1
|
Mahajan S, Li Y. Toward Molecular Simulation Guided Design of Next-Generation Membranes: Challenges and Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40375598 DOI: 10.1021/acs.langmuir.4c05181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Membranes provide energy-efficient solutions for separating ions from water, ion-ion separation, neutral or charged molecules, and mixed gases. Understanding the fundamental mechanisms and design principles for these separation challenges has significant applications in the food and agriculture, energy, pharmaceutical, and electronics industries and environmental remediation. In situ experimental probes to explore Angstrom-nanometer length-scale and pico-nanosecond time-scale phenomena remain limited. Currently, molecular simulations such as density functional theory, ab initio molecular dynamics (MD), all-atom MD, and coarse-grained MD provide physics-based predictive models to study these phenomena. The status of molecular simulations to study transport mechanisms and state-of-the-art membrane separation is discussed. Furthermore, limitations and open challenges in molecular simulations are discussed. Finally, the importance of molecular simulations in generating data sets for machine learning and exploration of membrane design space is addressed.
Collapse
Affiliation(s)
- Subhamoy Mahajan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Gao B, Gong Y, Zhang Z, Liu Q, Yin C, Wei M, Wang Y. Turing-Structured Covalent Organic Framework Membranes for Fast and Precise Peptide Separations. Angew Chem Int Ed Engl 2025:e202503090. [PMID: 40329782 DOI: 10.1002/anie.202503090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
Turing structures have emerged as promising features for separation membranes, enabling significantly enhanced water permeation due to their ultra-permeable internal cavities. So far, Turing structures are constrained by the highly cross-linked and heterogeneous porosities, impeding them from the application of molecular separations requiring loose but regular pore structures. This work reports a covalent organic frameworks (COFs) membrane with nanoscale striped Turing structures for fast and precise molecular separations. Porous and hydrophilic modulation layers based on metal-polyphenol chemistry are constructed on polymeric substrates, which are capable of enhancing the uptake and controlled release of the activator of amines during synthesis. The appropriately reduced diffusion rate triggers the phenomenon of "local activation and lateral inhibition" arising from thermodynamic instability, creating Turing structures with externally striped and internally cavitated architectures. The Turing-type COF membranes exhibit a water permeance of 45.0 L m-2 h-1 bar-1, which is approximately 13 times greater than the non-Turing membranes, and an ultrahigh selectivity of up to 638 for two model peptides. This work demonstrates the feasibility that Turing structures with ultra-permeable internal cavities can be created in COF membranes and underscores their superiority in molecular separations, including but not limited to high-value pharmaceuticals.
Collapse
Affiliation(s)
- Bingjie Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
| | - Youxin Gong
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
| | - Zhe Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
| | - Qinghua Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
| | - Congcong Yin
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P.R. China
| | - Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P.R. China
| |
Collapse
|
3
|
Yang F, Yong M, Li Z, Yang Z, Zhang X. Breaking the trade-off between lithium purity and lithium recovery: A comprehensive mathematical modeling based on membrane structure-property-performance relationships. WATER RESEARCH 2025; 281:123678. [PMID: 40280005 DOI: 10.1016/j.watres.2025.123678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The application of nanofiltration (NF) membranes for resource recovery, particularly lithium (Li) extraction from high magnesium (Mg) brines, is a rapidly growing research area. However, the trade-off between high Li+ purity and recovery remains challenging. In our study, we extend the widely adopted Donnan Steric Pore Model with Dielectric Exclusion (DSPM-DE) to analyze membrane structure-property-performance relationships at the process scale. For the first time, we quantify how membrane intrinsic parameters (e.g., pore size, effective thickness, and charge density) affect Li+ purity and recovery under module-scale processes. Under this framework, we demonstrate that electrically neutral and positively charged membranes outperform negatively charged membranes, albeit at the cost of slightly higher required hydraulic pressure. Notably, positively charged membranes with smaller pore size yet high water permeance (40-80 L m-2 h-1 bar-1) are preferred, which could simultaneously achieve excellent Li+ purity (∼98 %) and high Li+ recovery (∼93 %) in the single-pass process, effectively overcoming the purity-recovery trade-off correlation. We further demonstrate that negative Li+ rejection plays a crucial role in overcoming the trade-off correlation by significantly increasing Li+ recovery. Nevertheless, poor system flux distribution is inadvertently observed in the regions where strong negative rejection occurs, highlighting the need for careful consideration of the balance between system stability and lithium extraction performances. Our study identifies critical membrane parameters for achieving optimal lithium extraction performance at the process scale, offering fundamental insights for designing high-performance membranes for resource recovery.
Collapse
Affiliation(s)
- Fengrui Yang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ming Yong
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhikao Li
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Xiwang Zhang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Australia
| |
Collapse
|
4
|
Hao Z, Chen J, Zhao Q, Liu X, Yang M, Zhou X, Zhang Y. Phase Transformation Induced Basal Plane Capacitance Enhancement in Two-Dimensional Materials for Electro-Driven Ion Capture. NANO LETTERS 2025; 25:6753-6761. [PMID: 40207892 DOI: 10.1021/acs.nanolett.5c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The capacitive deionization (CDI) technique using two-dimensional (2D) layered Faradaic electrodes offers a promising approach to desalination, but the desalination efficiency of currently engineered electrodes remains insufficient due to unclear charge storage mechanisms. Herein, based on typical 2H and 1T phases of MoS2, we systematically investigated the underlying structure-capacitance relationship of 2D materials at the atomic level by revealing differences in interlayer ion storage confined by molecular layers. Our study reveals that octahedrally coordinated 1T phase with a high spin state of unpaired electrons exhibits a higher pseudocapacitive ratio compared to the 2H phase because of the enhanced interfacial charge transfer polarization, reduced surface ion migration barriers, and increased interlayer ion enrichment. Furthermore, the potential molecular layer structure evolution triggers the dynamic migration of ion intercalation sites, further constraining the ion storage performance of the 2H phase. This study offers guidance for optimizing the ion storage performance of 2D materials through phase engineering.
