1
|
Niu L, Gärtner AAE, König M, Krauss M, Spahr S, Escher BI. Role of Suspended Particulate Matter for the Transport and Risks of Organic Micropollutant Mixtures in Rivers: A Comparison between Baseflow and High Discharge Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4857-4867. [PMID: 39933915 PMCID: PMC11924229 DOI: 10.1021/acs.est.4c13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The partition dynamics of organic micropollutants between water and suspended particulate matter (SPM) in riverine ecosystems differs between dry and wet weather, as demonstrated at two sites at the Ammer River, Germany. One site was impacted by a wastewater treatment plant (WWTP) and the other by runoff of a mixed agricultural/urban area. Liquid and gas chromatography coupled to high-resolution mass spectrometry were used to quantify 415 organic chemicals, and their mixture effects were characterized with three in vitro bioassays indicative of the activation of the aryl hydrocarbon (AhR) and peroxisome proliferator-activated (PPARγ) receptors and the oxidative stress response. During wet weather, the total chemical concentrations and bioactivities in the water increased, but the concentrations in SPM did not change. As SPM levels increased, the SPM-bound chemicals contributed 6-16% to the overall concentrations in the water column during wet weather but only 0.1-0.9% during dry weather. The mixture effects were more strongly associated with SPM under wet conditions, particularly for AhR activity, where SPM accounted for over 90% of the observed effects. The AhR activity may therefore serve as an indicator for assessing the risks of SPM-related pollution in rivers. The high SPM-bound mixtures' activation of AhR and oxidative stress response during rain were primarily caused by polycyclic aromatic hydrocarbons, indicating a major contribution of road runoff.
Collapse
Affiliation(s)
- Lili Niu
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, 310015 Hangzhou, China
| | - Andrea A E Gärtner
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany
| | - Stephanie Spahr
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research─UFZ, 04318 Leipzig, Germany
- Department of Geosciences, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Rojo-Nieto E, Wernicke T, Muz M, Jahnke A. From Trophic Magnification Factors to Multimedia Activity Ratios: Chemometers as Versatile Tools to Study the Fate of Hydrophobic Organic Compounds in Aquatic Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21046-21057. [PMID: 39527730 PMCID: PMC11603764 DOI: 10.1021/acs.est.4c07940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
We applied passive equilibrium sampling using silicone-based chemometers to nine biota species, sediment, and water in a multimedia aquatic ecosystem. They allowed for direct comparison of the concentration of regulated and emerging hydrophobic organic compounds in the silicone across species as well as the comparison of biota with sediments and water. We derived chemometer-based trophic magnification factors (TMFs) of diverse compounds that agreed with the traditionally derived TMFs. Our exploratory work in water demonstrated that equilibrium with newly designed chemometers can be achieved in few days for compounds with a log KOW up to 6. We calculated activity ratios, dividing the concentrations in the silicone equilibrated with biota by those equilibrated with the abiotic exposure media (sediments and water), assessing the thermodynamics of bioaccumulation and the equilibrium state between the ecosystem compartments. They confirmed that the biota were below equilibrium partitioning relative to sediments and water, as other studies have described. Silicone-based chemometers open up new opportunities and applicability in multimedia aquatic ecosystems for studies that rely on equilibrium partitioning of the in-situ mixtures of chemicals, such as multimedia assessments or application of effect-based methods.
