1
|
Liu Y, Liu H, Liu J, Gao W, Zhang W, Xu G. Ultrasensitive chemiluminescence detection based on titanium-doped spinel-structured nanoparticles with abundant oxygen vacancies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126240. [PMID: 40252537 DOI: 10.1016/j.saa.2025.126240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
We successfully synthesized spinel-structured ternary nanocatalyst Ti-Co3O4/Fe3O4 nanoparticles (NPs) for the first time. Ti-Co3O4/Fe3O4 NPs exhibited superior catalytic performance compared to the synthesized binary catalysts Co3O4/Fe3O4. Moreover, Ti-Co3O4/Fe3O4 NPs can enhance the chemiluminescence (CL) intensity of the luminol/H2O2 system by over 3800-fold, attributed to the high density of oxygen vacancies (OVs) within the structure. OVs contribute to electron delocalization, improve conductivity, and are recognized as crucial active sites in the catalytic decomposition of H2O2. Based on the inhibitory effect of L-ascorbic acid (AA) on the luminol/H2O2 CL system, we developed a sensitive, rapid, effective, and highly selective AA CL assay with a linear range of 0.1 μmol/L to 100 μmol/L and a limit of detection (LOD, S/N = 3) of 0.044 μmol/L. The method was successfully applied to quantify AA in vitamin C tablets with recoveries ranging from 99.7 % to 106.3 %. This research provides a promising prospect for the application of spinel-structured nanoparticles in CL detection platforms and offers valuable insights into nanoparticle size modulation and OV engineering for catalytic optimization.
Collapse
Affiliation(s)
- Yutong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongzhan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiyang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenyue Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
2
|
Tang T, Zhao S, Chen K, Liu Y, Mo G, Sun L, Zhu R, Tang X, Yi H. Dual effect of anchored sulphur and activated oxygen in the catalytic oxidation of organic sulfur over Pt single-atom catalysts. J Colloid Interface Sci 2025; 688:264-275. [PMID: 40010091 DOI: 10.1016/j.jcis.2025.02.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Foul-smelling organic sulfur gases removal of which is crucial for improving environmental quality and protecting human health. Herein, in this study, Pt single-atom (SA) loaded magnesium oxide (MgO) nanosheet catalysts were prepared, which exhibited the dual effects of anchored sulfur and activated oxygen that greatly enhanced the catalytic oxidation efficiency of methyl mercaptan (CH3SH), and 90 % complete oxidation of CH3SH could be achieved by Pt SA/MgO at 325 °C, with an oxidation efficiency that was 8 times higher than that of MgO nanosheets. A series of characterization results indicate that the valence state of Pt in the Pt SA/MgO catalyst ranges between 0 and +4, demonstrating its inherent electron-donating capability. Theoretical calculations show that the oxygen vacancy formation energy is reduced to 4.0 eV after the introduction of Pt SA, and the adsorption energy of atomic groups SH and CH3 is reduced to -1.5 and -2.0 eV. And the bond length of the MgO bond in Pt SA/MgO is shortened to 2.083 Å, forming an asymmetric structure with the PtO bond of 2.142 Å, effectively activating the lattice oxygen. Furthermore, A series of activity tests confirmed that the introduction of Pt SA reduced sulfate deposition, while the reaction pathway of CH3SH catalytic oxidation was optimised by changing the oxidation mechanism. The investigation offers a significant experimental foundation and novel viewpoints for the enhancement of high-performance catalytic oxidation catalysts targeting sulfur-containing volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Tian Tang
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Salt Lake Chemical Engineering Research Complex, Qinghai University, China; Key Laboratory of Salt Lake Chemical Material of Qinghai Province, China.
| | - Kai Chen
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunpeng Liu
- Institute of High Energy Physics, Chines Academy of Sciences, Beijing 100049, China
| | - Guang Mo
- Institute of High Energy Physics, Chines Academy of Sciences, Beijing 100049, China
| | - Long Sun
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ronghui Zhu
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolong Tang
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Yi
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Zhang R, Zhou H, Shao T, Lian Q, Hu M, Mei J, Zuo S, Huang J, Tang Z, Xia D. High-Entropy Modulated High-Spin Localized Cobalt Sites Enhance Catalytic Ozonation for Efficient Odor Control. Angew Chem Int Ed Engl 2025:e202507109. [PMID: 40361285 DOI: 10.1002/anie.202507109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/15/2025]
Abstract
Catalytic ozonation technology is crucial for environmental remediation due to its exceptional efficiency and capability for complete mineralization of organic pollutants. However, hindered by spin-forbidden transitions, effective catalytic ozonation remains contingent upon the electronic properties and interfacial interactions of the catalyst. Recent studies identify interfacial atomic metal-oxygen species (*O) as a key descriptor in catalytic ozonation, determining the derivation of reactive species and subsEquationuent reactivity. Herein, we modulated the high-spin localized Co active sites in HE-Co3O4 via a high-entropy strategy, which selectively stabilizes *O surface species, thereby enhancing catalytic ozonation efficiency. HE-Co3O4 exhibits a five-fold higher degradation rate than Co3O4 for 50 ppm CH3SH elimination (63-fold the mass activity compared to commercial MnO2) while maintaining exceptional stability over 24 h at 298 K. Electron paramagnetic resonance (EPR) and magnetization hysteresis (M-H) measurements confirm the transition of Co3+ to high-spin states in HE-Co3O4. Density functional theory (DFT) calculations reveal that unpaired electrons enhance the hybridization of Co 3d with O 2p orbitals, thereby establishing a *O-mediated interfacial pathway. This mechanism is directly observed through in situ Raman spectroscopy. These findings provide insights into the targeted modulation of catalyst electronic structures for ozone-catalyzed environmental remediation.
Collapse
Affiliation(s)
- Rumeng Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Hao Zhou
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Tao Shao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Qiyu Lian
- Innovation Center of Yangtze RiverDelta, Zhejiang University, Future Water Laboratory Zhejiang, Jiaxing, CN, 510275, P.R. China
| | - Mengliang Hu
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107, P.R. China
| | - Ji Mei
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Shulin Zuo
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Jiahao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P.R. China
| |
Collapse
|
4
|
Cai X, Liao J, Jiang Y, Zhang Y, Qiu L, Lei L, Zhang X, Yu C. Fe and Cu co-doping induces abundant oxygen vacancies in MnO 2 for efficient ozone catalytic oxidation of toluene at room temperature. Dalton Trans 2025; 54:7862-7873. [PMID: 40272217 DOI: 10.1039/d5dt00289c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
MnO2 holds significant potential for room-temperature ozone catalytic oxidation of volatile organic compounds (VOCs), yet it encounters challenges related to low degradation efficiency. This study introduces a co-doping strategy aimed at enhancing the catalytic activity and stability of MnO2. Specifically, Mn4+ ions were substituted with low-valence copper and iron dopants via a straightforward one-step hydrothermal method, resulting in the formation of abundant oxygen vacancies on the catalyst surface through driven redox precipitation. The resultant Fe-Cu-MnO2 catalyst exhibited remarkable catalytic performance at room temperature, achieving 100% toluene degradation and 100% ozone removal efficiency, along with an impressive mineralization ratio of 81.2% and sustained stability over 100 hours. Relevant experiments demonstrated that the improvement in catalytic activity was primarily attributed to the significant increase in oxygen vacancy concentration induced by co-doping. This was accompanied by increased surface oxygen adsorption and enhanced low-temperature reducibility, which facilitated the generation of reactive oxygen species. Additionally, co-doping induced crystal morphology changes and specific surface area expansion contribute to exposing more active sites, thereby enhancing catalytic performance. Consequently, the catalyst exhibited superior ozone catalytic oxidation performance for toluene degradation. In situ DRIFTS analysis further elucidated the degradation pathway and reaction mechanism of ozone catalytic oxidation of toluene. These findings may provide valuable insights for the development of efficient catalysts for low-temperature catalytic ozonation of VOCs.
Collapse
Affiliation(s)
- Xinuo Cai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jiahong Liao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yushui Jiang
- Zhejiang Juhui New Material Co. Ltd., Quzhou, 324004, China
| | - Yani Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Lixia Qiu
- Zhejiang Quzhou Jusu Chemical Co. Ltd., Quzhou, 324004, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chunlin Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| |
Collapse
|
5
|
Gan G, Shen H, Cheng Q, Li Y, Zhang G. Unveiling mechanistic insight into boosting oxygen species activation over CeO 2/Mn 2O 3 p-n heterojunction for efficient photothermal mineralization of toluene. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137423. [PMID: 39892128 DOI: 10.1016/j.jhazmat.2025.137423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
The activation mechanism of oxygen species activation (including lattice oxygen and gaseous oxygen) in the photothermal catalytic reaction process is important for boosting the efficient removal of VOCs. Herein, we have successfully synthesized a p-n heterojunction photothermal catalyst CeO2/Mn2O3 for exploring the activation of molecular oxygen and lattice oxygen in toluene catalytic reaction under full spectrum conditions. Various characterization tests and theoretical calculations showed that the formed composite has enhanced light absorption ability, oxygen species migration and transformation ability as well as nice redox cycles, which is conducive to the fast replenishment of surface lattice oxygen and continuous capture and activation of molecular oxygen. Meanwhile, the results of in-situ DRIFTS tests not only confirmed the enhanced activation process of surface lattice oxygen and molecular oxygen under the synergistic effect of light and heat, but also revealed the pathway and mechanism of photothermal catalytic toluene over CeO2/Mn2O3.
Collapse
Affiliation(s)
- Guangmei Gan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Han Shen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Qiang Cheng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China; College of Urban and Environmental Sciences, Huangshi Key Laboratory of Prevention and Control of Soil Pollution, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, People's Republic of China.
| |
Collapse
|
6
|
Liu J, Yuan X, Dong H, Sans C. Progress in MnO 2/MnO 2-based materials catalytic ozonation process for water and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125493. [PMID: 40279744 DOI: 10.1016/j.jenvman.2025.125493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Heterogeneous catalytic ozonation (HCO) utilizes catalysts to enhance the adsorption and decomposition of ozone (O3), promote the formation of reactive oxygen species (ROS), and improve the removal of organic compounds, thereby overcoming some disadvantages of ozonation. MnO2/MnO2-based materials are widely used as catalysts for HCO due to their multi-valent Mn species, environment friendliness, abundant resources, and high efficiency. This review aims to provide an overview of the advancements in HCO using MnO2/MnO2-based materials, focusing on their preparation, structural characteristics, catalytic performance, and proposed mechanisms. In particular, the effects of MnO2 synthesis methods on the crystalline structure and morphology of catalysts are discussed. Then, the catalytic performances of various catalysts involving different phases, morphologies, and facets are compared. Subsequently, the enhanced applications of MnO2-based catalysts in HCO for water treatment are described, including metals doping, metal oxides combination, and MnO2-carrier. Furthermore, approaches of ROS identification are clarified, and the mechanisms of strengthening catalytic ozonation efficiency by MnO2/MnO2-based catalysts are summarized, containing redox couple theory, oxygen vacancy theory, complexation theory, and surface hydroxyl theory. Finally, the potential applications and perspectives of MnO2/MnO2-based catalysts are proposed. This review plans to bridge the gap between research and practical applications, providing new insights into the application of HCO technologies in water treatment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain
| | - Xiangjuan Yuan
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain; School of Resources and Environment, Wuhan Textile University, Wuhan, 430073, China.