Collapse
Affiliation(s)
- Zewei Hao
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Qipeng Zhao
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaoqian Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mingchao Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Filimon A, Dobos AM, Onofrei MD, Serbezeanu D. Polyvinyl Alcohol-Based Membranes: A Review of Research Progress on Design and Predictive Modeling of Properties for Targeted Application. Polymers (Basel) 2025; 17:1016. [PMID: 40284281 PMCID: PMC12030392 DOI: 10.3390/polym17081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
This review provides a comprehensive evaluation of the current state of polyvinyl alcohol (PVA)-based membranes, emphasizing their significance in membrane technology for various applications. The analysis encompasses both experimental and theoretical research articles, with a focus on recent decades, aiming to elucidate the potential and limitations of different fabrication approaches, structure-property relationships, and their applicability in the real world. The review begins by examining the advanced polymeric materials and strategies employed in the design and processing of membranes with tailored properties. Fundamental principles of membrane processes are introduced, with a focus on general modeling approaches for describing the fluid transport through membranes. A key aspect of discussion is the distinction between the membrane performance and process performance. Additionally, an in-depth analysis of PVA membranes in various applications is presented, particularly in environmental fields (e.g., fuel cell, water treatment, air purification, and food packaging) and biomedical domains (e.g., drug delivery systems, wound healing, tissue engineering and regenerative medicine, hemodialysis and artificial organs, and ophthalmic and periodontal treatment). Special attention is given to the relationship between membranes' characteristics, such as material composition, structure, and processing parameters, and their overall performance, in terms of permeability, selectivity, and stability. Despite their promising properties, enhanced through innovative fabrication methods that expand their applicability, challenges remain in optimizing long-term stability, improving fouling resistance, and increasing process scalability. Therefore, further research is needed to develop novel modifications and composite structures that overcome these limitations and enhance the practical implementation of PVA-based membranes. By offering a systematic overview, this review aims to advance the understanding of PVA membrane fabrication, properties, and functionality, providing valuable insights for continued development and optimization in membrane technology.
Collapse
Affiliation(s)
- Anca Filimon
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.M.D.); (M.D.O.); (D.S.)
| | | | | | | |
Collapse
|
6
|
Pilevar M, Jafarian H, Behzadnia N, Liang Q, Aghapour Aktij S, Thakur A, Gonzales AR, Arabi Shamsabadi A, Anasori B, Warsinger D, Rahimpour A, Sadrzadeh M, Elliott M, Dadashi Firouzjaei M. Analysis of Metal-Organic Framework and Polyamide Interfaces in Membranes for Water Treatment and Antibacterial Applications. SMALL METHODS 2025; 9:e2401566. [PMID: 39573875 PMCID: PMC12020345 DOI: 10.1002/smtd.202401566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Indexed: 04/25/2025]
Abstract
Integrating biocidal nanoparticles (NPs) into polyamide (PA) membranes shows promise for enhancing resistance to biofouling. Incorporating techniques can tailor thin-film nanocomposite (TFN) membranes for specific water purification applications. In this study, silver-based metal-organic framework Ag-MOFs (using silver nitrate and 1,3,5-benzentricarboxylic acid as precursors) are incorporated into PA membranes via three different methods: i) incorporation, ii) dip-coating, and iii) in situ ultrasonic techniques. The characterizations, such as top-surface and cross-section scanning and transmission microscopy, reveal that the incorporation methods for the modified TFN membranes substantially control morphology and surface characteristics. For example, the in situ ultrasonically interlayered Ag-MOFs showed the largest pores (average pore diameter of 14 Å ± 0.1), resulting in the highest water permeance (water flux of 10.9 LMH/bar for Na2SO4). It also show superior antifouling and anti-biofouling performance, with a flux recovery ratio (FRR) of 94.1% in both fouling tests due to its improved surface hydrophilicity and the antibacterial properties of incorporated Ag-MOFs. Conversely, the surface-grafted dip-coated Ag-MOFs offered the highest salt rejection, attributed to its highly negatively charged surface and a dense PA network with narrow pores (average pore diameter of 10 Å ± 0.06).
Collapse
Affiliation(s)
- Mohsen Pilevar
- Department of Civil, Construction, and Environmental EngineeringUniversity of AlabamaTuscaloosaAL35487USA
| | - Hesam Jafarian
- Department of Civil, Construction, and Environmental EngineeringUniversity of AlabamaTuscaloosaAL35487USA
| | - Nima Behzadnia
- Department of Civil, Construction, and Environmental EngineeringUniversity of AlabamaTuscaloosaAL35487USA
| | - Qiaoli Liang
- Department of Chemistry and BiochemistryUniversity of AlabamaTuscaloosaAL35487USA
| | - Sadegh Aghapour Aktij
- Department of Mechanical Engineering10–367 Donadeo Innovation Center for EngineeringAdvanced Water Research Lab (AWRL)University of AlbertaEdmontonABT6G 1H9Canada
- Department of Chemical & Materials Engineering12–263 Donadeo Innovation Centre for EngineeringGroup of Applied Macromolecular EngineeringUniversity of AlbertaEdmontonABT6G 1H9Canada
| | - Anupma Thakur
- School of Materials EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Adriana Riveros Gonzales
- Department of Civil, Construction, and Environmental EngineeringUniversity of AlabamaTuscaloosaAL35487USA
| | | | - Babak Anasori
- School of Materials EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - David Warsinger
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Ahmad Rahimpour
- Department of Mechanical Engineering10–367 Donadeo Innovation Center for EngineeringAdvanced Water Research Lab (AWRL)University of AlbertaEdmontonABT6G 1H9Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering10–367 Donadeo Innovation Center for EngineeringAdvanced Water Research Lab (AWRL)University of AlbertaEdmontonABT6G 1H9Canada
| | - Mark Elliott
- Department of Civil, Construction, and Environmental EngineeringUniversity of AlabamaTuscaloosaAL35487USA
| | - Mostafa Dadashi Firouzjaei
- Department of Civil, Construction, and Environmental EngineeringUniversity of AlabamaTuscaloosaAL35487USA
- Department of Mechanical Engineering10–367 Donadeo Innovation Center for EngineeringAdvanced Water Research Lab (AWRL)University of AlbertaEdmontonABT6G 1H9Canada
- School of Materials EngineeringPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
7
|
Wang Z, Yuan S, Wang D, Zhang N, Shen Y, Wang Z. N-Oxide Zwitterionic-Based Antifouling Loose Nanofiltration Membranes with Superior Water Permeance and Effective Dye/Salt Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5856-5865. [PMID: 40068006 DOI: 10.1021/acs.est.5c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Loose nanofiltration (LNF) membranes with high permeance and separation selectivity are highly desired for the effective separation of organic dyes and inorganic salts. Herein, a novel polyamide LNF membrane was fabricated using zwitterionic amine reactant trimethylamine N-oxide-based polyethylenimine (TPEI) and trimesoyl chloride (TMC) via interfacial polymerization (IP). A thin, loose, and smooth polyamide layer was formed due to the low diffusion rate and modified chemical structure of TPEI. The optimized membrane (NF-TPEI) exhibited an extremely high water permeance of 213.0 L m-2 h-1 bar-1, accompanied by outstanding dye rejections of Congo Red (99.8%), Coomassie Brilliant Blue R250 (99.5%), and Evans Blue (99.9%). Meanwhile, the membrane possessed low rejections (<7.0%) of inorganic salts (Na2SO4, MgSO4, MgCl2, and NaCl). Additionally, the NF-TPEI membrane exhibited outstanding antifouling performance, achieving a superior recovery ratio of 96.0 and 98.1% after the filtration of humic acid and sodium alginate solution, respectively. Compared to the commercial NF270 membrane, the NF-TPEI membrane exhibited significantly improved separation performance in terms of permeance and fouling resistance, which provided more possibilities for high-performance LNF membranes toward the treatment of wastewater with organic contaminants.
