosphate act as the Brønsted acid sites to increase the catalyst surface acidity. In addition, the formation of an Fe-O-P structure enhances the redox ability and increases surface adsorbed oxygen. Furthermore, the created phosphate groups (PO43-) serving as alkali-poisoning sites preferentially combine with potassium so that iron species on the active sites are protected. Therefore, the enhanced NH3 species adsorption capacity, improved redox ability, and active nitrate species remaining in the phosphate-modified Fe2O3/TiO2 catalyst ensure the de-NOx activity after being poisoned by alkali metals through the Langmuir-Hinshelwood reaction pathway. Hopefully, this novel strategy could provide an inspiration to design novel catalysts to control NOx emission with extraordinary resistance to alkaline metals.
Collapse
Affiliation(s)
- Yue Li
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Sixiang Cai
- Special Glass Key Lab of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
26
|
Jeon SW, Song I, Lee H, Kim DH. Enhanced activity of vanadia supported on microporous titania for the selective catalytic reduction of NO with NH 3: Effect of promoters. CHEMOSPHERE 2021; 275:130105. [PMID: 33676281 DOI: 10.1016/j.chemosphere.2021.130105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Vanadium oxide-based catalysts are considered a promising catalyst for selective catalytic reduction (SCR) of NO with NH3, which is an effective NOx removal technology. As environmental issues have garnered more attention, however, improvements to vanadium-based SCR catalysts are strongly required. In a previous study, we found that vanadium oxide on microporous titania as a support (V/MPTiO2) has certain advantages, such as improved thermal stability and more suppressed N2O formation, over the use of conventional nanoparticle titania (DT-51) as a support. In this study, widely used promoters, such as W, Sb, and Mo, were added to V/MPTiO2 to investigate whether they have promoting effects on V/MPTiO2 as well. Among these promoters added catalysts, the W and Mo were found to have significant promoting effects on the enhancement of deNOx activities at low temperatures, while the addition of Sb to V/MPTiO2 tended to have a negative effect on the SCR activity. Based on the characterizations, including laser Raman, H2-temperature programmed reduction (H2-TPR), and in situ diffuse reflectance infrared Fourier transform (in situ DRIFT) analysis, we found that the addition of W and Mo increased the degree of polymerization in V/MPTiO2, which generated more reactive vanadia species. Hence, such changes, resulting from the addition of W and Mo promoters to V/MPTiO2, yielded enhanced catalytic activity at low temperatures.
Collapse
Affiliation(s)
- Se Won Jeon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Inhak Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hwangho Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Do Heui Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
27
|
Facile synthesis of hollow nanotube MnCoOx catalyst with superior resistance to SO2 and alkali metal poisons for NH3-SCR removal of NOx. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118517] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Wang H, Jia J, Liu S, Chen H, Wei Y, Wang Z, Zheng L, Wang Z, Zhang R. Highly Efficient NO Abatement over Cu-ZSM-5 with Special Nanosheet Features. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5422-5434. [PMID: 33720690 DOI: 10.1021/acs.est.0c08684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conventional Cu-ZSM-5 and special Cu-ZSM-5 catalysts with diverse morphologies (nanoparticles, nanosheets, hollow spheres) were synthesized and comparatively investigated for their performances in the selective catalytic reduction (SCR) of NO to N2 with ammonia. Significant differences in SCR behavior were observed, and nanosheet-like Cu-ZSM-5 showed the best SCR performance with the lowest T50 of 130 °C and nearly complete conversion in the temperature range of 200-400 °C. It was found that Cu-ZSM-5 nanosheets [mainly exposed (0 1 0) crystal plane] with abundant mesopores and framework Al species were favorable for the formation of high external surface areas and Al pairs, which influenced the local environment of Cu. This motivated the preferential formation of active copper species and the rapid switch between Cu2+ and Cu+ species during NH3-SCR, thus exhibiting the highest NO conversion. In situ diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) results indicated that the Cu-ZSM-5 nanosheets were dominated by the Eley-Rideal (E-R) mechanism and the labile nitrite species (NH4NO2) were the crucial intermediates during the NH3-SCR process, while the inert nitrates were more prone to generate on Cu-ZSM-5 nanoparticles and conventional one. The combined density functional theory (DFT) calculations revealed that the decomposition energy barrier of nitrosamide species (NH2NO) on the (0 1 0) crystal plane of Cu-ZSM-5 was lower than those on (0 0 1) and (1 0 0) crystal planes. This study provides a strategy for the design of NH3-SCR zeolite catalysts.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jingbo Jia
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shanshan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongxia Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ying Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhoujun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zichun Wang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
29
|
Ce-promoted Fe–Cu–ZSM-5 catalyst: SCR-NO activity and hydrothermal stability. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04454-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Liu H, You C, Wang H. Experimental and Density Functional Theory Studies on the Zeolite-Based Fe–Ni–W Trimetallic Catalyst for High-Temperature NO x Selective Catalytic Reduction: Identification of Active Sites Suppressing Ammonia Over-oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanzi Liu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Changfu You