| | - Huiyu Dong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Carmen Sans
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain.
| |
Collapse
|
7
|
Tang S, Zhong T, Yao Z, Qu W, Li T, Zhao H, Tian S, He C. Construction of Spatially Adjacent Ni and Co-Based Spinel Frustrated Lewis Pair Sites for Efficient Catalytic Ozonation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500310. [PMID: 40195919 DOI: 10.1002/smll.202500310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Frustrated Lewis pairs (FLPs) present new opportunities for the development of highly active spinel materials for the activation of stable molecules. Herein, a Ni and Co-based spinel with abundant FLPs sites (NiCo2O4-F) is synthesized through morphologic defect engineering and used for efficient catalytic ozonation CH3SH elimination. Characterization results reveal that the NiCo2O4-F with nanoflower structure exposes more surface oxygen vacancies (Ov), inducing local charge redistribution and forming active regions. Ov acts as Lewis basic sites, while the unsaturated coordinated Ni atoms (Niuc) act as Lewis acidic sites, and spatially ≈4.08 Å. The Ov···Niuc FLPs function as "electron shuttles" in the reaction, facilitating specific adsorption of reactants via the dual acidic-basic reaction sites, thereby activating O3 to generate ·O2 - and 1O2 species to achieve deep oxidation of CH3SH. The resulting NiCo2O4-F catalyst exhibits an outstanding CH3SH removal efficiency of 94.4%, achieving a high mass activity (5.6 ppm mg-1), which is 70 times greater than that of commercial MnO2 (0.08 ppm mg-1). This work presents a promising approach to developing sophisticated ozone catalysts by controllable construction of acid-base sites on spinel surface, enhancing the understanding of the role of FLPs structure in molecular activation.
Collapse
Affiliation(s)
- Su Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhangnan Yao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Qu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ting Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
8
|
Tang C, Jiang J, Bao Y, Gao M, Qin S, Qin Z, Shen XC, Ruan C. 1T/2H-MoS 2-Decorated Carbon Felts as Excellent Co-Catalysts in Advanced Oxidation Processes for the Degradation of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10501-10515. [PMID: 40233225 DOI: 10.1021/acs.langmuir.5c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The Fenton reaction is restricted by the sluggish Fe(II)/Fe(III) cycle and the low activation efficiency of oxidants. Herein, 1T/2H MoS2 nanoflowers with abundant defects and a multiphase structure, loaded on carbon felts (denoted as THMC), have been prepared to boost catalytic activity in Fenton-like oxidation. The defects and ultrathin nanosheets promote the adsorption of iron ions and pollutants, while the unsaturated S atoms and exposed Mo(IV) sites facilitate the conversion of Fe(III) to Fe(II). Additionally, the 1T phase accelerates electron transfer in Fe(II)/Fe(III) cycling, thereby synergistically enhancing catalytic activity in Fenton-like oxidation and improving the efficiency of pollutant elimination. Moreover, the loading of MoS2 nanoflowers on carbon felts not only overcomes the limitations of powder in separation and recycling but also offers robust stability for long-term applications. Thanks to these structural characteristics, the degradation efficiencies of rhodamine B and bisphenol A in the THMC cocatalyzed system reach 99.3% and 98.1%, respectively, and the corresponding rate constants (kobs) are 10.3 and 10.1 times higher than those of the traditional Fe2+-catalyzed system. Impressively, THMC still maintains excellent cocatalytic performance after 5 cycles and exhibits high degradation efficiencies across wide pH ranges. The cocatalytic system can efficiently eliminate a variety of organic pollutants and adapt to natural water samples. Furthermore, the performance of several MoS2 nanoflowers with varied phase structures and phase ratios has been investigated to probe the effect of phase structure. Interestingly, the kobs value of MoS2 with 52.4% 1T phase was 5.9 and 3.4 times higher than that of 5.6%-1T MoS2 in the degradation of RhB and BPA, respectively. Moreover, the cocatalytic performance of MoS2 could be further improved with an increase in the 1T phase to 66.6%. These observations reveal the significant role of phase effects on the cocatalytic activity of MoS2 in AOPs.
Collapse
Affiliation(s)
- Cong Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jingjing Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yusheng Bao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Manling Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Sikai Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - ZhuFeng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Changping Ruan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
9
|
Zou Y, He Q, Song Y, Yang X, Shi X, Yin S, Liang S, Liu Z, Sun H. Ultrafast Charged MnO 2 Nanosheets/Carbon Fiber with Mechanical and Postcharging Antibacterial Activity. NANO LETTERS 2025; 25:4751-4758. [PMID: 40088175 DOI: 10.1021/acs.nanolett.4c06179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Postcharging antibacterials have shown good application prospects in combating bacterial infections through electrical interaction. Herein, manganese oxide nanosheets in situ grown on carbon fibers (CM) are designed to perform the integration of mechanical intervention and postcharging therapy for efficient bacterial killing. This electrode disrupts bacterial membranes via sharp-edged microstructures. After charging at a low voltage in an ultrashort time, the charged CM affects the extracellular electron transfer (EET) of bacteria during the discharge process to kill the bacteria. Due to the dual-antibacterial mode, after charging at -1 V (vs saturated calomel electrode, SCE) for only 50.4 ± 3 s, the bacteria lethality rates of the CM against Escherichia coli and Staphylococcus aureus within 0.5 h both exceed 98%. Our developed ultrafast negatively charged CM exhibits high antibacterial activity and low cytotoxicity to fibroblast cells, providing a non-antibiotic approach to combat bacterial infection.
Collapse
Affiliation(s)
- Yang Zou
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Qinrong He
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Yudong Song
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Xiangyu Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Xinjian Shi
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Song Liang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| |
Collapse
|
10
|
Huang H, Li W, Chen X, Yang Z, Chen M, Zhang A, He C, Tian S. Weakening the Mn-O-Si Interaction via Carbon Intercalation for the Enhanced Catalytic Ozonation of Refractory Pollutants in Environmental Matrices. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12177-12188. [PMID: 39957100 PMCID: PMC11874039 DOI: 10.1021/acsami.4c21068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
The strong metal-support interaction (MSI) has been widely attributed to enhanced catalytic activity. However, this attribution might be wrong in catalytic ozonation, since MSI that is too strong might impede the activation of electron-poor ozone molecules. Herein, we reported a strategy to subtly modulate the Mn-O-Si interaction by intercalating the carbon film between the silica support and active manganese oxide. When using MnOx/0.5C/SiO2 with the moderate MSI as a catalyst in the catalytic ozonation of refractory paracetamol (PCM), 91.1 ± 2.4% of PCM was removed within 30 min, about 30% higher than that using the catalyst of MnOx/SiO2 with a strong MSI. Moreover, the reaction rate reached 8.01 × 10-2 min-1, 2.2 and 1.3 times that with MnOx/SiO2 and MnOx/1C/SiO2, respectively. Importantly, further integration of MnOx/0.5C/SiO2 into membrane filtration achieved high rejections of PCM (>94.3%) under various realistic water scenarios during a continuous 12 h operation, demonstrating strong resistance to environmental matrices interference. Experimental and theoretical evidence revealed that the moderate MSI resulted in the high dispersion of active MnOx nanoclusters in the size of 2.3-4.4 nm and promoted the adsorption of ozone over MnOx and its dissociation into surface *O, •OH, •O2-, and 1O2 for decontamination. As a constructive work, this study revealed the significance of MSI in catalytic ozonation and offered a simple regulation method for constructing active interfaces of metal-supported catalysts.
Collapse
Affiliation(s)
- Huating Huang
- School
of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Weiqing Li
- School
of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xixi Chen
- Department
of Materials Science and Engineering, City
University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zhiming Yang
- China
National Chemical Southern Construction Investment Co., Ltd., Guangzhou 516000, P. R. China
| | - Minggang Chen
- China
National Chemical Southern Construction Investment Co., Ltd., Guangzhou 516000, P. R. China
| | - Anhong Zhang
- China
National Chemical Southern Construction Investment Co., Ltd., Guangzhou 516000, P. R. China
| | - Chun He
- School
of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong
Provincial Key Laboratory of Environmental Pollution Control and Remediation, Guangzhou 510275, P. R. China
| | - Shuanghong Tian
- School
of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong
Provincial Key Laboratory of Environmental Pollution Control and Remediation, Guangzhou 510275, P. R. China
| |
Collapse
|
11
|
Jian J, Zhang S, Chen P, Liu D, Wang Y, Liu L, Xiao Z, Xu Z, Pan Y, Lv W, Liu G. Innovative spherical Fe-Mn layered double hydroxides (LDH) for the degradation of sulfisoxazole through activated periodate: Efficacy and mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125598. [PMID: 39732282 DOI: 10.1016/j.envpol.2024.125598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
Advanced oxidation technology based on peroxides is widely regarded as an efficient method for treating emerging contaminants. However, the precise mechanism by which layered double hydroxides (LDHs) enhance oxidant activation requires further investigation. In this study, a spherical Fe-Mn LDH (S-FML) with improved crystallinity using a simple hydrothermal method. Compared to granular Fe-Mn LDH (G-FML), S-FML demonstrated superior periodate (PI) activation efficiency and outstanding stability. Intensive mechanistic studies have shown that the synergistic action of Fe2⁺ and Mn2⁺ in S-FML plays a key role in the degradation reaction. Three primary pathways for SIZ degradation and a reduction in solution toxicity post-reaction were identified through analysis of degradation intermediates and density functional theory (DFT) calculations. This research offers valuable theoretical insights and a scientific foundation for designing high-performance heterogeneous catalysts and elucidating the efficient activation mechanisms of PI for emerging pollutant treatment.
Collapse
Affiliation(s)
- Junle Jian
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Siling Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dezhu Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yishun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Linsheng Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenjun Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zihong Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuhang Pan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Feng W, Wang C, Liu M, Wang H, Wu Z. A core-shell structured crystalline@amorphous MnO 2 with enhanced plasma catalytic degradation performance for volatile organic sulfur compounds and degradation mechanism exploration. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136597. [PMID: 39577289 DOI: 10.1016/j.jhazmat.2024.136597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
A crystalline@amorphous MnO2 (HT@RT) plasma catalyst was successfully constructed in this study to address the problem of odor pollution, especially from volatile organic sulfur compounds (VOSCs) with low olfactory thresholds. Complete conversion of dimethyl sulfide (DMS) at 140 J/L was achieved, and the ozone concentration in the exhaust gas was maintained below 5 ppm. Deeper mineralization of DMS was achieved in the HT@RT sample than in the individual HT and RT samples. A comprehensive analysis of multiple characterization techniques revealed that the HT@RT sample exhibited excellent DMS adsorption capacity, appropriate electric field responsiveness, high oxygen vacancy content, and abundant reactive oxygen species, which play key roles in the degradation of DMS. In addition, the DMS degradation process was investigated using in situ plasma diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Combined with the results of gas chromatography-mass spectrometry, degradation pathways for DMS were proposed. The HT@RT sample combined the advantages of both amorphous and crystalline materials, significantly enhancing the activity and stability of the catalyst. Therefore, the crystalline@amorphous structured catalysts constructed in this study not only offer new insights for improving the performance of plasma catalysis but also provide an effective solution for eliminating odorous gases.