Collapse
Affiliation(s)
- Ziming Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Dong Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yun Shen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100 Qingdao, P.R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
8
|
Zhang W, Wang Z, Zhao Z, Wang P, Wang S, Ma J, Cheng W. High-stable bimetallic AgCu nanoalloys with core-shell structures for sustainable antibacterial and biofouling mitigation in nanofiltration. WATER RESEARCH 2025; 271:122986. [PMID: 39705753 DOI: 10.1016/j.watres.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/07/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Nanofiltration (NF) is crucial for advancing water purification and wastewater reuse technologies. Incorporating biocidal nanoparticles (NPs) such as AgNPs and CuNPs is promising for developing antibacterial and antibiofouling NF membranes, while their application is limited by NPs aggregation, high cost, and severe ion release. In this study, we developed novel NF membranes by integrating bimetallic AgCu nanoalloys via an in-situ reduction and coordination method facilitated by a polydopamine/polyethyleneimine (PDA/PEI) intermediate layer. The sequential deposition of Cu2+ onto nascent AgNPs formed uniform AgCuNPs with a unique core-shell structure. The Cu shell layer can shield the release of Ag+ from the Ag core and chelate with the PDA/PEI intermediate layer, thus controlling the release of biocidal ions and prolonging the biocidal properties of the membranes. As a result, the AgCuNP-modified membranes exhibited significantly improved membrane water permeability, salt rejection, and performance stability, along with reduced release of biocidal ions in the long-term operation. Notably, the bimetallic AgCuNP-modified membrane displayed superior antibacterial activity and biofouling reversibility compared to the commercial NF and monometallic Ag/Cu-modified membranes, achieving the highest sterilization rate (> 99 %), largest flux recovery rate (93 %), and lowest flux decline rate (16 %) in both static antibacterial and dynamic biofouling processes. The metal-semiconductor heterostructure of the AgCuNPs facilitated the electron transfer from the Ag core to the Cu shell, intensifying the substantial generation of reactive oxygen species (H2O2: 71.6 mmol l-1 m-2, •OH: 43.4 mmol l-1 m-2, and O2•-: 1.3 × 10-4) at the membrane-bacteria interface. The synergistic effects of the unique properties of AgCuNPs including microstructure, atomic composition, charge transfer, and ROS generation significantly enhanced the antibacterial capacity of the AgCuNP-modified membrane. This study presents a facile method for modifying NF membranes with bimetallic AgCuNPs to achieve enhanced antibacterial activity and biofouling reversibility, providing fundamental insights and promising potential for water treatment applications.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Zhe Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Zilong Zhao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shaopo Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wei Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
9
|
Yong M, Yang Y, Sun L, Tang M, Wang Z, Xing C, Hou J, Zheng M, Chui TFM, Li Z, Yang Z. Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review. ACS ENVIRONMENTAL AU 2025; 5:12-34. [PMID: 39830721 PMCID: PMC11740921 DOI: 10.1021/acsenvironau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li+ extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization. In this review, we first explore the state-of-the-art strategies for NF membrane modifications. Machine learning was employed to identify key parameters influencing Li+ extraction efficiency, enabling the rational design of high-performance membranes. We then delve into the evolution of performance evaluation metrics, transitioning from the traditional permeance-selectivity trade-off to a more relevant focus on Li+ purity and recovery balance. A system-scale analysis considering specific energy consumption, flux distribution uniformity, and system-scale Li+ recovery and purity is presented. The review also examines process integration and synergistic combinations of NF with emerging technologies, such as capacitive deionization. Techno-economic and lifecycle assessments are also discussed to provide insights into the economic viability and environmental sustainability of NF-based Li+ extraction. Finally, we highlight future research directions to bridge the gap between fundamental research and practical applications, aiming to accelerate the development of sustainable and cost-effective Li+ extraction methods.
Collapse
Affiliation(s)
- Ming Yong
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Yang Yang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Liangliang Sun
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Meng Tang
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhuyuan Wang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Xing
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwei Hou
- School
of Chemical Engineering, The University
of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Water Research
Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ting Fong May Chui
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Zhikao Li
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
10
|
Xu S, Zhao P, Liu H, Jiang Y, Song W, Tang CY, Wang X. Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:902-912. [PMID: 39807584 DOI: 10.1021/acs.est.4c08370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS). The SDBS-induced nanobubbles continuously facilitated the migration of the top layer of AL toward the upper space. During this process, the surface area of sunken AL in the cave-like structures initially exhibited an increase and then a decrease. Additionally, the larger interface significantly enhanced the surface area and delayed the rise in the top layer of AL in the cave-like structures. Therefore, the TFC membrane, utilizing a substrate with a pore size of 1.00 μm and assisted by 0.30 mM SDBS, exhibited remarkable flux enhancement (>63%) and reduced reverse sodium salt flux (>35%) in a forward osmosis system. Moreover, the roughness factor was introduced to directly quantify the effective surface area, which had a good correlation with the water flux. Our findings demonstrated the significant potential of utilizing substrates with a large pore size to overcome the inherent limitations of the TFC membrane.
Collapse
Affiliation(s)
- Subo Xu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Hao Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Yao Jiang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, PR China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518000, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
11
|
Zheng R, Xu S, Zhong S, Tong X, Yu X, Zhao Y, Chen Y. Enhancing Ion Selectivity of Nanofiltration Membranes via Heterogeneous Charge Distribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22818-22828. [PMID: 39671316 DOI: 10.1021/acs.est.4c08841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Nanofiltration technology holds significant potential for precisely separating monovalent and multivalent ions, such as lithium (Li) and magnesium (Mg) ions, during lithium extraction from salt lakes. This study bridges a crucial gap in understanding the impact of the membrane spatial charge distribution on ion-selective separation. We developed two types of mixed-charge membranes with similar pore sizes but distinct longitudinal and horizontal distributions of oppositely charged domains. The charge-mosaic membrane, synthesized and utilized for ion fractionation for the first time, achieved an exceptional water permeance of 15.4 LMH/bar and a Li/Mg selectivity of 108, outperforming the majority of published reports. Through comprehensive characterization, mathematical modeling, and machine learning methods, we provide evidence that the spatial charge distribution dominantly determines ion selectivity. The charge-mosaic structure excels by substantially promoting ion selectivity through locally enhanced Donnan effects while remaining unaffected by variations in feedwater concentration. Our findings not only demonstrate the applicability of charge-mosaic membranes to precise nanofiltration but also have profound implications for technologies demanding advanced ion selectivity, including those in the sustainable water treatment and energy storage industries.