Collapse
Affiliation(s)
- Elisa Rojo-Nieto
- Department
of Exposure Science, Helmholtz Centre for
Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Theo Wernicke
- Department
of Exposure Science, Helmholtz Centre for
Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Melis Muz
- Department
of Exposure Science, Helmholtz Centre for
Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Annika Jahnke
- Department
of Exposure Science, Helmholtz Centre for
Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
- Institute
for Environmental Research, RWTH Aachen
University, Aachen 52074, Germany
| |
Collapse
|
3
|
Wang R, Wang Y, Dong Y, Wu CC, Li J, Tian L, Bao LJ, Zeng EY. Uptake of Typical Hydrophobic Organic Contaminants in Vegetables: Evidence From Passive Samplers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2338-2349. [PMID: 39171942 DOI: 10.1002/etc.5978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Quantifying the root uptake of hydrophobic organic contaminants (HOCs) by plants remains challenging due to the lack of data on the freely available fractions of HOCs in soil porewater. We therefore hypothesized that a passive sampler could act as a useful tool to evaluate the root uptake potential and pathways of HOCs by plants in soil. We tested this hypothesis by exploring the uptake of polybrominated diphenyl ethers (PBDEs) and organophosphate esters (OPEs) by carrot and lettuce with the codeployment of passive samplers in a contaminated soil system. The results showed that the amounts of PBDEs enriched in carrot and lettuce were positively correlated with those in a passive sampler (r2 = 0.46-0.88). No concentration correlation was observed for OPEs between lettuce and passive samplers, due to possible degradation of OPEs in lettuce. The root-to-porewater ratios of PBDEs and OPEs, respectively, were 6.2 to 11 and 0.05 to 0.88 L g-1 for carrot, and 8.8 to 130 and less than reporting limits to 1.2 L g-1 for lettuce. The ratios were negatively correlated with log KOW values for carrot, but increased with increasing log KOW values over a range of 1.97 to 6.80, and then decreased with log KOW values greater than 6.80 for lettuce. This finding indicated that passive transport and partition were the accumulation pathways of PBDEs and OPEs in carrot and lettuce, respectively. Overall, passive samplers performed adequately in assessing the available fractions of persistent HOCs in plants, and can serve as a viable tool for exploring the pathways for plant root uptake of HOCs. Environ Toxicol Chem 2024;43:2338-2349. © 2024 SETAC.
Collapse
Affiliation(s)
- Rong Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Yu Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Ying Dong
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety and Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Eddy Y Zeng
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Qian W, Yang Y, Xinyue D, Hanqi L, Lanlan C, Wenhui H, Juan-Ying L. Reducing baseline toxicity in fishery product-related sediments from land to sea: Region-specific solutions are required. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174024. [PMID: 38906300 DOI: 10.1016/j.scitotenv.2024.174024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Eastern China is a major producer of fishery products (including inland aquaculture, coastal mariculture, and coastal fishing products). The quality of the products is affected by hydrophobic organic contaminants (HOCs) in the sediments. Based on in-vitro luminescent bacterial assay, the baseline toxicity (BEQBio) of 56 common HOCs were assessed in the present study. Specifically, the BEQBio of sediments declined from land (31-400 mg/kg) to sea (9.1-270 mg/kg). However, the toxicity contribution explained by the HOCs increased gradually from land (0.70 %) to sea (10 %) using Iceberg Modeling. In the inland pond, current use HOCs (pyrethroid pesticide (PEs), organic tin (OTCs), and antibiotic) exhibited considerable concentrations, although their toxicity contribution was very small (0.076 %), thus more regulations on the use of HOCs should be proposed and further screening is needed to confirm the major toxicants. In coastal mariculture area, the toxicity contribution of current use HOCs further declined (0.010 %), whereas environmental background HOCs, such as polycyclic aromatic hydrocarbons (PAHs), became increasingly significant, with the contribution ratio increasing from 0.37 % to 2.4 %. To minimize the negative impacts of PAHs, optimization of energy structure in transportation and coastal industry is required. In the coastal fishing area, the phased-out persistent organic pollutants (POPs) remained a major concern, in terms of both concentration and toxicity contribution. The phased-out POPs explained 7.0 % of the toxic effects of the sediments from the coastal fishing area, due to historical residue, industrial emissions, and their high toxicities. For this reason, it is critical to improve the relevant emission regulations and standards, so as to eventually reduce the unintentional discharges of POPs.