Collapse
Affiliation(s)
- Wenji Feng
- College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace, China
| | - Chong Wang
- Hangzhou Chunlai Technology Co., Ltd, Hangzhou 310052, China
| | - Mengyu Liu
- College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace, China
| | - Haiqiang Wang
- College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace, China.
| | - Zhongbiao Wu
- College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace, China
| |
Collapse
|
13
|
Nishi T, Sakamoto N, Sekizawa K, Morikawa T, Sato S. CO 2-to-CO Conversion with Over 10 % Efficiency Using Earth Abundant System in a Single-Compartment Reactor with Oxygen Tolerant Mn Complex Catalyst. CHEMSUSCHEM 2025; 18:e202401082. [PMID: 39021290 DOI: 10.1002/cssc.202401082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
The direct conversion of CO2 in the presence of O2 to value-added chemicals is a potentially important cost-effective solar-driven CO2 reduction technology. The present work demonstrates the solar-powered conversion of CO2 to CO with greater than 10 % efficiency using a Mn complex cathode and an Fe-Ni anode in a single-compartment reactor without an ion exchange membrane in conjunction with a Si solar cell. Reactors separated by ion exchange membranes are typically used to prevent any effects of oxygen generated by the counter electrode. However, the present Mn complex catalyst maintained its activity even in the presence of 15 % O2. Operando surface-enhanced Raman spectroscopy established that the present Mn catalyst preferentially reacted with CO2 without adsorbing O2. This unique characteristic enabled solar-driven CO2 reduction using a single-compartment reactor. In contrast, catalytic metals such as Ag tend to lose activity in such systems as a consequence of reaction with oxygen produced at the anode.
Collapse
Affiliation(s)
- Teppei Nishi
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Naonari Sakamoto
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Keita Sekizawa
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Takeshi Morikawa
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| | - Shunsuke Sato
- TOYOTA CENTRAL R&D LABS., INC., 41-1, Yokomichi, Nagakute, Aichi, 480-11992, Japan
| |
Collapse
|
14
|
Zhang Y, Wang Y, Zhao Y, Hu R, Yuan H. Design of aggregation-induced emission materials for biosensing of molecules and cells. Biosens Bioelectron 2025; 267:116805. [PMID: 39321612 DOI: 10.1016/j.bios.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
In recent years, aggregation-induced emission (AIE) materials have gained significant attention and have been developed for various applications in different fields including biomedical research, chemical analysis, optoelectronic devices, materials science, and nanotechnology. AIE is a unique luminescence phenomenon, and AIEgens are fluorescent moieties with relatively twisted structures that can overcome the aggregation-caused quenching (ACQ) effect. Additionally, AIEgens offer advantages such as non-washing properties, deep tissue penetration, minimal damage to biological structures, high signal-to-noise ratio, and excellent photostability. Fluorescent probes with AIE characteristics exhibit high sensitivity, short response time, simple operation, real-time detection capability, high selectivity, and excellent biocompatibility. As a result, they have been widely applied in cellular imaging, luminescent sensing, detection of physiological abnormalities in the human body, as well as early diagnosis and treatment of diseases. This review provides a comprehensive summary and discussion of the progress over the past four years regarding the detection of metal ions, small chemical molecules, biomacromolecules, microbes, and cells based on AIE materials, along with discussing their potential applications and future development prospects.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yi Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, PR China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China.
| |
Collapse
|
15
|
Zhuang S, Xu F, Duan N. Heterogenizing MnO 2 nanostructure with industrial impurity ions for lead leakage-preventable anodes in zinc electrowinning. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136259. [PMID: 39490160 DOI: 10.1016/j.jhazmat.2024.136259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
γ-MnO2 precoated lead (Pb)-based anodes have shown high initial activity in heavy-metal pollution reduction and production improvement for zinc electrowinning in laboratory. However, the accumulated impurity ions (M) in industrial MnO2-precursors restrict its industrial application. Herein, the heterostructure-induced rich oxygen-vacancies for M-MnO2 and its higher activity (Pb/Co-MnO2>Pb/Ni-MnO2>Pb/Fe-MnO2 ≈Pb/Cu-MnO2>Pb/MnO2) was reported. However, it reached a concentration threshold and afterwards provided the inhibited activity. Moreover, the Pb2+ diffusion-induced lead leakage is the dominant factor in the inactivation of anodes before extrinsic mechanical effects manifest, which follows: Pb/Fe-MnO2>Pb/Cu-MnO2>Pb/MnO2 ≈Pb/Ni-MnO2 ≈Pb/Co-MnO2. Instead, due to the enhanced activity and suppressed lead leakage, Pb/Co-MnO2 avoided about 12.4 % and 72.3 % lead-containing anode slime in comparison with Pb/MnO2 and Pb/Fe-MnO2 and minimized the contamination of zinc products by lead. Such complex effects also provide a cost-effective and environmental-friendly strategy for lead-leakage preventable Pb-based anodes in zinc electrowinning as it can reduce the exogenous dopants usage while still delivering competitive electrooxidation activity-stability.
Collapse
Affiliation(s)
- Siwei Zhuang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fuyuan Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ning Duan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
16
|
Wu S, Peng J, Lee SLJ, Niu X, Jiang Y, Lin S. Let the two sides of the same coin meet-Environmental health and safety-oriented development of functional nanomaterials for environmental remediations. ECO-ENVIRONMENT & HEALTH 2024; 3:494-504. [PMID: 39605967 PMCID: PMC11599990 DOI: 10.1016/j.eehl.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 11/29/2024]
Abstract
Nanotechnology and engineered nanomaterials have been at the forefront of technological breakthroughs of the 21st century. With the challenges of increasingly complex and emergent environmental pollution, nanotechnology offers exciting complementary approaches to achieve high efficiencies with low or green energy input. However, unknown and unintended hazardous effects and health risks associated with nanotechnology hinder its full-scale implementation. Therefore, the development of safer nanomaterials lies in the critical balance between the applications and implications of nanomaterials. To facilitate constructive dialogue between the two sides (i.e., applications and implications) of the same coin, this review sets forth to summarize the current progress of the environmental applications of nanomaterials and establish the structure-property-functionality relationship. A systematic analysis of the structure-property-toxicity relationship is also provided to advocate the Safe and Sustainable-by-Design strategy for nanomaterials. Lastly, the review also discusses the future of artificial intelligence-assisted environmental health and safety-oriented development of nanomaterials.
Collapse
Affiliation(s)
- Shuangyu Wu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jian Peng
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Stephanie Ling Jie Lee
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaoqing Niu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yue Jiang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
17
|
Wen R, Li H, Zhao H, Ren K, Hao R, He K, Zhao C, Wan X, Wang W. Enhancing Ozone Decomposition in Humid Environments through Carbon Doping to Disrupt the Hydrogen Bond Network in Mullite YMn 2O 5. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20687-20698. [PMID: 39504449 DOI: 10.1021/acs.est.4c05653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The strong adsorption of water molecules at the active site of the catalyst presents significant challenges in ozone decomposition, particularly at room temperature and in humid environments. To address this issue, we doped carbon atoms into the Mn-mullite YMn2O5 catalyst to replace oxygen, resulting in efficient and stable ozone decomposition under highly humid conditions. Utilizing DFT calculations, our study demonstrated that carbon doping disrupts hydrogen bond networks on the catalyst surface, thereby reducing water adsorption. Furthermore, carbon doping regulated the electronic structure of active sites, fundamentally reversing the adsorption strength of water and ozone molecules, which avoids the decline in catalytic activity caused by competitive water adsorption. Experimentally, under room temperature and relative humidity (RH) 50%, the carbon-doped YMn2O5 catalyst maintained 100% conversion in decomposing 100 ppm of ozone for at least 24 h, surpassing the most reported catalysts against water poisoning. Furthermore, the utilization of a carbon-doped mullite-loaded air cleaner demonstrated promising application in degrading ozone. The approach of enhancing catalyst water resistance through carbon doping, which disrupts hydrogen bonds, provided valuable insights into the design of stable and efficient room-temperature ozonolysis catalysts.
Collapse
Affiliation(s)
- Rui Wen
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Huan Li
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Haojun Zhao
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Kai Ren
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Ruiting Hao
- School of Energy and Environment Science, Yunnan Normal University, Kunming Yunnan 650092, China
- Southwest United Graduate School, Kunming, Yunnan Province 650092, China
| | - Kunpeng He
- College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Chunning Zhao
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Xiang Wan
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518057, China
- Southwest United Graduate School, Kunming, Yunnan Province 650092, China
| |
Collapse
|
18
|
Liu H, Li Y, Huangfu Z, Lu Q, Yang B, Liu Y. Structure and molecular-level transformation for oxidation of effluent organic matters by manganese oxides. WATER RESEARCH 2024; 262:122082. [PMID: 39018581 DOI: 10.1016/j.watres.2024.122082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
As important organic components in water environments, effluent organic matters (EfOMs) from wastewater treatment plants are widely present in Mn-rich environments or engineered treatment systems. The redox interaction between manganese oxides (MnOx) and EfOMs can lead to their structural changes, which are crucial for ensuring the safety of water environments. Herein, the reactivities of MnOx with EfOMs were evaluated, and it was found that MnOx with high specific surface area, active high-valent manganese content and lattice oxygen content (i.e., amorphous MnO2) possessed stronger oxidizing ability towards EfOMs. Accompanying by EfOMs oxidation, Mn(IV) and Mn(III) were reduced into Mn(II), with Mn(III) as the significant active species. Through molecular-level transformation analysis by ultrahigh mass spectrometry (FT-ICR MS), the highly reactive compounds in EfOMs were clearly determined to be that with more aromatic and unsaturated structures, especially lignin-like compounds (the highest content in EfOMs (over 60 %)). EfOMs were oxidized by amorphous MnO2 into products with lower humification index (0.60 vs. 0.46), smaller apparent molecular weight (386.94 Da vs. 368.68 Da), and higher biodegradability (BOD5/COD: 0.12 vs. 0.78). This finding suggested that redox reactions between MnOx and EfOMs might alter their abiotic and biotic behaviors in receiving water environments.
Collapse
Affiliation(s)
- Hongnan Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yingying Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zizheng Huangfu
- Sinochem Environment Holdings Co., Ltd., Beijing 100071, China
| | - Qi Lu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Baolong Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
19
|
Xiao T, Tang C, Lin H, Li X, Mei Y, Xu C, Gao L, Jiang L, Xiang P, Ni S, Xiao Y, Tan X. Investigating the NH 4+ Preintercalation and Surface Coordination Effects on MnO 2 for Ammonium-Ion Supercapacitors. Inorg Chem 2024. [PMID: 39233664 DOI: 10.1021/acs.inorgchem.4c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Ion preintercalation is an effective method for fine-tuning the electrochemical characteristics of electrode materials, thereby enhancing the performance of aqueous ammonium-ion hybrid supercapacitors (A-HSCs). However, much of the current research on ion preintercalation lacks controllability, and the underlying mechanisms remain unclear. In this study, we employ a two-step electrochemical activation approach, involving galvanostatic charge-discharge and cyclic voltammetry, to modulate the preintercalation of NH4+ in MnO2. An in-depth analysis of the electrochemical activation mechanism is presented. This two-step electrochemical activation approach endows the final MnO2/AC electrode with a high capacitance of 917.4 F g-1, approximately 2.4 times higher than that of original MnO2. Furthermore, the MnO2/AC electrode retains approximately 93.4% of its capacitance after 10 000 cycles at a current density of 25 mA cm-2. Additionally, aqueous A-HSC, comprising MnO2/AC and P-MoO3, achieves a maximum energy density of 87.6 Wh kg-1. This study offers novel insights into the controllable ion preintercalation approach via electrochemical activation.