Collapse
Affiliation(s)
- Ruiqi Zheng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shuyi Xu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shifa Zhong
- Department of Environmental Science, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yangying Zhao
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yongsheng Chen
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
12
|
Negro C, Guerra WD, Armentano D, Ferrando-Soria J, Grancha T, Pardo E. Bioinspired metal-organic frameworks for aqueous environment decontamination: from laboratory scale to real-world technologies. Chem Commun (Camb) 2024; 60:14935-14951. [PMID: 39588682 DOI: 10.1039/d4cc05439c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Concerns regarding water contamination are escalating due to the increasing presence of all types of pollutants in water sources, which pose serious health risks to humans and wildlife, disrupt ecosystems, and compromise the safety of drinking water. Addressing water contamination requires stringent regulations and increased public awareness, but especially, it requires the development of highly effective new technologies to decontaminate those aquatic environments that have been already polluted over the past few decades. Since the emergence of metal-organic frameworks (MOFs), their use has been proposed in a multitude of fields, given their unique physicochemical properties, and one of the fields where a realistic application can be expected in the near future is water remediation. In particular, oxamidato-based biological MOFs (bioMOFs) have demonstrated, in recent years, unique properties such as extraordinary robustness, crystallinity and water- and pH-stability as well as very easy functionalisation, which situates them among the best adsorbents for this environmental purpose. In this review, we have summarised the most remarkable results of oxamidato-based bioMOFs in the field of water remediation. Moreover, on the basis of the reported results, we dare to suggest the real possibilities of application, in relevant real-world environments, for these and other MOFs, as well as the main obstacles that will need to be overcome, aiming to widening the range of applicability of MOFs and making solid headway towards sustainable development.
Collapse
Affiliation(s)
- Cristina Negro
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| | - Walter D Guerra
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende, Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| | - Thais Grancha
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
13
|
Huang H, Xia J, Liu Y, Wang J, Chen X, Wang W, Lan Q, Zhang X, Lv Y, Liu T. Mineralized Nanofiber Substrates Enabling High-Performance Dually Charged Nanofiltration Membranes with Enhanced Permeability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68273-68284. [PMID: 39610255 DOI: 10.1021/acsami.4c13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Nanofiltration membranes (NFMs) with superior permeability and high rejection of both divalent anions and cations are highly desirable to meet the increasing separation demands of complex systems. Herein, we propose a three-in-one strategy to develop a state-of-the-art dually charged thin-film composite (TFC) nanofiltration membrane consisting of a positively charged electrospun nanofiber substrate (NFS) with surface mineralization and a negatively charged polyamide (PA) selective layer prepared by interfacial polymerization (IP). The highly hydrophilic mineralized nanofiber substrate not only effectively reduces the thickness of the PA selective layer but also crumples its structures by the abundant zirconia nanoparticles on the substrate surface, resulting in excellent water flux (15.0 L m-2 h-1 bar-1) for the TFC NFMs. The relationship between the thickness of the selective layer and substrate is further investigated using dissipative particle dynamics (DPD) simulations. Meanwhile, the dually charged NFM exhibits relatively high rejection for both anions (97.1% for Na2SO4 and 97.9% for MgSO4) and cations (87.9% for MgCl2) in aqueous solutions compared with single-charged membranes, which is attributed to the dual-repulsion effect of the selective layer and the substrate surface bearing opposite charges. Moreover, the prepared NFMs exhibit good stability and excellent antifouling performance. This work may pave the way for the development of highly efficient nanofiltration membranes for the practical separation of comprehensively charged solutes.
Collapse
Affiliation(s)
- HaiYan Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - JingJing Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Ying Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - JiaoJiao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - XueMin Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - WenXu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Qianqian Lan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Lv
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
14
|
Xu S, Lin H, Li G, Han Q, Wang J, Liu F. Heterogeneous Covalent Organic Framework Membranes Mediated by Polycations for Efficient Ions Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405539. [PMID: 39478106 DOI: 10.1002/advs.202405539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Indexed: 12/28/2024]
Abstract
Precise ions sieving at angstrom-scale is gaining tremendous attention thanks to its significant impact at the water-energy nexus. Herein, a novel polycation-modulated interfacial polymerization (IP) strategy is developed to prepare a heterogeneously charged covalent organic frameworks (COFs) membrane. Cationic poly(diallyldimethylammonium chloride) (PDDA) regulates the growth and assembly of anionic COFs nanosheets, which thus provides a negative, smooth top surface and positive, rough bottom surface, indicating the presence of heterogeneously charged angstrom-scale channels through the membrane. Experiments and simulations are conducted to understand the facilitated ions transport behavior relative to specific interactions raised by heterogeneously charged channels and angstrom-scale steric hinderance as well, rendering the membrane with robust mono-/divalent cations sieving capabilities. The selectivity (61.6) of Li+ to Mg2+ in mixed saline under the continuous cross-flow filtration mode is superior to most of the reported nanofiltration membranes. This polycation-mediated interfacial polymerization strategy offers a compelling opportunity to develop versatile heterogeneously charged COF membranes for exquisite ion sieving.
Collapse
Affiliation(s)
- Shuting Xu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Lin
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guiliang Li
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu Han
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiang Wang
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Gan Q, Hu Y, Wu C, Yang Z, Peng LE, Tang CY. Nanofoamed Polyamide Membranes: Mechanisms, Developments, and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20812-20829. [PMID: 39529485 DOI: 10.1021/acs.est.4c06434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Thin film composite (TFC) polyamide membranes have been widely applied for environmental applications, such as desalination and water reuse. The separation performance of TFC polyamide membranes strongly depends on their nanovoid-containing roughness morphology. These nanovoids not only influence the effective filtration area of the polyamide film but also regulate the water transport pathways through the film. Although there have been ongoing debates on the formation mechanisms of nanovoids, a nanofoaming theory─stipulating the shaping of polyamide roughness morphology by nanobubbles of degassed CO2 and the vapor of volatile solvents─has gained much attention in recent years. In this review, we provide a comprehensive summary of the nanofoaming mechanism, including related fundamental principles and strategies to tailor nanovoid formation for improved membrane separation performance. The effects of nanovoids on the fouling behaviors of TFC membranes are also discussed. In addition, numerical models on the role of nanovoids in regulating the water transport pathways toward improved water permeance and antifouling ability are highlighted. The comprehensive summary on the nanofoaming mechanism in this review provides insightful guidelines for the future design and optimization of TFC polyamide membranes toward various environmental applications.