Collapse
Affiliation(s)
- Wang Qian
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Yu Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Dong Xinyue
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Liu Hanqi
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China
| | - Chu Lanlan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - He Wenhui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Li Juan-Ying
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China.
| |
Collapse
|
5
|
Gu Y, Li C, Jiang Q, Hua R, Wu X, Xue J. Efficient and practical in-jar silicone rubber based passive sampling for simultaneous monitoring of emerging fungicides in water and soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173539. [PMID: 38806130 DOI: 10.1016/j.scitotenv.2024.173539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
The occurrence and ecological impacts of emerging fungicides in the environment has gained increasing attention. This study applied an in-jar passive sampling device based on silicone rubber (SR) film to measuring the freely dissolved concentration (Cfree) of 6 current-use fungicides as a critical index of bioavailability in water and soils. The kinetics parameters including SR-water, soil-water, and organic carbon-water partition coefficients and sampling rates of the target fungicides were first attained and characterized well with their physicochemical properties. The in situ and ex situ field deployment in Hefei City provided the assessment of contaminated levels for these fungicides in rivers and soils. The Cfree of triadimefon and azoxystrobin was estimated at 0.54 ± 0.07-17.4 ± 2.5 ng L-1 in Nanfei River and Chao Lake, while triadimefon was only found in Dongpu Reservoir water with Cfree below 0.66 ± 0.04 ng L-1. The results exhibited that the equilibrium duration of 7 d was suitable for water application but a longer interval of 14 d was recommended for soil sampling. This work demonstrated the advantages of the proposed strategy in terms of fast monitoring within 2 weeks and high sensitivity down to detection limits in 0.5-5 ng L-1. The in-jar passive sampling device can be extrapolated to the evaluation for a wide coverage of organic pollutants in water and soils.
Collapse
Affiliation(s)
- Ying Gu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Ciyun Li
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Qingqing Jiang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Jiaying Xue
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| |
Collapse
|
6
|
Braun G, Krauss M, Spahr S, Escher BI. Handling of problematic ion chromatograms with the Automated Target Screening (ATS) workflow for unsupervised analysis of high-resolution mass spectrometry data. Anal Bioanal Chem 2024; 416:2983-2993. [PMID: 38556595 PMCID: PMC11045623 DOI: 10.1007/s00216-024-05245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Liquid chromatography (LC) or gas chromatography (GC) coupled to high-resolution mass spectrometry (HRMS) is a versatile analytical method for the analysis of thousands of chemical pollutants that can be found in environmental and biological samples. While the tools for handling such complex datasets have improved, there are still no fully automated workflows for targeted screening analysis. Here we present an R-based workflow that is able to cope with challenging data like noisy ion chromatograms, retention time shifts, and multiple peak patterns. The workflow can be applied to batches of HRMS data recorded after GC with electron ionization (GC-EI) and LC coupled to electrospray ionization in both negative and positive mode (LC-ESIneg/LC-ESIpos) to perform peak annotation and quantitation fully unsupervised. We used Orbitrap HRMS data of surface water extracts to compare the Automated Target Screening (ATS) workflow with data evaluations performed with the vendor software TraceFinder and the established semi-automated analysis workflow in the MZmine software. The ATS approach increased the overall evaluation performance of the peak annotation compared to the established MZmine module without the need for any post-hoc corrections. The overall accuracy increased from 0.80 to 0.86 (LC-ESIpos), from 0.77 to 0.83 (LC-ESIneg), and from 0.67 to 0.76 (GC-EI). The mean average percentage errors for quantification of ATS were around 30% compared to the manual quantification with TraceFinder. The ATS workflow enables time-efficient analysis of GC- and LC-HRMS data and accelerates and improves the applicability of target screening in studies with a large number of analytes and sample sizes without the need for manual intervention.