Collapse
Affiliation(s)
- Ting Xiao
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
| | - Can Tang
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
| | - Hongxiang Lin
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
| | - Xiuru Li
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Yuting Mei
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Can Xu
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
| | - Lin Gao
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Lihua Jiang
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Peng Xiang
- Hubei Provincial Engineering Technology Research Center for Microgrid, College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
| | - Shibing Ni
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Yequan Xiao
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Xinyu Tan
- Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
20
|
Liu Y, Pi F, He L, Yang F, Chen T. Oxygen Vacancy-Rich Manganese Nanoflowers as Ferroptosis Inducers for Tumor Radiotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310118. [PMID: 38506599 DOI: 10.1002/smll.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Indexed: 03/21/2024]
Abstract
The combination of ferroptosis and innovative tumor therapy methods offers another promising answer to the problem of tumors. In order to generate effective ferroptosis in tumor cells, iron-based nanomaterials are commonly utilized to introduce foreign iron as a trigger for ferroptosis. However, this usually necessitates the injection of larger doses of iron into the body. These exogenous iron increases are likely to create concealed concerns for symptoms such as liver damage and allergy. Herein, an iron-free radiosensitizer is introduced, oxygen-vacancy-rich MnO2 nanoflowers (ovs-MnO2), that promotes ferroptosis and modifies the tumor microenvironment to assist radiotherapy. ovs-MnO2 with enriched oxygen vacancies on the surface induces the release of intracellular free iron (Fe2+), which functions as an activator of Fenton reaction and enhances the accumulation of intracellular reactive oxygen species. On the other hand, Fe2+ also triggers the ferroptosis and promotes the accumulation of lipid peroxides. Subsequently, the depletion of glutathione and accumulation of lipid peroxidation in tumor cells leads to the inactivation of glutathione peroxidase 4 (GPX4) and ferroptosis, thereby enhancing the therapeutic efficacy of radiotherapy. The nanoplatform provides a novel strategy for generating novel nanomedicines for ferroptosis-assisted radiotherapy.
Collapse
Affiliation(s)
- Ying Liu
- Department of Oncology of The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Fen Pi
- Department of Oncology of The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Lizhen He
- Department of Oncology of The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Fang Yang
- Department of Oncology of The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Oncology of The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
21
|
Qian Y, Zhou Z, Zhang Q, Zhao H, Chen H, Han J, Wan H, Jin H, Wang S, Lei Y. Boosting the Energy Density of Bowl-Like MnO 2@Carbon Through Lithium-Intercalation in a High-Voltage Asymmetric Supercapacitor with "Water-In-Salt" Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310037. [PMID: 38634208 DOI: 10.1002/smll.202310037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Highly concentrated "'water-in-salt"' (WIS) electrolytes are promising for high-performance energy storage devices due to their wide electrochemical stability window. However, the energy storage mechanism of MnO2 in WIS electrolytes-based supercapacitors remains unclear. Herein, MnO2 nanoflowers are successfully grown on mesoporous bowl-like carbon (MBC) particles to generate MnO2/MBC composites, which not only increase electroactive sites and inhibit the pulverization of MnO2 particles during the fast charging/discharging processes, but also facilitate the electron transfer and ion diffusion within the whole electrode, resulting in significant enhancement of the electrochemical performance. An asymmetric supercapacitor, assembled with MnO2/MBC and activated carbon (AC) and using 21 m LiTFSI solution as the WIS electrolyte, delivers an ultrahigh energy density of 70.2 Wh kg-1 at 700 W kg-1, and still retains 24.8 Wh kg-1 when the power density is increased to 28 kW kg-1. The ex situ XRD, Raman, and XPS measurements reveal that a reversible reaction of MnO2 + xLi+ + xe-↔LixMnO2 takes place during charging and discharging. Therefore, the asymmetric MnO2/MBC//AC supercapacitor with LiTFSI electrolyte is actually a lithium-ion hybrid supercapacitor, which can greatly boost the energy density of the assembled device and expand the voltage window.
Collapse
Affiliation(s)
- Yudan Qian
- College of Chemistry and Materials Engineering, Key Laboratory of Leather of Zhejiang Province & Institute of New Materials and Industrial Technology, Wenzhou University, Zhejiang, 325035, China
| | - Zhiming Zhou
- College of Chemistry and Materials Engineering, Key Laboratory of Leather of Zhejiang Province & Institute of New Materials and Industrial Technology, Wenzhou University, Zhejiang, 325035, China
| | - Qingcheng Zhang
- College of Chemistry and Materials Engineering, Key Laboratory of Leather of Zhejiang Province & Institute of New Materials and Industrial Technology, Wenzhou University, Zhejiang, 325035, China
| | - Huaping Zhao
- Fachgebiet Angewante Nanophysik, Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Heng Chen
- College of Chemistry and Materials Engineering, Key Laboratory of Leather of Zhejiang Province & Institute of New Materials and Industrial Technology, Wenzhou University, Zhejiang, 325035, China
| | - Jintong Han
- College of Chemistry and Materials Engineering, Key Laboratory of Leather of Zhejiang Province & Institute of New Materials and Industrial Technology, Wenzhou University, Zhejiang, 325035, China
| | - Haiting Wan
- College of Chemistry and Materials Engineering, Key Laboratory of Leather of Zhejiang Province & Institute of New Materials and Industrial Technology, Wenzhou University, Zhejiang, 325035, China
| | - Huile Jin
- College of Chemistry and Materials Engineering, Key Laboratory of Leather of Zhejiang Province & Institute of New Materials and Industrial Technology, Wenzhou University, Zhejiang, 325035, China
| | - Shun Wang
- College of Chemistry and Materials Engineering, Key Laboratory of Leather of Zhejiang Province & Institute of New Materials and Industrial Technology, Wenzhou University, Zhejiang, 325035, China
| | - Yong Lei
- Fachgebiet Angewante Nanophysik, Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, 98693, Ilmenau, Germany
| |
Collapse
|
22
|
Wang D, Luo K, Tian H, Cheng H, Giannakis S, Song Y, He Z, Wang L, Song S, Fang J, Ma J. Transforming Plain LaMnO 3 Perovskite into a Powerful Ozonation Catalyst: Elucidating the Mechanisms of Simultaneous A and B Sites Modulation for Enhanced Toluene Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12167-12178. [PMID: 38920332 DOI: 10.1021/acs.est.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Herein, we propose preferential dissolution paired with Cu-doping as an effective method for synergistically modulating the A- and B-sites of LaMnO3 perovskite. Through Cu-doping into the B-sites of LaMnO3, specifically modifying the B-sites, the double perovskite La2CuMnO6 was created. Subsequently, partial La from the A-sites of La2CuMnO6 was etched using HNO3, forming novel La2CuMnO6/MnO2 (LCMO/MnO2) catalysts. The optimized catalyst, featuring an ideal Mn:Cu ratio of 4.5:1 (LCMO/MnO2-4.5), exhibited exceptional catalytic ozonation performance. It achieved approximately 90% toluene degradation with 56% selectivity toward CO2, even under ambient temperature (35 °C) and a relatively humid environment (45%). Modulation of A-sites induced the elongation of Mn-O bonds and decrease in the coordination number of Mn-O (from 6 to 4.3) in LCMO/MnO2-4.5, resulting in the creation of abundant multivalent Mn and oxygen vacancies. Doping Cu into B-sites led to the preferential chemisorption of toluene on multivalent Cu (Cu(I)/Cu(II)), consistent with theoretical predictions. Effective electronic supplementary interactions enabled the cycling of multiple oxidation states of Mn for ozone decomposition, facilitating the production of reactive oxygen species and the regeneration of oxygen vacancies. This study establishes high-performance perovskites for the synergistic regulation of O3 and toluene, contributing to cleaner and safer industrial activities.
Collapse
Affiliation(s)
- Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Kai Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haole Tian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Stefanos Giannakis
- E.T.S. de Ingenieros de Caminos, Canales Y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía Y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, Universidad Politécnica de Madrid, C/Profesor Aranguren, S/n, ES-28040 Madrid, Spain
| | - Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Zhiqiao He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lizhang Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
23
|
Bayout A, Cammarano C, Costa IM, Veryasov G, Hulea V. Management of methyl mercaptan contained in waste gases - an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44669-44690. [PMID: 38963632 DOI: 10.1007/s11356-024-34112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Methyl mercaptan is a typical volatile organosulfur pollutant contained in many gases emitted by urban waste treatment, various industries, natural gas handling, refining processes, and energy production. This work is a comprehensive overview of the scientific and practical aspects related to the management of methyl mercaptan pollution. The main techniques, including absorption, adsorption, oxidation, and biological treatments, are examined in detail. For each method, its capability as well as the technical advantages and drawbacks have been highlighted. The emerging methods developed for the removal of methyl mercaptan from natural gas are also reviewed. These methods are based on the catalytic conversion of CH3SH to hydrocarbons and H2S.
Collapse
Affiliation(s)
- Abdelilah Bayout
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Claudia Cammarano
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Izabel Medeiros Costa
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Gleb Veryasov
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium
| | - Vasile Hulea
- Charles Gerhardt Institute of Montpellier, University of Montpellier, CNRS, ENSCM, 1919 Rte de Mende, 34293, Montpellier Cedex 5, France.
- TotalEnergies, One Tech, Zone Industrielle C, 7181, Feluy, Belgium.
| |
Collapse
|
24
|
Gao X, Chen H, Qiu H, Zhang Y, Cheng J, Shen Y. Portable hydrogel kit driven by bimetallic carbon dots nanozyme for H 2O 2-self-supplying dual-modal monitoring of atmospheric CH 3SH. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133871. [PMID: 38428301 DOI: 10.1016/j.jhazmat.2024.133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Due to the typical volatility of gaseous pollutant methyl mercaptan (CH3SH), the development of a facile, reliable, and accurate onsite environmental surveillance of highly toxic CH3SH faces many challenges, but it is critical to environmental atmosphere assessment and safeguarding public health. Here, we prepared a novel bimetallic carbon dots (Fe&Cu@CDs) nanozyme with high peroxidase-mimicking activity to design a portable hydrogel kit for onsite visual H2O2-self-supplying enzymatic cascade catalytic colorimetric and photothermal signal synergistic amplification dual-modal monitoring of CH3SH in atmospheric environment. Assisted by alcohol oxidase (AOX), CH3SH could be specifically converted into H2O2 for oxidizing chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by Fe&Cu@CDs to produce dark blue ox-TMB with absorption at 652 nm and photothermal characters. Consequently, a CH3SH concentration-dependent change both in naked-eye color and photothermal effect-triggered temperature were observed. By hybridizing AOX-assisted Fe&Cu@CDs + TMB with agarose, a H2O2-self-supplying colorimetric and photothermal signal synergistic amplification sensory hydrogel kit integrated with Color Picker APP-installed smartphone and 660 nm laser-equipped handheld thermal imager for CH3SH was proposed with acceptable results in atmospheric environment around wastepile (e.g., solid waste and food waste piles), which exhibited great potentials to further develop commercial onsite monitoring platforms in warning-early abnormal atmospheric CH3SH for safeguarding environmental health.