Collapse
Affiliation(s)
- Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Yaowen Hu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P.R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, P.R. China
| |
Collapse
|
16
|
Zhao S, Peng J, Meng C, Wei S, Kang Z, Chen K, Zhao S, Yuan B, Li P, Hou Y, Xia D, Niu QJ. Ultrafast Water Transport of Reverse Osmosis Membrane Based on Quasi-Vertically Oriented 2D Interlayer. NANO LETTERS 2024; 24:14329-14336. [PMID: 39480247 DOI: 10.1021/acs.nanolett.4c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Interlayered thin-film composite (i-TFC) membranes based on 2D materials have been widely studied due to their high efficiency in mass transfer. However, the randomly stacked 2D nanosheets usually increase the fluid path length to some extent. Herein, in situ-grown quasi-vertically oriented 2D ZIF-L was introduced as an interlayer for preparing high-performance reverse osmosis (RO) membranes. Through the optimization of the crystal growth based on the inert polyethylene substrate, the novel i-TFC RO membrane via interfacial polymerization shows an outstanding water permeance (5.50 L m-2 h-1 bar-1) and good NaCl rejection (96.3%). The membrane also shows promising potential in domestic water purification and organic solvent separation applications. Compared with the randomly stacked ZIF-L interlayer, the advantages of the vertically oriented one were ascribed to the excellent storage capacity of the amine monomers and the intensified gutter effect. This work will encourage more exploration on the interlayer architectures for high-performance i-TFC membranes.
Collapse
Affiliation(s)
- Shengchao Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jianquan Peng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Chenchen Meng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shengchao Wei
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zixi Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Kuo Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Siheng Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Bingbing Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Peng Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yingfei Hou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Daohong Xia
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Q Jason Niu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
17
|
Han S, Lu Z, Zhu J, Mai Z, Matsuyama H, He T, Zhang Y. Boosted Intracavity Aperture in Macrocyclic Amines Enabling Finely Regulated Microporous Membranes. NANO LETTERS 2024; 24:12382-12389. [PMID: 39258768 DOI: 10.1021/acs.nanolett.4c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Finely tuning the pore structure of traditional nanofiltration (NF) membranes is challenging but highly effective for achieving efficient separations. Herein, we propose a concept of using macrocyclic amines (1,4,7-triazacyclononane, 3A; 1,4,7,10-tetraazacyclododecane, 4A1; and 1,4,8,11-tetraazacyclotetradecane, 4A2) with different intra-annular apertures to finely modulate the pore structure of microporous membranes via interfacial polymerization (IP). The boost in the intracavity size of the building blocks results in heightened steric hindrance of these amine monomers, leading to a controlled increase in membrane pore size, as demonstrated by both film characterizations and multiscale simulations. In conjunction with the increased intracavity size, the water permeability follows an augmented trend of 3A-TMC, 4A1-TMC, and 4A2-TMC (TMC: trimesoyl chloride) while exhibiting increased molecular weight cut-offs due to larger free-volume elements and stronger pore interconnectivity. Our proposed macrocyclic amine design strategy provides a guideline for finely regulated microporous membranes with high potential in NF-related applications.
Collapse
Affiliation(s)
- Shuangqiao Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Zhen Lu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Gan B, Peng LE, Liu W, Zhang L, Wang LA, Long L, Guo H, Song X, Yang Z, Tang CY. Ultra-permeable silk-based polymeric membranes for vacuum-driven nanofiltration. Nat Commun 2024; 15:8656. [PMID: 39368977 PMCID: PMC11455960 DOI: 10.1038/s41467-024-53042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
Nanofiltration (NF) membranes are commonly supplied in spiral-wound modules, resulting in numerous drawbacks for practical applications (e.g., high operating pressure/pressure drop/costs). Vacuum-driven NF could be a promising and low-cost alternative by utilizing simple components and operating under an ultra-low vacuum pressure (<1 bar). Nevertheless, existing commercial membranes are incapable of achieving practically relevant water flux in such a system. Herein, we fabricated a silk-based membrane with a crumpled and defect-free rejection layer, showing water permeance of 96.2 ± 10 L m-2 h-1 bar-1 and a Na2SO4 rejection of 96.0 ± 0.6% under cross-flow filtration mode. In a vacuum-driven system, the membrane demonstrates a water flux of 56.8 ± 7.1 L m-2 h-1 at a suction pressure of 0.9 bar and high removal rate against various contaminants. Through analysis, silk-based ultra-permeable membranes may offer close to 80% reduction in specific energy consumption and greenhouse gas emissions compared to a commercial benchmark, holding great promise for advancing a more energy-efficient and greener water treatment process and paving the avenue for practical application in real industrial settings.