Collapse
Affiliation(s)
- Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Martin Krauss
- Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Stephanie Spahr
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Hong S, Lee J, Cha J, Gwak J, Khim JS. Effect-Directed Analysis Combined with Nontarget Screening to Identify Unmonitored Toxic Substances in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19148-19155. [PMID: 37972298 DOI: 10.1021/acs.est.3c05035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Effect-directed analysis (EDA) combined with nontarget screening (NTS) has established a valuable tool for the identification of unmonitored toxic substances in environmental samples. It consists of three main steps: (1) highly potent fraction identification, (2) toxicant candidate selection, and (3) major toxicant identification. Here, we discuss the methodology, current status, limitations, and future challenges of EDA combined with NTS. This method has been applied successfully to various environmental samples, such as sediments, wastewater treatment plant effluents, and biota. We present several case studies and highlight key results. EDA has undergone significant technological advancements in the past 20 years, with the establishment of its key components: target chemical analysis, bioassays, fractionation, NTS, and data processing. However, it has not been incorporated widely into environmental monitoring programs. We provide suggestions for the application of EDA combined with NTS in environmental monitoring programs and management, with the identification of further research needs.
Collapse
Affiliation(s)
- Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
- Department of Environmental Education, Kongju National University, Gongju 32588, Republic of Korea
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Rojo-Nieto E, Jahnke A. Chemometers: an integrative tool for chemical assessment in multimedia environments. Chem Commun (Camb) 2023; 59:3193-3205. [PMID: 36826793 PMCID: PMC10013656 DOI: 10.1039/d2cc06882f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
We propose novel chemometers - passive equilibrium samplers of, e.g., silicone - as an integrative tool for the assessment of hydrophobic organic compounds in multimedia environments. The traditional way of assessing levels of organic pollutants across different environmental compartments is to compare the chemical concentration normalized to the major sorptive phase in two or more media. These sorptive phases for hydrophobic organic compounds differ between compartments, e.g., lipids in biota and organic carbon in sediments. Hence, comparability across media can suffer due to differences in sorptive capacities, but also extraction protocols and bioavailability. Chemometers overcome these drawbacks; they are a common, universal and well-defined polymer reference phase for sampling of a large range of nonpolar organic pollutants in different matrices like biota, sediment and water. When bringing the chemometer into direct contact with the sample, the chemicals partition between the sample and the polymer until thermodynamic equilibrium partitioning is established. At equilibrium, the chemical concentrations in the chemometers can be determined and directly compared between media, e.g., between organisms of different trophic levels or inhabiting different areas, between organs within an organism or between biotic and abiotic compartments, amongst others. Chemometers hence allow expressing the data on a common basis, as the equilibrium partitioning concentrations in the polymer, circumventing normalizations. The approach is based on chemical activity rather than total concentrations, and as such, gives a measure of the "effective concentration" of a compound or a mixture. Furthermore, chemical activity is the main driver for partitioning, biouptake and toxicity. As an additional benefit, the extracts of the chemometers only require limited cleanup efforts, avoiding introduction of a bias between chemicals of different persistence, and can be submitted to both chemical analysis and/or bioanalytical profiling.
Collapse
Affiliation(s)
- Elisa Rojo-Nieto
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Chemistry, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Annika Jahnke
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Chemistry, Permoserstr. 15, 04318 Leipzig, Germany.