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P. R. China
- Shanxi Research Institute for Clean Energy, Tsinghua University, Shanxi Taiyuan 03000, P. R. China
| | - Haiming Wang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
31
|
Liu Q, Wang S, Xu G, Wu M, Chen J, Li J. Vanadium Substitution as an Effective Way to Enhance the Redox Ability of Tungstophosphoric Acid and for Application of NH3-SCR. Catal Letters 2021. [DOI: 10.1007/s10562-020-03467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Zhou G, Maitarad P, Wang P, Han L, Yan T, Li H, Zhang J, Shi L, Zhang D. Alkali-Resistant NO x Reduction over SCR Catalysts via Boosting NH 3 Adsorption Rates by In Situ Constructing the Sacrificed Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13314-13321. [PMID: 32960572 DOI: 10.1021/acs.est.0c04536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Currently, improving the alkali resistance of vanadium-based catalysts still remains as an intractable issue for the selective catalytic reduction of NOx with NH3 (NH3-SCR). It is generally believed that the decrease in adsorbed NHx species deriving from the declined acidic sites is the chief culprit for the deactivation of alkali-poisoned catalysts. Herein, alkali-resistant NOx reduction over SCR catalysts via boosting NH3 adsorption rates was originally demonstrated by in situ constructing the sacrificed sites. It is interesting that the adsorbed NHx species largely decrease while the NH3 adsorption rate is well kept over the V2O5/CeO2 catalyst by in situ constructing the sacrificed sites. The SCR activity could be maintained after alkali poisoning because in situ constructed SO42- groups would prefer to be combined with K+ so that the specific V═O species can endow K-poisoned V2O5/CeO2 with high adsorption rate of NH3 and high reactivity of NHx species. This work provides a new viewpoint that NH3 adsorption rate plays more decisive roles in the performance of alkali-poisoned catalysts than the amount of NH3 adsorption and enlightens an alternative strategy to improve the alkali-resistance of catalysts, which is significant to both the academic and industrial fields.
Collapse
Affiliation(s)
- Guangyu Zhou
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Phornphimon Maitarad
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongrui Li
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
33
|
Cai S, Xu T, Wang P, Han L, Impeng S, Li Y, Yan T, Chen G, Shi L, Zhang D. Self-Protected CeO 2-SnO 2@SO 42-/TiO 2 Catalysts with Extraordinary Resistance to Alkali and Heavy Metals for NO x Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12752-12760. [PMID: 32877168 DOI: 10.1021/acs.est.0c04911] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reducing the poisoning effect of alkali and heavy metals over ammonia selective catalytic reduction (NH3-SCR) catalysts is still an intractable issue, as the presence of K and Pb in fly ash greatly hampers their catalytic activity by impairing the acidity and affecting the redox properties of the catalysts, leading to the reduction in the lifetime of SCR catalysts. To address this issue, we propose a novel self-protected antipoisoning mechanism by designing SO42-/TiO2 superacid supported CeO2-SnO2 catalysts. Owing to the synergistic effect between CeO2 and SnO2 and the strong acidity originating from the SO42-/TiO2 superacid, the catalysts show superior catalytic activity over a wide temperature range (240-510 °C). Moreover, when K or/and Pb are deposited on SO42-/TiO2 catalysts, the bond effect between SO42- and Ti-O would be broken so that the sulfate in the bulk of SO42-/TiO2 superacid support would be induced to migrate to the surface to bond with K and Pb, thus prohibiting poisons from attacking the Ce-Sn active sites, and significantly boosting the resistance. Hopefully, this novel self-protection mechanism derived from the migration of sulfate in the SO42-/TiO2 superacid to resist alkali and heavy metals provides a new avenue for designing novel catalysts with outstanding resistance to alkali and heavy metals.
Collapse
Affiliation(s)
- Sixiang Cai
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Tuoyu Xu
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Sarawoot Impeng
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Yue Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Guorong Chen
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
34
|
Lan T, Zhao Y, Deng J, Zhang J, Shi L, Zhang D. Selective catalytic oxidation of NH3 over noble metal-based catalysts: state of the art and future prospects. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01137a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The state of the art and future prospects for selective catalytic oxidation of NH3 over noble metal-based catalysts are presented.
Collapse
Affiliation(s)
- Tianwei Lan
- International Joint Laboratory of Catalytic Chemistry
- Department of Chemistry
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
| | - Yufei Zhao
- International Joint Laboratory of Catalytic Chemistry
- Department of Chemistry
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry
- Department of Chemistry
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry
- Department of Chemistry
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
| | - Liyi Shi
- International Joint Laboratory of Catalytic Chemistry
- Department of Chemistry
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry
- Department of Chemistry
- Research Center of Nano Science and Technology
- College of Sciences
- Shanghai University
| |
Collapse
|