Collapse
Affiliation(s)
- Bowen Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenyu Liu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lingyue Zhang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Ares Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hao Guo
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoxiao Song
- Centre for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
19
|
Escamilla P, Monteleone M, Percoco RM, Mastropietro TF, Longo M, Esposito E, Fuoco A, Jansen JC, Elliani R, Tagarelli A, Ferrando-Soria J, Amendola V, Pardo E, Armentano D. BioMOF@PAN Mixed Matrix Membranes as Fast and Efficient Adsorbing Materials for Multiple Heavy Metals' Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51182-51194. [PMID: 39269435 DOI: 10.1021/acsami.4c12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Heavy metal ions are a common source of water pollution. In this study, two novel membranes with biobased metal-organic frameworks (BioMOFs) embedded in a polyacrylonitrile matrix with tailored porosity were prepared via nonsolvent induced phase separation methods and designed to efficiently adsorb heavy metal ions from oligomineral water. Under optimized preparation conditions, stable membranes with high MOF loading up to 50 wt % and a cocontinuous sponge-like morphology and a high water permeability of 50-60 L m-2 h-1 bar-1 were obtained. The tortuous flow path in combination with a low water flow rate guarantees maximum contact time between the fluid and the MOFs, and thus a high heavy metal capture efficiency in a single pass. The performances of these BioMOF@PAN membranes were investigated in the dynamic regime for the simultaneous removal of Pb2+, Cd2+, and Hg2+ heavy metals from aqueous environments in the presence of common interfering ions. The new composite adsorbing membranes are capable of reducing the concentration of heavy metal pollutants in a single pass and at much higher efficiency than previously reported membranes. The enhanced performance of the mixed matrix membranes is attributed to the presence of multiple recognition sites which densely decorate the BioMOF channels: (i) the thioether groups, deriving from the S-methyl-l-cysteine and (S)-methionine amino acid residues, able to recognize and capture Pb2+ and Hg2+ ions and (ii) the oxygen atoms of the oxamate moieties, which preferentially interact with Cd2+ ions, as revealed by single crystal X-ray diffraction. The flexibility of the pore environments allows these sites to work synergically for the simultaneous capture of different metal ions. The stability of the membranes for a potential regeneration process, a key-factor for the effective feasibility of the process in real life applications, was also evaluated and confirmed less than 1% capacity loss in each cycle.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Marcello Monteleone
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Rita Maria Percoco
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Teresa F Mastropietro
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Mariagiulia Longo
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Elisa Esposito
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Alessio Fuoco
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Johannes C Jansen
- Institute on Membrane Technology, CNR-ITM, Via P. Bucci 17/C, Rende, Cosenza 87036, Italy
| | - Rosangela Elliani
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Antonio Tagarelli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| | - Jesus Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Valeria Amendola
- Dipartimento di Chimica Generale, Università di Pavia, via T. Taramelli, 12, Pavia 27100, Italy
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia 46980, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 14/C, Rende, Cosenza 87036, Italy
| |
Collapse
|
20
|
Zhang CX, Fan RJ, Chen Q, Wang Y, Zhang H, Liu ML, Tang CY, Sun SP. Reconstructing Electrically Conductive Nanofiltration Membranes with an Aniline-Functionalized Carbon Nanotubes Interlayer for Highly Effective Toxic Organic Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16632-16641. [PMID: 39216011 DOI: 10.1021/acs.est.4c05759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Conductive nanofiltration (CNF) membranes hold great promise for removing small organic pollutants from water through enhanced Donnan exclusion and electrocatalytic degradation. However, current CNF membranes face limitations in conductivity, structural stability, and nanochannel control strategies. This work addresses these challenges by introducing aniline-functionalized carbon nanotubes (NH2-CNTs) as an interlayer. NH2-CNTs enhance the dispersibility and adhesion of pristine carbon nanotubes, leading to a more conductive and stable composite nanofiltration membrane. The redesigned NH2-CNTs interlayered conductive nanofiltration (NICNF) membrane exhibits a 10-fold increase in conductivity and a high response degree (80%) with excellent cyclic stability, surpassing existing CNF membranes. The synergistic effects of enhanced Donnan exclusion, voltage switching, and electrocatalysis enable the NICNF membrane to achieve selective recovery of mixed dyes, 98.97% removal of residual wastewater toxicity, and a 5.2-fold increase in permeance compared to the commercial NF270 membrane. This research paves the way for next-generation multifunctional membranes capable of the efficient recovery and degradation of toxic organic pollutants in wastewater.
Collapse
Affiliation(s)
- Chun-Xu Zhang
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| | - Ren-Jie Fan
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Chen
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong Wang
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huiqin Zhang
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| | - Mei-Ling Liu
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China
| | - Shi-Peng Sun
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| |
Collapse
|
21
|
Geng H, Zhang W, Zhao X, Shao W, Wang H. Research on Reverse Osmosis (RO)/Nanofiltration (NF) Membranes Based on Thin Film Composite (TFC) Structures: Mechanism, Recent Progress and Application. MEMBRANES 2024; 14:190. [PMID: 39330531 PMCID: PMC11434543 DOI: 10.3390/membranes14090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The global shortage of clean water is a major problem, even in water-rich regions. To solve this problem, low-cost and energy-efficient water treatment methods are needed. Membrane separation technology (MST), as a separation method with low energy consumption, low cost, and good separation effect, has been widely used to deal with seawater desalination, resource recovery, industrial wastewater treatment, and other fields. With the continuous progress of scientific and technological innovation and the increasing demand for use, NF/RO membranes based on the TFC structure are constantly being upgraded. This paper presents the recent research progress of NF and RO membranes based on TFC structures and their applications in different fields, especially the formation mechanism and regulation of selective layer structures and the modification methods of selective layers. Our summary provides fundamental insights into the understanding of NF and RO membrane processes and hopefully triggers further thinking on the development of membrane filtration process optimization.
Collapse
Affiliation(s)
- Huibin Geng
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Weihao Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoxu Zhao
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Haitao Wang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
22
|
Mohammed S, Aburabie J, Hashaikeh R. A review on the potential of cellulose nanomaterials for the development of thin film composite polyamide membranes for water treatment. CHEMOSPHERE 2024; 363:142927. [PMID: 39048049 DOI: 10.1016/j.chemosphere.2024.142927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Membrane-based separation technologies have drawn significant interest because of their compactness, low energy consumption, and ability to be easily integrated with existing processes. There has been significant interest in the utilization of natural materials derived from sustainable and renewable resources for membrane fabrication. Cellulose is one of the promising polymers which has been extensively studied in membrane fabrication and modification due to its abundant availability, non-toxicity and biodegradability. While there have been several reviews in recent years separately on TFC membranes and cellulose-based materials for different applications, reviews exclusively focusing on cellulosic nanomaterials-based TFC membranes are still lacking. This review provides an overview of the types of cellulose nanomaterials exploited for the development and modification of TFC membranes, particularly those used for desalination and wastewater treatment. We have presented a brief description of cellulose-based nanomaterials followed by a detailed discussion of different studies addressing each cellulose nanomaterial separately. In addition, we have summarized the performance of different studies in the literature, paying particular attention to the enhancement achieved by the incorporation of cellulose nanomaterial in the membrane.