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
9
|
Wieringa N, van der Lee GH, de Baat ML, Kraak MHS, Verdonschot PFM. Contribution of sediment contamination to multi-stress in lowland waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157045. [PMID: 35779724 DOI: 10.1016/j.scitotenv.2022.157045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Water bodies in densely populated lowland areas are often impacted by multiple stressors. At these multi-stressed sites, it remains challenging to quantify the contribution of contaminated sediments. This study, therefore, aimed to elucidate the contribution of sediment contamination in 16 multi-stressed drainage ditches throughout the Netherlands. To this end an adjusted TRIAD framework was applied, where 1) contaminants and other variables in the sediment and the overlying water were measured, 2) whole-sediment laboratory bioassays were performed using larvae of the non-biting midge Chironomus riparius, and 3) the in situ benthic macroinvertebrate community composition was determined. It was hypothesized that the benthic macroinvertebrate community composition would respond to all jointly present stressors in both water and sediment, whereas the whole-sediment bioassays would only respond to the stressors present in the sediment. The benthic macroinvertebrate community composition was indeed related to multiple stressors in both water and sediment. Taxa richness was positively correlated with the presence of PO4-P in the water, macrophyte cover and some pesticides. Evenness, the number of Trichoptera families and the SPEARpesticides were positively correlated to the C:P ratios in the sediment, whilst negative correlations were observed with various contaminants in both the water and sediment. The whole-sediment bioassays with C. riparius positively related to the nutrient content of the sediment, whereas no negative relations to the sediment-associated contaminants were observed, even though the lowered SPEARpesticides index indicated contaminant effects in the field. Therefore, it was concluded that sediment contamination was identified as one of the various stressors that potentially drove the benthic macroinvertebrate community composition in the multi-stressed drainage ditches, but that nutrients may have masked the adverse effects caused by low and diverse sediment contaminants on C. riparius in the bioassays.
Collapse
Affiliation(s)
- N Wieringa
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - G H van der Lee
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - M L de Baat
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - M H S Kraak
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - P F M Verdonschot
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
10
|
Deng T, Xu X, Fu J, Xu Y, Qu W, Pi J, Wang H. Application of ARE-reporter systems in drug discovery and safety assessment. Toxicol Appl Pharmacol 2022; 454:116243. [PMID: 36115658 DOI: 10.1016/j.taap.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The human body is continuously exposed to xenobiotics and internal or external oxidants. The health risk assessment of exogenous chemicals remains a complex and challenging issue. Alternative toxicological test methods have become an essential strategy for health risk assessment. As a core regulator of constitutive and inducible expression of antioxidant response element (ARE)-dependent genes, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in maintaining cellular redox homeostasis. Consistent with the properties of Nrf2-mediated antioxidant response, Nrf2-ARE activity is a direct indicator of oxidative stress and thus has been used to identify and characterize oxidative stressors and redox modulators. To screen and distinguish chemicals or environmental insults that affect the cellular antioxidant activity and/or induce oxidative stress, various in vitro cell models expressing distinct ARE reporters with high-throughput and high-content properties have been developed. These ARE-reporter systems are currently widely applied in drug discovery and safety assessment. In the present review, we provide an overview of the basic structures and applications of various ARE-reporter systems employed for discovering Nrf2-ARE modulators and characterizing oxidative stressors.
Collapse
Affiliation(s)
- Tianqi Deng
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaoge Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Huihui Wang
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
11
|
Luo YS, Chen Z, Hsieh NH, Lin TE. Chemical and biological assessments of environmental mixtures: A review of current trends, advances, and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128658. [PMID: 35290896 DOI: 10.1016/j.jhazmat.2022.128658] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