Collapse
Affiliation(s)
- Xiang Gao
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huimin Qiu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yang Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
25
|
Qiao A, Pan H, Zang J, Zhang Y, Yi X, Liu Y, Zhan J, Yang X, Zhao X, Li A, Zhou H. Can xenobiotics support the growth of Mn(II)-oxidizing bacteria (MnOB)? A case of phenol-utilizing bacteria Pseudomonas sp. AN-1. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134095. [PMID: 38521035 DOI: 10.1016/j.jhazmat.2024.134095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Biogenic manganese oxides (BioMnOx) produced by Mn(II)-oxidizing bacteria (MnOB) have garnered considerable attention for their exceptional adsorption and oxidation capabilities. However, previous studies have predominantly focused on the role of BioMnOx, neglecting substantial investigation into MnOB themselves. Meanwhile, whether the xenobiotics could support the growth of MnOB as the sole carbon source remains uncertain. In this study, we isolated a strain termed Pseudomonas sp. AN-1, capable of utilizing phenol as the sole carbon source. The degradation of phenol took precedence over the accumulation of BioMnOx. In the presence of 100 mg L-1 phenol and 100 µM Mn(II), phenol was entirely degraded within 20 h, while Mn(II) was completely oxidized within 30 h. However, at the higher phenol concentration (500 mg L-1), phenol degradation reduced to 32% and Mn(II) oxidation did not appear to occur. TOC determination confirmed the ability of strain AN-1 to mineralize phenol. Based on the genomic and proteomics studies, the Mn(II) oxidation and phenol mineralization mechanism of strain AN-1 was further confirmed. Proteome analysis revealed down-regulation of proteins associated with Mn(II) oxidation, including MnxG and McoA, with increasing phenol concentration. Notably, this study observed for the first time that the expression of Mn(II) oxidation proteins is modulated by the concentration of carbon sources. This work provides new insight into the interaction between xenobiotics and MnOB, thus revealing the complexity of biogeochemical cycles of Mn and C.
Collapse
Affiliation(s)
- Aonan Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Jiaxi Zang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Yiwen Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Xiaojing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Xu Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, China.
| |
Collapse
|
26
|
Zeng Y, Zhuo Q, Pan J, Lan Y, Dai L, Guan B. Switching reactive oxygen species reactions derived from Mn-Pt anchored zeolite for selective catalytic ozonation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123747. [PMID: 38460590 DOI: 10.1016/j.envpol.2024.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Rationally switching reactive oxygen species (ROS) reactions in advanced oxidation processes (AOPs) is urgently needed to improve the adaptability and efficiency for the engineering application. Herein we synthesized bimetallic Mn-Pt catalysts based on zeolite to realize the switching of ROS reactions in catalytic ozonation for sustainable degradation of organic pollutants from water. The ROS reactions switched from singlet oxygen (1O2, 71.01%) to radical-dominated (93.79%) pathway by simply introducing defects and changing Pt/Mn ratios. The oxygen vacancy induced by anchoring Mn-Pt species from zeolite external surface (MnPt/H-Beta) to internal framework (MnPt@Si-Beta) exposes more electron-rich Pt2+/Pt4+ redox sites, accelerating the decomposition of O3 to generate •OH via electron transfer and switching ROS reactions. The Mn site acted as a bridge plays a critical role in conducting electrons from organic pollutants to Pt sites, which solidly solves the electron loss of catalysts, facilitating the efficient degradation of pollutants. A 34.7-fold increase in phenol degradation compared with the non-catalytic ozonation and an excellent catalytic stability are achieved by MnPt@Si-Beta/O3. The 1O2-dominated ROS reaction originated from MnPt/H-Beta/O3 exhibits superior performances in anti-interference for Cl-, HCO3-, NO3-, and SO4-. This work establishes a novel strategy for switching ROS reactions to expand the targeted applications of O3 based AOPs for environmental remediation.
Collapse
Affiliation(s)
- Yaxiong Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qizheng Zhuo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Lan
- Zhejiang Zheda Qiushi Property Management Co., Ltd., Logistics Group, Zhejiang University, Hangzhou, 310058, China
| | - Liyan Dai
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Wang J, Yao J, Li Y, Wei Z, Gao C, Jiang L, Wu X. S vacancies-introduced chalcopyrite switch radical to non-radical pathways via peroxymonosulfate activation: Vital roles of S vacancies. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133751. [PMID: 38341884 DOI: 10.1016/j.jhazmat.2024.133751] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Regulation of peroxymonosulfate (PMS) activation from radical to non-radical pathways is an emerging focus of advanced oxidation processes (AOPs) due to its superiority of anti-interference to complex wastewater. However, the detailed correlation mechanism between the defect structure of the catalyst and the regulation of radicals/non-radicals remains unclear. Herein, natural chalcopyrite (CuFeS2) with different levels of S vacancies created by a simple NaBH4 reduction process was employed to explore the above-mentioned underlying mechanism for constructing high efficiency and low cost of catalyst towards AOPs. With the assistance of simulated solar light, S-deficient chalcopyrite (Sv-NCP) exhibited prominent performance for PMS activation. More interestingly, the different degrees of S vacancies regulated the active species from radicals to non-radical 1O2, thus showing excellent purification of complex wastewater as well as actual pharmaceutical wastewater. Mechanistic analysis reveals that PMS tends to loss electrons on S vacancies sites and is dissociated into 1O2 rather than ·OH/SO4·- due to electron deficiency. Meanwhile, the improved adsorption performance makes the degradation sites of pollutants change from solution to surface. Most importantly, Sv-NCP presented excellent detoxication for antibiotic wastewater due to the high selectivity of 1O2. This work provides novel insights into the regulation of active species in Fenton-like reactions via defect engineering for high efficiency of pollutant degradation.
Collapse
Affiliation(s)
- Jinpeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jia Yao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yubiao Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhenlun Wei
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Caiyan Gao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lisha Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaoyong Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
28
|
Xie Y, Peng X, Song X, Ning P, Sun X, Ma Y, Wang C, Li K. Structural/surface characterization of transition metal element-doped H-ZSM-5 adsorbent for CH 3SH removal: identification of active adsorption sites and deactivation mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24398-24411. [PMID: 38441737 DOI: 10.1007/s11356-024-32518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/14/2024] [Indexed: 04/07/2024]
Abstract
CH3SH is a potential hazard to both chemical production and human health, so controlling its emissions is an urgent priority. In this work, a series of transition metal-loaded H-ZSM-5 adsorbents (Si/Al = 25) (Cu, Fe, Co, Ni, Mn, and Zn) were synthesized through the wet impregnation method and tested for CH3SH physicochemical adsorption at 60 °C. It was shown that the Cu-modified H-ZSM-5 adsorbent was much more active for CH3SH removal due to its abundant strong acid sites than other transition metal-modified H-ZSM-5 adsorbents. The detailed physicochemical properties of various modified H-ZSM-5 adsorbents were characterized by SEM, XRD, N2 physisorption, XPS, H2-TPR, and NH3-TPD. The effects of metal loading mass ratio, calcination temperature, and acid or alkali modification on the performance of the adsorbent were also investigated, and finally 20% Cu/ZSM-5 was found to have the best adsorption capacity after calcined at 350 °C. Additionally, the Cu/ZSM-5 adsorbent modified by sodium bicarbonate could expose more active components, which improved the adsorbent's stability. However, the consumption and reduction of the active component Cu2+ and the accumulation of sulfate during the adsorption process are the main reasons for the deactivation of the adsorbent. In addition, the simultaneous purging of N2 + O2 can effectively restore the adsorption capacity of the deactivated adsorbent and can be used as a potential strategy to regenerate the adsorbent.
Collapse
Affiliation(s)
- Yuxuan Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xiao Peng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- Faculty of Chemistry and Chemical Engineering, Zhaotong College, Zhaotong, 657000, People's Republic of China
| | - Xin Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yixing Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Chi Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- National-Regional Engineering Center for Recovery of Waste Gases From Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| |
Collapse
|
29
|
Hu S, Zhang J, Chen X, Qin X, Yao J, Zhang C. Synergically regulated silver species and surface oxygen on manganese oxide for promoted activity of formaldehyde oxidation. J Environ Sci (China) 2024; 138:709-718. [PMID: 38135433 DOI: 10.1016/j.jes.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 12/24/2023]
Abstract
Formaldehyde (HCHO) is a common indoor pollutant that is detrimental to human health. Its efficient removal has become an urgent demand to reduce the public health risk. In this work, Ag-MnOx-based catalysts were prepared and activated under different atmosphere (i.e., air, hydrogen (H2) and carbon monoxide (CO)) for efficient oxidation of HCHO. The catalyst activated with CO (Ag/Mn-CO) displayed the highest activity among the tested samples with 90% conversion at 100°C under a gas space velocity of 75,000 mL/(gcat·hr). Complementary characterizations demonstrate that CO reduction treatment resulted in synergically regulated content of surface oxygen on support to adsorb/activate HCHO and size of Ag particle to dissociate oxygen to oxidize the adsorbed HCHO. In contrast, other catalysts lack for either abundant surface oxygen species or metallic silver with the appropriate particle size, so that the integrate activity is limited by one specific reaction step. This study contributes to elucidating the mechanisms regulating the oxidation activity of Ag-based catalysts.
Collapse
Affiliation(s)
- Shuo Hu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueyan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxiao Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinshui Yao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Hu W, Guo T, Ma K, Li X, Luo W, Wu M, Guo H, Zhang Y, Shangguan W. Promoted catalytic performance of Ag-Mn bimetal catalysts synthesized through reduction route. J Environ Sci (China) 2024; 137:358-369. [PMID: 37980022 DOI: 10.1016/j.jes.2022.10.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2023]
Abstract
VOCs can exert great harm to both human and environment, and catalytic oxidation is believed to be an effective technique to eliminate these pollutants. In this paper, Ag-Mn bimetal catalysts with 10 wt.% of silver were synthesized using doping, impregnation, and reduction methods respectively, and then they were applied to the catalytic oxidation of benzene. Through series of characterizations it showed that the loading of silver using reduction method significantly resulted in improved physico-chemical properties of manganese oxides, such as larger surface area and pore volume, higher proportion of surface Mn3+ and Mn4+, stronger reducibility and more active of surface oxygen species, which were all beneficial to its catalytic activity. As a result, the Ag-Mn catalysts synthesized by reduction method showed a lower T90 value (equals to the temperature at which 90% of initial benzene was removed) of 203°C. Besides, both the used and fresh Ag-Mn catalysts synthesized by reduction method showed preferable stability in this research.