Collapse
Affiliation(s)
- Shabin Mohammed
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Jamaliah Aburabie
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Raed Hashaikeh
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| |
Collapse
|
23
|
Ahmed MA, Mahmoud SA, Mohamed AA. Nanomaterials-modified reverse osmosis membranes: a comprehensive review. RSC Adv 2024; 14:18879-18906. [PMID: 38873545 PMCID: PMC11167617 DOI: 10.1039/d4ra01796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024] Open
Abstract
Because of its great efficiency and widespread application, reverse osmosis (RO) is a popular tool for water desalination and purification. However, traditional RO membranes have a short lifespan due to membrane fouling, deterioration, decreased salt rejection rate, and the low water flux with aging. As a result, membrane modification has received a lot of attention recently, with nanomaterials being extensively researched to improve membrane efficacy and lifespan. Herein, we present an in-depth analysis of recent advances of RO membranes modification utilizing nanomaterials. An overview of the various nanomaterials used for membrane modification, including metal oxides, zeolites, and carbon nanomaterials, is provided. The synthesis techniques and methods of integrating these nanomaterials into RO membranes are also discussed. The impacts of nanomaterial change on the performance of RO membranes are addressed. The underlying mechanisms responsible for RO membrane enhancements by nanomaterials, such as improved surface hydrophilicity, reduced membrane fouling via surface repulsion and anti-adhesion properties, and enhanced structural stability, are discussed. Furthermore, the review provides a critical analysis of the challenges and limitations associated with the use of nanomaterials to modify RO membranes. Overall, this review provides valuable insights into the modification of RO membranes with nanomaterials, providing a full grasp of the benefits, challenges, and future prospects of this challenging topic.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
- Veolia Water Technologies Cairo 11835 Egypt
| | - Safwat A Mahmoud
- Physics Department, Faculty of Science, Northern Border University Arar 13211 Saudi Arabia
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| |
Collapse
|
24
|
Xu C, Wang Z, Hu Y, Chen Y. Thin-Film Composite Membrane Compaction: Exploring the Interplay among Support Compressive Modulus, Structural Characteristics, and Overall Transport Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8587-8596. [PMID: 38683942 PMCID: PMC11097391 DOI: 10.1021/acs.est.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Water scarcity has driven the demand for water production from unconventional sources and the reuse of industrial wastewater. Pressure-driven membranes, notably thin-film composite (TFC) membranes, stand as energy-efficient alternatives to the water scarcity challenge and various wastewater treatments. While pressure drives solvent movement, it concurrently triggers membrane compaction and flux deterioration. This necessitates a profound comprehension of the intricate interplay among compressive modulus, structural properties, and transport efficacy amid the compaction process. In this study, we present an all-encompassing compaction model for TFC membranes, applying authentic structural and mechanical variables, achieved by coupling viscoelasticity with Monte Carlo flux calculations based on the resistance-in-series model. Through validation against experimental data for multiple commercial membranes, we evaluated the influence of diverse physical parameters. We find that support polymers with a higher compressive modulus (lower compliance), supports with higher densities of "finger-like" pores, and "sponge-like" pores with optimum void fractions will be preferred to mitigate compaction. More importantly, we uncover a trade-off correlation between steady-state permeability and the modulus for identical support polymers displaying varying porosities. This model holds the potential as a valuable guide in shaping the design and optimization for further TFC applications and extending its utility to biological scaffolds and hydrogels with thin-film coatings in tissue engineering.
Collapse
Affiliation(s)
- Chunyan Xu
- School
of Resources & Environmental Engineering, Anhui University, Hefei, Anhui 230012, China
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Zhongzhen Wang
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Yuhang Hu
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
- Woodruff
School of Mechanical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Yongsheng Chen
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
25
|
Sarkar P, Wu C, Yang Z, Tang CY. Empowering ultrathin polyamide membranes at the water-energy nexus: strategies, limitations, and future perspectives. Chem Soc Rev 2024; 53:4374-4399. [PMID: 38529541 DOI: 10.1039/d3cs00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Membrane-based separation is one of the most energy-efficient methods to meet the growing need for a significant amount of fresh water. It is also well-known for its applications in water treatment, desalination, solvent recycling, and environmental remediation. Most typical membranes used for separation-based applications are thin-film composite membranes created using polymers, featuring a top selective layer generated by employing the interfacial polymerization technique at an aqueous-organic interface. In the last decade, various manufacturing techniques have been developed in order to create high-specification membranes. Among them, the creation of ultrathin polyamide membranes has shown enormous potential for achieving a significant increase in the water permeation rate, translating into major energy savings in various applications. However, this great potential of ultrathin membranes is greatly hindered by undesired transport phenomena such as the geometry-induced "funnel effect" arising from the substrate membrane, severely limiting the actual permeation rate. As a result, the separation capability of ultrathin membranes is still not fully unleashed or understood, and a critical assessment of their limitations and potential solutions for future studies is still lacking. Here, we provide a summary of the latest developments in the design of ultrathin polyamide membranes, which have been achieved by controlling the interfacial polymerization process and utilizing a number of novel manufacturing processes for ionic and molecular separations. Next, an overview of the in-depth assessment of their limitations resulting from the substrate membrane, along with potential solutions and future perspectives will be covered in this review.
Collapse
Affiliation(s)
- Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
26
|
Sun K, Lyu Q, Zheng X, Liu R, Tang CY, Zhao M, Dong Y. Enhanced water treatment performance of ceramic-based forward osmosis membranes via MOF interlayer. WATER RESEARCH 2024; 254:121395. [PMID: 38452527 DOI: 10.1016/j.watres.2024.121395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Forward osmosis (FO) membrane processes could operate without hydraulic pressures, enabling the efficient treatment of wastewaters with mitigated membrane fouling and enhanced efficiency. Designing a high-performance polyamide (PA) layer on ceramic substrates remains a challenge for FO desalination applications. Herein, we report the enhanced water treatment performance of thin-film nanocomposite ceramic-based FO membranes via an in situ grown Zr-MOF (UiO-66-NH2) interlayer. With the Zr-MOF interlayer, the ceramic-based FO membranes exhibit lower thickness, higher cross-linking degree, and increased surface roughness, leading to higher water flux of 27.38 L m-2 h-1 and lower reverse salt flux of 3.45 g m-2 h-1. The ceramic-based FO membranes with Zr-MOF interlayer not only have an application potential in harsh environments such as acidic solution (pH 3) and alkaline solution (pH 11), but also exhibit promising water and reverse salt transport properties, which are better than most MOF-incorporated PA membranes. Furthermore, the membranes could reject major species (ions, oil and organics) with rejections >94 % and water flux of 22.62-14.35 L m-2 h-1 in the treatment of actual alkaline industrial wastewater (pH 8.6). This rational design proposed in this study is not only applicable for the development of a high-quality ceramic-based FO membrane with enhanced performance but also can be potentially extended to more challenging water treatment applications.