Considering the chemical complexity and toxicity data gaps of environmental mixtures, most studies evaluate the chemical risk individually. However, humans are usually exposed to a cocktail of chemicals in real life. Mixture health assessment remains to be a research area having significant knowledge gaps. Characterization of chemical composition and bioactivity/toxicity are the two critical aspects of mixture health assessments. This review seeks to introduce the recent progress and tools for the chemical and biological characterization of environmental mixtures. The state-of-the-art techniques include the sampling, extraction, rapid detection methods, and the in vitro, in vivo, and in silico approaches to generate the toxicity data of an environmental mixture. Application of these novel methods, or new approach methodologies (NAMs), has increased the throughput of generating chemical and toxicity data for mixtures and thus refined the mixture health assessment. Combined with computational methods, the chemical and biological information would shed light on identifying the bioactive/toxic components in an environmental mixture.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nan-Hung Hsieh
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
12
|
Niu L, Henneberger L, Huchthausen J, Krauss M, Ogefere A, Escher BI. pH-Dependent Partitioning of Ionizable Organic Chemicals between the Silicone Polymer Polydimethylsiloxane (PDMS) and Water. ACS ENVIRONMENTAL AU 2022; 2:253-262. [PMID: 37102138 PMCID: PMC10114720 DOI: 10.1021/acsenvironau.1c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The silicone polymer polydimethysiloxane (PDMS) is a popular passive sampler for in situ and ex situ sampling of hydrophobic organic chemicals. Despite its limited sorptive capacity for polar and ionizable organic chemicals (IOC), IOCs have been found in PDMS when extracting sediment and suspended particulate matter. The pH-dependent partitioning of 190 organics and IOCs covering a range of octanol-water partition constants log K ow from -0.3 to 7.7 was evaluated with a 10-day shaking method using mixtures composed of all chemicals at varying ratios of mass of PDMS to volume of water. This method reproduced the PDMS-water partition constant K PDMS/w of neutral chemicals from the literature and extended the dataset by 93 neutral chemicals. The existing quantitative structure-activity relationship between the log K ow and K PDMS/w could be extended with the measured K PDMS/w linearly to a log K ow of -0.3. Fully charged organics were not taken up into PDMS. Thirty-eight monoprotic organic acids and 42 bases showed negligible uptake of the charged species, and the pH dependence of the apparent D PDMS/w(pH) could be explained by the fraction of neutral species multiplied by the K PDMS/w of the neutral species of these IOCs. Seventeen multiprotic chemicals with up to three acidity constants pK a also showed a pH dependence of D PDMS/w(pH) with the tendency that the neutral and zwitterionic forms showed the highest D PDMS/w(pH). D PDMS/w(pH) of charged species of more hydrophobic multiprotic chemicals such as tetrabromobisphenol A and telmisartan was smaller but not negligible. Since these chemicals show high bioactivity, their contribution to mixture effects has to be considered when testing passive sampling extracts with in vitro bioassays. This work has further implications for understanding the role of microplastic as a vector for organic micropollutants.
Collapse
Affiliation(s)
- Lili Niu
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Key
Laboratory of Pollution Exposure and Health Intervention of Zhejiang
Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Luise Henneberger
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Julia Huchthausen
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Martin Krauss
- Department
of Effect Directed Analysis, Helmholtz Centre
for Environmental Research, 04318 Leipzig, Germany
| | - Audrey Ogefere
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Center
for Applied Geoscience, Eberhard Karls University
of Tübingen, Schnarrenbergstr.
94-96, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Zhu T, Chen W, Gu Y, Jafvert CT, Fu D. Polyethylene-water partition coefficients for polychlorinated biphenyls: Application of QSPR predictions models with experimental validation. WATER RESEARCH 2021; 207:117799. [PMID: 34731669 DOI: 10.1016/j.watres.2021.117799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The water environmental recalcitrance and ecotoxicity caused by polychlorinated biphenyls (PCBs) are international issues of common concern. The partition coefficients with PCBs between low-density polyethylene (LDPE) and water (KPE-w) are significant to assess their environmental transport and/or fate in aquatic environment. Even moderately hydrophobic PCBs, however, possess large KPE-w values, which makes directly experimental measurement labored. Here, based on the combination of quantitative structure-property relationships (QSPRs) and machine-learning algorithms, 10 in-silico models are developed to provide a quick estimate of KPE-w. These models exhibit good goodness-of-fit (R2adj: 0.919-0.975), robustness (Q2LOO: 0.870-0.954) and external prediction performances (Q2ext: 0.880-0.971), providing a speedy feasibility to close data gaps for limited or absent experimental information, especially the RF-2 model. Particularly, an additional experimental verification is performed for models by a rapid and accurate three-phase system (aqueous phase, surfactant micelles and LDPE). The results of the experiments for 16 PCBs show the modeling results agree well with experimental values, within or approaching the residuals of ± 0.3 log unit. Mechanism interpretations imply that the number of chlorine atoms and ortho-substituted chlorines are the great effect parameters for KPE-w. This result also heightens interest in measuring and predicting the KPE-w values of chemicals containing halogen atoms in water.