Collapse
Affiliation(s)
- Wenkai Hu
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Tao Guo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Kaiyao Ma
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Xu Li
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Wangting Luo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Mingzhi Wu
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China
| | - Hao Guo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China; Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaxin Zhang
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, China.
| | - Wenfeng Shangguan
- Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
31
|
Zhang J, Wu Z, Dong B, Ge S, He S. Effective degradation of quinoline by catalytic ozonation with MnCe xO y catalysts: performance and mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:823-837. [PMID: 38358505 PMCID: wst_2024_027 DOI: 10.2166/wst.2024.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Quinoline inevitably remains in the effluent of coking wastewater treatment plants due to its bio-refractory nature, which might cause unfavorable effects on human and ecological environments. In this study, MnCexOy was consciously synthesized by α-MnO2 doped with Ce3+ (Ce:Mn = 1:10) and employed as the ozonation catalyst for quinoline degradation. After that, the removal efficiency and mechanism of quinoline were systematically analyzed by characterizing the physicochemical properties of MnCexOy, investigating free radicals and monitoring the solution pH. Results indicated that the removal rate of quinoline was greatly improved by the prepared MnCexOy catalyst. Specifically, the removal efficiencies of quinoline could be 93.73, 62.57 and 43.76%, corresponding to MnCexOy, α-MnO2 and single ozonation systems, respectively. The radical scavenging tests demonstrated that •OH and •O2- were the dominant reactive oxygen species in the MnCexOy ozonation system. Meanwhile, the contribution levels of •OH and •O2- to quinoline degradation were about 42 and 35%, respectively. The abundant surface hydroxyl groups and oxygen vacancies of the MnCexOy catalyst were two important factors for decomposing molecular O3 into more •OH and •O2-. This study could provide scientific support for the application of the MnCexOy/O3 system in degrading quinoline in bio-treated coking wastewater.
Collapse
Affiliation(s)
- Jie Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China E-mail:
| | - Zhaochang Wu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Ben Dong
- Jiangsu Fangzheng Environmental Protection Consulting (Group) Co., Ltd, Xuzhou, 221132, Jiangsu, China
| | - Sijie Ge
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Shilong He
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| |
Collapse
|
32
|
Wang D, Zhang C, Zhang L, Xie X, Lv Y. Integrated Optimization of Crystal Facets and Nanoscale Spatial Confinement toward the Boosted Catalytic Performance of Pd Nanocrystals. Inorg Chem 2024; 63:1247-1257. [PMID: 38154082 DOI: 10.1021/acs.inorgchem.3c03635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Tuning the surface chemical property and the local environment of nanocrystals is crucial for realizing a high catalytic performance in various reactions. Herein, we aim to elucidate the structure sensitivity of Pd facets on the surface catalytic hydrogenation reaction and to identify what role the nanoconfinement effect plays in the catalytic properties of Pd nanocrystal catalysts. By controlling the coating structures of mesoporous silica (mSiO2) on Pd nanocrystals with different exposed facets that include {100}, {111}, and {hk0}, we present a series of Pd@mSiO2 nanoreactors in core-shell and yolk-shell structures and the discovery of a partial-coated structure, which can provide different types of nanoconfinement, and we propose a seed size-dominated growth mechanism. We demonstrate that a superior activity was exhibited in Pd nanocrystals enclosed by the {hk0} facet as compared to the Pd{100} and Pd{111} facets, and substantially enhanced efficiency and stability were achieved in Pd@mSiO2 particles with yolk-shell structures, indicating a crucial superiority of optimizing the configuration of crystal facets and nanoconfinement. Our study provides an efficient strategy to rationally design and optimize nanocatalysts for promoting catalytic performance.
Collapse
Affiliation(s)
- Dongling Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Chengchao Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaobin Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
33
|
Liu X, Hu X, Zhang K, Yi Q, Zhang H, Yan T, Cheng D, Han L, Zhang D. Selective Synergistic Catalytic Elimination of NO x and CH 3SH via Engineering Deep Oxidation Sites against Toxic Byproducts Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21470-21482. [PMID: 38050842 DOI: 10.1021/acs.est.3c06825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
NOx and CH3SH as two typical air pollutants widely coexist in various energy and industrial processes; hence, it is urgent to develop highly efficient catalysts to synergistically eliminate NOx and CH3SH. However, the catalytic system for synergistically eliminating NOx and CH3SH is seldom investigated to date. Meanwhile, the deactivation effects of CH3SH on catalysts and the formation mechanism of toxic byproducts emitted from the synergistic catalytic elimination reaction are still vague. Herein, selective synergistic catalytic elimination (SSCE) of NOx and CH3SH via engineering deep oxidation sites over Cu-modified Nb-Fe composite oxides supported on TiO2 catalyst against toxic CO and HCN byproducts formation has been originally demonstrated. Various spectroscopic and microscopic characterizations demonstrate that the sufficient chemisorbed oxygen species induced by the persistent electron transfer from Nb-Fe composite oxides to copper oxides can deeply oxidize HCOOH to CO2 for avoiding highly toxic byproducts formation. This work is of significance in designing superior catalysts employed in more complex working conditions and sheds light on the progress in the SSCE of NOx and sulfur-containing volatile organic compounds.
Collapse
Affiliation(s)
- Xiangyu Liu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Kai Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qiuying Yi
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hengxiang Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Danhong Cheng
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
34
|
Hong W, Jiang X, An C, Huang H, Zhu T, Sun Y, Wang H, Shen F, Li X. Engineering the Crystal Facet of Monoclinic NiO for Efficient Catalytic Ozonation of Toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20053-20063. [PMID: 37936384 DOI: 10.1021/acs.est.3c06194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Modulating oxygen vacancies of catalysts through crystal facet engineering is an innovative strategy for boosting the activity for ozonation of catalytic volatile organic compounds (VOCs). In this work, three kinds of facet-engineered monoclinic NiO catalysts were successfully prepared and utilized for catalytic toluene ozonation (CTO). Density functional theory calculations revealed that Ni vacancies were more likely to form preferentially than O vacancies on the (110), (100), and (111) facets of monoclinic NiO due to the stronger Ni-vacancy formation ability, further affecting O-vacancy formation. Extensive characterizations demonstrated that Ni vacancies significantly promoted the formation of O vacancies and thus reactive oxygen species in the (111) facet of monoclinic NiO, among the three facets. The performance evaluation showed that the monoclinic NiO catalyst with a dominant (111) facet exhibits excellent performance for CTO, achieving a toluene conversion of ∼100% at 30 °C after reaction for 120 min under 30 ppm toluene, 210 ppm ozone, 45% relative humidity, and a space velocity of 120 000 h-1. This outperformed the previously reported noble/non-noble metal oxide catalysts used for CTO at room temperature. This study provided novel insight into the development of highly efficient facet-engineered catalysts for the elimination of catalytic VOCs.
Collapse
Affiliation(s)
- Wei Hong
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Xinxin Jiang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Chenguang An
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianle Zhu
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Ye Sun
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Haining Wang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
35
|
Wen T, Wang J, Zhang J, Long C. Regulating oxygen vacancies and hydroxyl groups of α-MnO 2 nanorods for enhancing post-plasma catalytic removal of toluene. ENVIRONMENTAL RESEARCH 2023; 238:117176. [PMID: 37729962 DOI: 10.1016/j.envres.2023.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Although nonthermal plasma (NTP) technology has high removal efficiency for volatile organic compounds (VOCs), it has limited carbon dioxide (CO2) selectivity, which hinders its practical application. In this study, α-MnO2 nanorods with tunable oxygen vacancies and hydroxyl groups were synthesized by two-step hydrothermal process to enhance their activity for deep oxidation of toluene. Hydrochloric acid (HCl) was used to assist in synthesis of α-MnO2 nanorods with tunable oxygen vacancies, furtherly, more hydroxyl groups were introduced to HCl-assisted synthesized α-MnO2 by K+ supplement. The results showed that the as-synthesized nanorods exhibited superior activity, improved by nearly 30% removal efficiency of toluene compared to pristine MnO2 at SIE = 339 J/L, and reaching high COx selectivity of 72% at SIE = 483 J/L, successfully promoting the deep oxidation of toluene. It was affirmed that oxygen vacancies played an important role in toluene conversion, improving the conversion of ozone (O3) and resulting in higher mobility of surface lattice oxygen species. Besides, the enhancement of deep oxidation performance was caused by the increase of hydroxyl groups concentration. In-situ DRIFTS experiments revealed that the adsorbed toluene on catalyst surface was oxidized to benzyl alcohol by surface lattice oxygen, and hydroxyl groups were also found participating in toluene adsorption. Overall, this study provides a new approach to designing catalysts for deep oxidation of VOCs.
Collapse
Affiliation(s)
- Tiancheng Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
36
|
Dai W, Zhang B, Ji J, Liu B, Xie R, Gan Y, Xie X, Zhang J, Huang P, Huang H. Exceptional Ozone Decomposition over δ-MnO 2/AC under an Entire Humidity Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17727-17736. [PMID: 36862670 DOI: 10.1021/acs.est.3c00717] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ozone (O3) pollution is highly detrimental to human health and the ecosystem due to it being ubiquitous in ambient air and industrial processes. Catalytic decomposition is the most efficient technology for O3 elimination, while the moisture-induced low stability represents the major challenge for its practical applications. Here, activated carbon (AC) supported δ-MnO2 (Mn/AC-A) was facilely synthesized via mild redox in an oxidizing atmosphere to obtain exceptional O3 decomposition capacity. The optimal 5Mn/AC-A achieved nearly 100% of O3 decomposition at a high space velocity (1200 L g-1 h-1) and remained extremely stable under entire humidity conditions. The functionalized AC provided well-designed protection sites to inhibit the accumulation of water on δ-MnO2. Density functional theory (DFT) calculations confirmed that the abundant oxygen vacancies and a low desorption energy of intermediate peroxide (O22-) can significantly boost O3 decomposition activity. Moreover, a kilo-scale 5Mn/AC-A with low cost (∼1.5 $/kg) was used for the O3 decomposition in practical applications, which could quickly decompose O3 pollution to a safety level below 100 μg m-3. This work offers a simple strategy for the development of moisture-resistant and inexpensive catalysts and greatly promotes the practical application of ambient O3 elimination.
Collapse
Affiliation(s)
- Wenjing Dai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Boge Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Ji
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruijie Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanling Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiarui Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Pingli Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
37
|
Wang Y, Lu Z, Wen P, Gong Y, Li C, Niu L, Xu S. Engineering the crystal facets of α-MnO 2 nanorods for electrochemical energy storage: experiments and theory. NANOSCALE 2023; 15:17850-17860. [PMID: 37882702 DOI: 10.1039/d3nr04274j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Crystal facet engineering is an effective strategy for precisely regulating the orientations and electrochemical properties of metal oxides. However, the contribution of each crystal facet to pseudocapacitance is still puzzling, which is a bottleneck that restricts the specific capacitance of metal oxides. Herein, α-MnO2 nanorods with different exposed facets were synthesized through a hydrothermal route and applied to pseudocapacitors. XRD and TEM results verified that the exposure ratio of active crystal facets was significantly increased with the assistance of the structure-directing agents. XPS analysis showed that there was more adsorbed oxygen and Mn3+ on the active crystal facets, which can provide strong kinetics for the electrochemical reaction. Consequently, the α-MnO2 nanorods with {110} and {310} facets exhibited much higher pseudocapacitances of 120.0 F g-1 and 133.0 F g-1 than their α-MnO2-200 counterparts (67.5 F g-1). The theoretical calculations proved that the {310} and {110} facets have stronger adsorption capacity and lower diffusion barriers for sodium ions, which is responsible for the enhanced pseudocapacitance of MnO2. This study provides a strategy to enhance the electrochemical performance of metal oxide, based on facet engineering.