Collapse
Affiliation(s)
- Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, P.R.China.
| | - Wenxuan Chen
- School of Civil Engineering, Southeast University, Nanjing, 210096, P.R.China
| | - Yuanyuan Gu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, P.R.China
| | - Chad T Jafvert
- Lyles School of Civil Engineering, and Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 210096, P.R.China
| |
Collapse
|
14
|
Muz M, Rojo-Nieto E, Jahnke A. Removing Disturbing Matrix Constituents from Biota Extracts from Total Extraction and Silicone-Based Passive Sampling. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2693-2704. [PMID: 34255885 DOI: 10.1002/etc.5153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Contaminant analysis in biota extracts can be hampered by matrix interferences caused by, for example, co-extracted lipids that compromise the quality of the analytical data and require frequent maintenance of the analytical instruments. In the present study, using gas chromatography coupled to high resolution mass spectrometry (GC-HRMS), we aimed to develop and validate a straightforward, robust, and reproducible cleanup method with acceptable recoveries for diverse compound classes with a wide range of physicochemical properties representative of pollutant screening in biota extracts. We compared Oasis PRiME HLB cartridges, Agilent Captiva EMR-Lipid cartridges, and "Freeze-Out" with salmon lipids spiked with 113 target chemicals. The EMR-Lipid cartridges provided extracts with low matrix effects at reproducible recoveries of the multi-class target analytes (93 ± 9% and 95 ± 7% for low and high lipid amounts, respectively). The EMR-Lipid cartridges were further tested with spiked pork lipids submitted to total extraction or silicone-based passive sampling. Reproducible recoveries were achieved and matrix residuals were largely removed as demonstrated gravimetrically for both types of extracts. Ion suppression of halogenated compounds was not as efficiently removed by the cleanup of total and silicone-based extracts of pork lipids as for the salmon lipids. However, the samples with clean up provided better instrument robustness than those without cleanup. Hence, EMR-Lipid cartridges were shown to be efficient as a cleanup method in multi-class monitoring of biota samples and open up new possibilities as a suitable cleanup method for silicone extracts in biota passive sampling studies using GC-HRMS analysis. Environ Toxicol Chem 2021;40:2693-2704. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Melis Muz
- Department of Effect-Directed Analysis, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Elisa Rojo-Nieto
- Department of Ecological Chemistry, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Annika Jahnke
- Department of Ecological Chemistry, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Baumer A, Jäsch S, Ulrich N, Bechmann I, Landmann J, Escher BI. Kinetics of Equilibrium Passive Sampling of Organic Chemicals with Polymers in Diverse Mammalian Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9097-9108. [PMID: 34143604 DOI: 10.1021/acs.est.1c01836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Equilibrium passive sampling employing polydimethylsiloxane (PDMS) as a sampling phase can be used for the extraction of complex mixtures of organic chemicals from lipid-rich biota. We extended the method to lean tissues and more hydrophilic chemicals by implementing a mass-balance model for partitioning between lipids, proteins, and water in tissues and by accelerating uptake kinetics with a custom-built stirrer that effectively decreased time to equilibrium to less than 8 days even for a homogenized liver tissue with an only 4% lipid content. The partition constants log Klipid/PDMS between tissues and PDMS were derived from measured concentration in PDMS and the mass-balance model and were very similar for 40 neutral chemicals with octanol-water partition constants 1.4 < log Kow < 8.7, that is, log Klipid/PDMS of 1.26 (95% CI, 1.13-1.39) for the adipose tissue, 1.16 (1.00-1.33) for the liver, and 0.58 (0.42-0.73) for the brain. This conversion factor can be applied to interpret chemical analysis and in vitro bioassays after additionally accounting for a small fraction of coextracted lipids of <0.7% of the PDMS weight. PDMS is more widely applicable for passive sampling of mammalian tissues than previously thought, both, in terms of diversity of chemicals and the range of lipid contents of tissues and, therefore, an ideal method for human biomonitoring to be combined with in vitro bioassays.
Collapse
Affiliation(s)
- Andreas Baumer
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Sandra Jäsch
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany
| | - Julia Landmann
- Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- Environmental Toxicology, Centre for Applied Geosciences, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Niu L, Ahlheim J, Glaser C, Gunold R, Henneberger L, König M, Krauss M, Schwientek M, Zarfl C, Escher BI. Suspended Particulate Matter-A Source or Sink for Chemical Mixtures of Organic Micropollutants in a Small River under Baseflow Conditions? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5106-5116. [PMID: 33759504 DOI: 10.1021/acs.est.0c07772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suspended particulate matter (SPM) plays an important role in the fate of organic micropollutants in rivers during rain events, when sediments are remobilized and turbid runoff components enter the rivers. Under baseflow conditions, the SPM concentration is low and the contribution of SPM-bound contaminants to the overall risk of organic contaminants in rivers is assumed to be negligible. To challenge this assumption, we explored if SPM may act as a source or sink for all or specific groups of organic chemicals in a small river. The concentrations of over 600 contaminants and the mixture effects stemming from all chemicals in in vitro bioassays were measured for river water, SPM, and the surface sediment after solid-phase extraction or exhaustive solvent extraction. The bioavailable fractions of chemicals and mixture effects were estimated after passive equilibrium sampling of enriched SPM slurries and sediments in the lab. Dissolved compounds dominated the total chemical burden in the water column (water plus SPM) of the river, whereas SPM-bound chemicals contributed up to 46% of the effect burden even if the SPM concentration in rivers was merely 1 mg/L. The equilibrium between water and SPM was still not reached under low-flow conditions with SPM as a source of water contamination. The ratios of SPM-associated to sediment-associated neutral and hydrophobic chemicals as well as the ratios of the mixture effects expressed as bioanalytical equivalent concentrations were close to 1, suggesting that the surface sediment can be used as a proxy for SPM under baseflow conditions when the sampling of a large amount of water to obtain sufficient SPM cannot be realized.
Collapse
Affiliation(s)
| | | | - Clarissa Glaser
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | | | | | | | | | - Marc Schwientek
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Christiane Zarfl
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Beate I Escher
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
- Department Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| |
Collapse
|
17
|
Muz M, Escher BI, Jahnke A. Bioavailable Environmental Pollutant Patterns in Sediments from Passive Equilibrium Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15861-15871. [PMID: 33213151 DOI: 10.1021/acs.est.0c05537] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Sediment-associated risks depend on the bioavailable fraction of organic chemicals and cannot be comprehended by their total concentrations. The present study investigated contamination patterns of bioavailable chemicals in sediments from various sites around the globe by using passive equilibrium sampling. The extracts had been characterized previously for mixture effects by in vitro reporter gene assays and were in this study analyzed using gas chromatography-high resolution mass spectrometry for 121 chemicals including both legacy and emerging contaminants. The spatial distribution of the detected chemicals revealed distinct contamination patterns among sampling sites. We identified compounds in common at the different sites but most contaminant mixtures were site-specific. The mixture effects of the detected chemicals were predicted with a mixture toxicity model from effect concentrations of bioactive single chemicals and detected concentrations, applying a joint model for concentration addition and independent action. The predicted mixture effects were dominated by polycyclic aromatic hydrocarbons, and among the chemicals with available effect data, 17% elicited oxidative stress response and 18% activated the arylhydrocarbon receptor. Except for two sites in Sweden, where 11 and 38% of the observed oxidative stress response were explained by the detected chemicals, less than 10% of effects in both biological end points were explained. These results provide a comprehensive investigation of bioavailable contamination patterns of sediments and may serve as an example of employing passive equilibrium sampling as a monitoring technique to integrate the risk of bioavailable sediment-associated chemicals in aquatic environments.
Collapse
Affiliation(s)
- Melis Muz
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Effect Directed Analysis, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Annika Jahnke
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Ecological Chemistry, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|