Collapse
Affiliation(s)
- Yifan Wang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Zhengwei Lu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Peipei Wen
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Yinyan Gong
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Can Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Lengyuan Niu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China.
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020, Zhejiang, China
| |
Collapse
|
38
|
Wang F, Zheng Y, Wei X, Lan D, Zhu J, Chen Y, Wo Z, Wu T. Controlled synthesis of Fe 3O 4/MnO 2 (3 1 0)/ZIF-67 composite with enhanced synergetic effects for the highly selective and efficient adsorption of Cu (II) from simulated copperplating effluents. ENVIRONMENTAL RESEARCH 2023; 237:116940. [PMID: 37619624 DOI: 10.1016/j.envres.2023.116940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
This study designed a composite material with internal synergistic effects among multiple components to achieve highly selective adsorption of Cu (II). Through controlled synthesis, the Fe3O4/MnO2(3 1 0)/ZIF-67 composite was successfully fabricated, leading to significant improvement in adsorption selectivity, capacity, and adsorption rate. The experimental results showed that the composite is of outstanding selectivity in the adsorption of Cu (II), with a partition coefficient K of Cu (II) that was 2.2-5.3 times higher than that of other coexisting ions. Moreover, the composite exhibited a remarkable adsorption capacity of 1261.0 mg g-1 and a fast adsorption rate of 840.7 mg g-1 h-1 at 298 K. Additionally, its magnetic property facilitated easy separation from wastewater, thereby enhancing its potential for commercial applications. The synergetic effect mechanism was analyzed through characterizations and DFT calculations. Furthermore, the recyclability of the composite was investigated, which showed that after seven cycles, the adsorption efficiency remained at 85% of its initial efficiency. It can be concluded that Fe3O4/MnO2(3 1 0)/ZIF-67 has potential to address challenges posed by heavy metal pollution in copperplating effluents.
Collapse
Affiliation(s)
- Fan Wang
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yueying Zheng
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Xinggang Wei
- SAILARK Digital Technology Co. Ltd, Shanghai, 200000, China
| | - Dawei Lan
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Jintao Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yingjie Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Ziquan Wo
- Department of Material Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou City, 515000, China
| | - Tao Wu
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Ningbo, 315100, China; Zhejiang - Canada Joint Laboratory on Green Chemicals and Energy, China.
| |
Collapse
|
39
|
Xiang S, Lin Y, Chang T, Mei B, Liang Y, Wang Z, Sun W, Cai C. Oxygen doped graphite carbon nitride as efficient metal-free catalyst for peroxymonosulfate activation: Performance, mechanism and theoretical calculation. CHEMOSPHERE 2023; 338:139539. [PMID: 37474028 DOI: 10.1016/j.chemosphere.2023.139539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/20/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
In this study, oxygen-doped graphitic carbon nitride (g-C3N4), named O-g-C3N4, was successfully fabricated and characterized, and its performance in activating peroxymonosulfate (PMS, HSO5-) for the removal of phenol, 2,4-dichlorophenol (2,4-DCP), bisphenol A (BPA), rhodamine B (RhB), reactive brilliant blue (RBB) and acid orange 7 (AO7) was evaluated. The catalytic performance of O-g-C3N4 for AO7 removal increased by 14 times compared to g-C3N4. In the presence of 0.2 g L-1 O-g-C3N4, 3.5 mM PMS at natural pH 5.8, 96.4% of AO7 could be removed in 60 min, reduced toxicity of the treated AO7 solution was obtained, and the mineralization efficiency was 47.2% within 120 min. Density functional theory (DFT) calculations showed that the charge distribution changed after oxygen doping, and PMS was more readily adsorbed by O-g-C3N4 with the adsorption energy (Eads) of -0.855 kcal/mol than that of the pristine g-C3N4 (Eads: -0.305 kcal/mol). Mechanism investigation implied that AO7 was primarily removed by the sulfate radicals (SO4•-) and hydroxyl radicals (•OH) on the surface of O-g-C3N4, but the role of singlet oxygen (1O2) to AO7 elimination was negligible. The results of cyclic experiments and catalyst characterization after reaction confirmed the favorable catalytic activity and structural stability of O-g-C3N4 particles. Furthermore, the O-g-C3N4/PMS system was very resistant to most of the environmental impacts, and AO7 removal was still acceptable in natural water environment. This study may provide an efficient metal-free carbonaceous activator with low dosage for PMS activation to remove recalcitrant organic pollutants (ROPs).
Collapse
Affiliation(s)
- Shaofeng Xiang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China.
| | - Yu Lin
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Tongda Chang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Bingrui Mei
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Yuhang Liang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Ziqian Wang
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China
| | - Wenwu Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Chun Cai
- School of Environmental Studies, Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
40
|
Qu W, Luo M, Tang Z, Zhong T, Zhao H, Hu L, Xia D, Tian S, Shu D, He C. Accelerated Catalytic Ozonation in a Mesoporous Carbon-Supported Atomic Fe-N 4 Sites Nanoreactor: Confinement Effect and Resistance to Poisoning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13205-13216. [PMID: 37487235 DOI: 10.1021/acs.est.2c08101] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The design of a micro-/nanoreactor is of great significance for catalytic ozonation, which can achieve effective mass transfer and expose powerful reaction species. Herein, the mesoporous carbon with atomic Fe-N4 sites embedded in the ordered carbon nanochannels (Fe-N4/CMK-3) was synthesized by the hard-template method. Fe-N4/CMK-3 can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the internal catalytic ozonation of CH3SH. During the CH3SH oxidation process, the mass transfer coefficient of the Fe-N4/CMK-3 confined system with sufficient O3 transfer featured a level of at least 1.87 × 10-5, which is 34.6 times that of the Fe-N4/C-Si unconfined system. Detailed experimental studies and theoretical calculations demonstrated that the anchored atomic Fe-N4 sites and nanoconfinement effects regulated the local electronic structure of the catalyst and promoted the activation of O3 molecules to produce atomic oxygen species (AOS) and reactive oxygen species (ROS), eventually achieving efficient oxidation of CH3SH into CO2/SO42-. Benefiting from the high diffusion rate and the augmentation of AOS/ROS, Fe-N4/CMK-3 exhibited an excellent poisoning tolerance, along with high catalytic durability. This contribution provides the proof-of-concept strategy for accelerating catalytic ozonation of sulfur-containing volatile organic compounds (VOCs) by combining confined catalysis and atomic catalysts and can be extended to the purification of other gaseous pollutants.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Manhui Luo
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhuoyun Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| |
Collapse
|
41
|
Luo M, Zhang H, Ren Y, Zhou H, Zhou P, He CS, Xiong Z, Du Y, Liu Y, Lai B. In Situ Regulation of MnO 2 Structural Characteristics by Oxyanions to Boost Permanganate Autocatalysis for Phenol Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12847-12857. [PMID: 37578486 DOI: 10.1021/acs.est.3c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Oxyanions, a class of constituents naturally occurring in water, have been widely demonstrated to enhance permanganate (Mn(VII)) decontamination efficiency. However, the detailed mechanism remains ambiguous, mainly because the role of oxyanions in regulating the structural parameters of colloidal MnO2 to control the autocatalytic activity of Mn(VII) has received little attention. Herein, the origin of oxyanion-induced enhancement is systematically studied using theoretical calculations, electrochemical tests, and structure-activity relation analysis. Using bicarbonate (HCO3-) as an example, the results indicate that HCO3- can accelerate the degradation of phenol by Mn(VII) by improving its autocatalytic process. Specifically, HCO3- plays a significant role in regulating the structure of in situ produced MnO2 colloids, i.e., increasing the surface Mn(III)s content and restricting particle growth. These structural changes in MnO2 facilitate its strong binding to Mn(VII), thereby triggering interfacial electron transfer. The resultant surface-activated Mn(VII)* complexes demonstrate excellent degrading activity via directly seizing one electron from phenol. Further, other oxyanions with appropriate ionic potentials (i.e., borate, acetate, metasilicate, molybdate, and phosphate) exhibit favorable influences on the oxidative capability of Mn(VII) through an activation mechanism similar to that of HCO3-. These findings considerably improve our fundamental understanding of the oxidation behavior of Mn(VII) in actual water environments and provide a theoretical foundation for designing autocatalytically boosted Mn(VII) oxidation systems.
Collapse
Affiliation(s)
- Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
42
|
Song Y, Huang C, Li Y. Nanozyme Rich in Oxygen Vacancies Derived from Mn-Based Metal-Organic Gel for the Determination of Alkaline Phosphatase. Inorg Chem 2023; 62:12697-12707. [PMID: 37526919 DOI: 10.1021/acs.inorgchem.3c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Vacancy engineering as an effective strategy has been widely employed to regulate the enzyme-mimic activity of nanomaterials by adjusting the surface, electronic structure, and creating more active sites. Herein, we purposed a facile and simple method to acquire transition metal manganese oxide rich in oxygen vacancies (OVs-Mn2O3-400) by pyrolyzing the precursor of the Mn(II)-based metal-organic gel directly. The as-prepared OVs-Mn2O3-400 exhibited superior oxidase-like activity as oxygen vacancies participated in the generation of O2•-. Besides, steady state kinetic constant (Km) and catalytic kinetic constant (Ea) suggested that OVs-Mn2O3-400 had a stronger affinity toward 3,3',5,5'-tetramethylbenzidine and possessed prominent catalytic performance. By taking 2-phospho-l-ascorbic acid as the substrate, which can be converted into reducing substance ascorbic acid in the presence of alkaline phosphatase (ALP), OVs-Mn2O3-400 can be applied as an efficient nanozyme for ALP colorimetric analysis without the help of destructive H2O2. The colorimetric sensor established by OVs-Mn2O3-400 for ALP detection showed a good linearity from 0.1 to 12 U/L and a lower limit of detection of 0.054 U/L. Our work paves the way for designing enhanced enzyme-like activity nanozymes, which is of significance in biosensing.
Collapse
Affiliation(s)
- Yunfei Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
43
|
Zhang Q, Wang J, Wei Z, Li Y, Li W, Yang X, Wu X. S modified manganese oxide for high efficiency of peroxydisulfate activation: Critical role of S and mechanism. CHEMOSPHERE 2023; 328:138563. [PMID: 37028724 DOI: 10.1016/j.chemosphere.2023.138563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Mn2O3 as a typical Mn based semiconductor has attracted growing attention due to its peculiar 3d electron structure and stability, and the multi-valence Mn on the surface is the key to peroxydisulfate activation. Herein, an octahedral structure of Mn2O3 with (111) exposed facet was synthesized by a hydrothermal method, which was further sulfureted to obtained a variable-valent Mn oxide for the high activation efficiency of peroxydisulfate under the light emitting diode irradiation. The degradation experiments showed that under the irradiation of 420 nm light, S modified manganese oxide showed an excellent removal for tetracycline within 90 min, which is about 40.4% higher than that of pure Mn2O3. In addition, the degradation rate constant k of S modified sample increased 2.17 times. Surface sulfidation not only increased the active sites and oxygen vacancies on the pristine Mn2O3 surface, but also changed the electronic structure of Mn due to the introduce of surface S2-. This modification accelerated the electronic transmission during the degradation process. Meanwhile, the utilization efficiency of photogenerated electrons was greatly improved under light. Besides, the S modified manganese oxide had an excellent reuse performance after four cycles. The scavenging experiments and EPR analyses showed that •OH and 1O2 were the main reactive oxygen species. This study therefore provides a new avenue for further developing manganese-based catalysts towards high activation efficiency for peroxydisulfate.
Collapse
Affiliation(s)
- Qingwen Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinpeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhenlun Wei
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yubiao Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Wanqing Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xu Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoyong Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
44
|
Huang Q, Zhao P, Lv L, Zhang W, Pan B. Redox-Induced In Situ Growth of MnO 2 with Rich Oxygen Vacancies over Monolithic Copper Foam for Boosting Toluene Combustion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37289934 DOI: 10.1021/acs.est.3c02103] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Catalytic combustion has been known to be an effective technique in volatile organic compound (VOC) abatement. Developing monolithic catalysts with high activity at low temperatures is vital yet challenging in industrial applications. Herein, monolithic MnO2-Ov/CF catalysts were fabricated via the in situ growth of K2CuFe(CN)6 (CuFePBA, a family of metal-organic frames) over copper foam (CF) followed by a redox-etching route. The as-synthesized monolith MnO2-Ov-0.04/CF catalyst displays a superior low-temperature activity (T90% = 215 °C) and robust durability for toluene elimination even in the presence of 5 vol % water. Experimental results reveal that the CuFePBA template not only guides the in situ growth of δ-MnO2 with high loading over CF but also acts as a source of dopant to create more oxygen vacancies and weaken the strength of the Mn-O bond, which considerably improves the oxygen activation ability of δ-MnO2 and consequently boosts the low-temperature catalytic activity of the monolith MnO2-Ov-0.04/CF toward toluene oxidation. In addition, the reaction intermediate and proposed mechanism in the MnO2-Ov-0.04/CF mediated catalytic oxidation process were investigated. This study provides new insights into the development of highly active monolithic catalysts for the low-temperature oxidation of VOCs.
Collapse
Affiliation(s)
- Qianlin Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Puzhen Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
45
|
Huang Q, Zhou Z, Lan B, Sun M, Sun C, Yu L. Heterointerface engineering regulating the energy-level configuration of α-MnO2/δ-MnO2 for enhancing toluene catalytic combustion performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
46
|
Zhong J, Liu J, Hu R, Pan D, Shao S, Wu X. Performance of nitrification-denitrification and denitrifying phosphorus removal driven by in-situ generated biogenic manganese oxides in a moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 377:128957. [PMID: 36965588 DOI: 10.1016/j.biortech.2023.128957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Simultaneous removal of NH4+-N, NO3--N, COD, and P by manganese redox cycling in nutrient wastewater was established with two moving bed biofilm reactors (MBBRs) with in-situ generated biogenic manganese oxides (BioMnOx) and non-BioMnOx. In-situ generated BioMnOx preferentially promoted the denitrification, and the average removal of NO3--N, NH4+-N, and TN in the experimental MBBR with BioMnOx increased to 89.00%, 70.64%, and 76.06% compared with the control MBBR with non-BioMnOx. The relevant enzymes activity, extracellular polymeric substance (EPS), electron transport system activity (ETSA), and reactive oxygen species (ROS) were investigated. The element valence and morphology of purified BioMnOx were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), as well as the effect of BioMnOx on nitrogen and phosphorus removal. The results suggested that BioMnOx could improve nitrogen conversion. Electrochemical characteristic and microbial community were detected. This study provided a new strategy for nutrients removal in BioMnOx-mediated wastewater treatment.
Collapse
Affiliation(s)
- Jinfeng Zhong
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Jiamin Liu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Rui Hu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Sicheng Shao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| |
Collapse
|
47
|
Wan X, Shi K, Li H, Shen F, Gao S, Duan X, Zhang S, Zhao C, Yu M, Hao R, Li W, Wang G, Peressi M, Feng Y, Wang W. Catalytic Ozonation of Polluter Benzene from -20 to >50 °C with High Conversion Efficiency and Selectivity on Mullite YMn 2O 5. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37225661 DOI: 10.1021/acs.est.3c01557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Catalytic decomposition of aromatic polluters at room temperature represents a green route for air purification but is currently challenged by the difficulty of generating reactive oxygen species (ROS) on catalysts. Herein, we develop a mullite catalyst YMn2O5 (YMO) with dual active sites of Mn3+ and Mn4+ and use ozone to produce a highly reactive O* upon YMO. Such a strong oxidant species on YMO shows complete removal of benzene from -20 to >50 °C with a high COx selectivity (>90%) through the generated reactive species O* on the catalyst surface (60 000 mL g-1 h-1). Although the accumulation of water and intermediates gradually lowers the reaction rate after 8 h at 25 °C, a simple treatment by ozone purging or drying in the ambient environment regenerates the catalyst. Importantly, when the temperature increases to 50 °C, the catalytic performance remains 100% conversion without any degradation for 30 h. Experiments and theoretical calculations show that such a superior performance stems from the unique coordination environment, which ensures high generation of ROS and adsorption of aromatics. Mullite's catalytic ozonation degradation of total volatile organic compounds (TVOC) is applied in a home-developed air cleaner, resulting in high efficiency of benzene removal. This work provides insights into the design of catalysts to decompose highly stable organic polluters.
Collapse
Affiliation(s)
- Xiang Wan
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Kai Shi
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Huan Li
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Fangxie Shen
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Shan Gao
- Physics Department, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xiangmei Duan
- Physics Department, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Shen Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Chunning Zhao
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Meng Yu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
| | - Ruiting Hao
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, Yunnan Province, China
| | - Weifang Li
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin 300191, China
| | - Gen Wang
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin 300191, China
| | - Maria Peressi
- Department of Physics, University of Trieste, Trieste 34151, Italy
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
48
|
Zhang B, Shen Y, Liu B, Ji J, Dai W, Huang P, Zhang D, Li G, Xie R, Huang H. Boosting Ozone Catalytic Oxidation of Toluene at Room Temperature by Using Hydroxyl-Mediated MnO x/Al 2O 3 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7041-7050. [PMID: 37078822 DOI: 10.1021/acs.est.2c08867] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ozone catalytic oxidation (OZCO) has gained great interest in environmental remediation while it still faces a big challenge during the deep degradation of refractory volatile organic compounds (VOCs) at room temperature. Hydroxylation of the catalytic surface provides a new strategy for regulating the catalytic activity to boost VOC degradation. Herein, OZCO of toluene at room temperature over hydroxyl-mediated MnOx/Al2O3 catalysts was originally demonstrated. Specifically, a novel hydroxyl-mediated MnOx/Al2O3 catalyst was developed via the in situ AlOOH reconstruction method and used for toluene OZCO. The toluene degradation performance of MnOx/Al2O3 was significantly superior to those of most of the state-of-the-art catalysts, and 100% toluene was removed with an excellent mineralization rate (82.3%) and catalytic stability during OZCO. ESR and in situ DRIFTs results demonstrated that surface hydroxyl groups (HGs) greatly improved the reactive oxygen species generation, thus dramatically accelerating the benzene ring breakage and deep mineralization. Furthermore, HGs provided anchoring sites for uniformly dispersing MnOx and greatly enhanced toluene adsorption and ozone activation. This work paves a way for deep decomposition of aromatic VOCs at room temperature.
Collapse
Affiliation(s)
- Boge Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yongjie Shen
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jian Ji
- Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Wenjing Dai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Pingli Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Dengsong Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Guangqin Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ruijie Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
49
|
Ma D, Yin R, Liang Z, Liang Q, Xu G, Lian Q, Wong PK, He C, Xia D, Lu H. Photo-sterilization of groundwater by tellurium and enhancement by micro/nano bubbles. WATER RESEARCH 2023; 233:119781. [PMID: 36841167 DOI: 10.1016/j.watres.2023.119781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In rural areas where low-temperature groundwater is used as a drinking water source, cost-effective sterilization techniques are needed to prevent groundwater consumers from the disease risks triggered by pathogenic microorganisms like Escherichia coli and fungal spores. In this study, micro/nano bubbles (MNBs) coupled with the tellurium (Te)-based catalysts were used to considerably enhance the solar disinfection (SODIS) efficiency while overcoming the intrinsic defects of SODIS, particularly in low-temperature. Sterilization tests showed that 6.5 log10 cfu/mL of E. coli K-12 and 4.0 log10 cfu/mL of Aspergillus niger spores were completely inactivated within 5 min while applying this novel process for disinfection of raw groundwater, even in low-temperature. The underlying mechanisms of the extraordinary sterilization efficiency were revealed through comprehensive characterization of the catalysts and the physiological changes of the microorganisms. The localized surface plasmon resonance (LSPR) effect of the Te catalysts was identified to take advantage of photothermal synergism to achieve cell death. The integration of MNBs with the facet-engineered Te catalysts improved the photothermal catalytic effect and extracellular electron transfer, which substantially strengthened disinfection efficiency. This study provides a targeted solution into microbial inactivation in groundwater and emphasizes a cost-effective groundwater sterilization process.
Collapse
Affiliation(s)
- Dingren Ma
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhuocheng Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qiwen Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Guizhi Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qiyu Lian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Po Keung Wong
- School of Life Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, Guangdong 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, Guangdong 510275, China.
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
50
|
Zhu Y, Guan Z, Li X, Xia D, Li D. Ultrafast short-range catalytic pathway modified peroxymonosulfate activation over CuO with surface oxygen defects for tetracycline hydrochloride degradation. ENVIRONMENTAL RESEARCH 2023; 222:115322. [PMID: 36693467 DOI: 10.1016/j.envres.2023.115322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The presence of antibiotics in water bodies seriously threatens the ecosystem and human health. Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS), an effective method to remove antibiotics, have a bottleneck problem that the low oxidant utilization is attributed to the hindered electron transfer between metal oxides and peroxides. Here, CuO with rich oxygen vacancies (OVs), MSCuO-300, was synthesized to efficiently degrade tetracycline hydrochloride (TTCH) (k = 0.095 min-1). The dominant role of direct adsorption and activation of OVs and its regulated Cu-O, rather than surface hydroxyl adsorption, mediated a short-range catalytic pathway. The shortened catalytic pathway between active sites and PMS accelerated the charge transfer at the interface, which promoted PMS activation. Compared with CuxO-500 and Commercial CuO, the activation rate of PMS was increased by 11.97, and 12.64 times, respectively. OVs contributed to the production of 1O2 and O2•-, the main active species. In addition, MSCuO-300/PMS showed excellent adaptability to real water parameters, such as pH (3-11), anions, and continuous reactor maintained for 168 h. This study provides a successful case for the purification of antibiotic-containing wastewater in the design of efficient catalysts by oxygen defect strategies.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Xiaohu Li
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Dongsheng Xia
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| |
Collapse
|