Collapse
Affiliation(s)
- Kuo Sun
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Lyu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Renlan Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yingchao Dong
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
27
|
Kayanja O, Hassan MA, Hassanin A, Ohashi H, Khalil ASG. Optimization of isotropic MoS 2/PES membranes for efficient treatment of industrial oily wastewater. RSC Adv 2024; 14:12058-12070. [PMID: 38628476 PMCID: PMC11019293 DOI: 10.1039/d4ra01052c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Elimination of tiny oil droplets nearly miscible with wastewater can be realized using membrane technology through ultrafiltration. The novelty of this work was to blend different phases of molybdenum disulfide (MoS2) in isotropic polyethersulfone (PES). We prepared isotropic PES membranes by optimizing nonsolvent vapour-induced phase separation (VIPS). Membranes were blended with MoS2 nanosheets of different phases to promote separation performance and antifouling resistance. FE-SEM revealed the flower-like surface morphology of MoS2 nanosheets. HR-TEM of MoS2 revealed 2H domains in the monolayer, flakes of a few layers and a d-spacing of 0.22 nm. Raman spectroscopy could be used to distinguish mixed-phase MoS2 from single-phase MoS2. Isotropic PES membranes modified with 70% 1T/2H MoS2 had a significantly high permeance to pure water (6911 kg m-2 h bar). The same membrane possessed a high efficiency of oil rejection of 98.78%, 97.85%, 99.83% for emulsions of industrial crude oil at 100, 1000 and 10 000 mg L-1, respectively. Removal of oil droplets from wastewater was dominated by a mechanism based on size exclusion. Isotropic PES modified with 2H MoS2 possessed superior oleophilicity, which resulted in low rejection of crude oil. Modified membranes showed excellent fouling resistance for three successive filtration cycles, as evidenced by enhanced antifouling parameters. Our study reveals how the phase composition of MoS2 nanosheets can significantly affect the performance of isotropic PES membranes during the ultrafiltration of oily wastewater.
Collapse
Affiliation(s)
- Oscar Kayanja
- Materials Science and Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
| | - Mohsen A Hassan
- Materials Science and Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
| | - Ahmed Hassanin
- Materials Science and Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
- Department of Textile Engineering, Faculty of Engineering, Alexandria University Alexandria 21544 Egypt
| | - Hidenori Ohashi
- Faculty of Engineering, Tokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Ahmed S G Khalil
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
- Environmental and Smart Technology Group, Faculty of Science, Fayoum University 63514 Fayoum Egypt
| |
Collapse
|
28
|
Aquino M, Santoro S, Politano A, D’Andrea G, Siciliano A, Straface S, La Russa MF, Curcio E. Environmentally Friendly Photothermal Membranes for Halite Recovery from Reverse Osmosis Brine via Solar-Driven Membrane Crystallization. MEMBRANES 2024; 14:87. [PMID: 38668115 PMCID: PMC11052490 DOI: 10.3390/membranes14040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Modern society and industrial development rely heavily on the availability of freshwater and minerals. Seawater reverse osmosis (SWRO) has been widely adopted for freshwater supply, although many questions have arisen about its environmental sustainability owing to the disposal of hypersaline rejected solutions (brine). This scenario has accelerated significant developments towards the hybridization of SWRO with membrane distillation-crystallization (MD-MCr), which can extract water and minerals from spent brine. Nevertheless, the substantial specific energy consumption associated with MD-MCr remains a significant limitation. In this work, energy harvesting was secured from renewables by hotspots embodied in the membranes, implementing the revolutionary approach of brine mining via photothermal membrane crystallization (PhMCr). This method employs self-heating nanostructured interfaces under solar radiation to enhance water evaporation, creating a carefully controlled supersaturated environment responsible for the extraction of minerals. Photothermal mixed matrix photothermal membranes (MMMs) were developed by incorporating graphene oxide (GO) or carbon black (CB) into polyvinylidene fluoride (PVDF) solubilized in an eco-friendly solvent (i.e., triethyl phosphate (TEP)). MMMs were prepared using non-solvent-induced phase separation (NIPS). The effect of GO or GB on the morphology of MMMs and the photothermal behavior was examined. Light-to-heat conversion was used in PhMCr experiments to facilitate the evaporation of water from the SWRO brine to supersaturation, leading to sodium chloride (NaCl) nucleation and crystallization. Overall, the results indicate exciting perspectives of PhMCr in brine valorization for a sustainable desalination industry.
Collapse
Affiliation(s)
- Marco Aquino
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Sergio Santoro
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy;
| | - Giuseppe D’Andrea
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Alessio Siciliano
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Salvatore Straface
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Mauro Francesco La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria (DiBEST-UNICAL), Via P. Bucci, CUBO 12/B, 87036 Rende, Italy;
| | - Efrem Curcio
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| |
Collapse
|
29
|
Long L, Guo H, Zhang L, Gan Q, Wu C, Zhou S, Peng LE, Tang CY. Engraving Polyamide Layers by In Situ Self-Etchable CaCO 3 Nanoparticles Enhances Separation Properties and Antifouling Performance of Reverse Osmosis Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6435-6443. [PMID: 38551393 DOI: 10.1021/acs.est.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.
Collapse
Affiliation(s)
- Li Long
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Hao Guo
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P R China
| | - Lingyue Zhang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Qimao Gan
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chenyue Wu
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Shenghua Zhou
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| | - Chuyang Y Tang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR 999077, P R China
| |
Collapse
|
30
|
Zhang M, Wang W, Gong T, Wu Y, Chen G. Cutting-edge technologies and relevant reaction mechanism difference in treatment of long- and short-chain per- and polyfluoroalkyl substances: A review. CHEMOSPHERE 2024; 354:141692. [PMID: 38490606 DOI: 10.1016/j.chemosphere.2024.141692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants. Compared with short-chain PFAS, long-chain PFAS are more hazardous. Currently, little attention has been paid to the differences in reaction mechanisms between long-chain and short-chain PFAS. This pressing concern has prompted studies about eliminating PFAS and revealing the mechanism difference. The reaction rate and reaction mechanism of each technology was focused on, including (1) adsorption, (2) ion exchange (IX), (3) membrane filtration, (4) advanced oxidation, (5) biotransformation, (6) novel functional material, and (7) other technologies (e.g. ecological remediation, hydrothermal treatment (HT), mechanochemical (MC) technology, micro/nanobubbles enhanced technology, and integrated technologies). The greatest reaction rate k of photocatalysis for long- and short-chain PFAS high up to 63.0 h-1 and 19.7 h-1, respectively. However, adsorption, membrane filtration, and novel functional material remediation were found less suitable or need higher operation demand for treating short-chain PFAS. Ecological remediation is more suitable for treating natural waterbody for its environmentally friendly and fair reaction rate. The other technologies all showed good application potential for both short- and long-chain PFAS, and it was more excellent for long-chain PFAS. The long-chain PFAS can be cleavaged into short-chain PFAS by C-chain broken, -CF2 elimination, nucleophilic substitution of F-, and HF elimination. Furthermore, the application of each type of technology was novelly designed; and suggestions for the future development of PFAS remediation technologies were proposed.
Collapse
Affiliation(s)
- Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yulin Wu
- Shanghai Geotechnical Investigations and Design Institute Engineering Consulting (Group) Co. Ltd., China
| | - Guangyao Chen
- School of Material Science and Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
31
|
Khanzada NK, Al-Juboori RA, Khatri M, Ahmed FE, Ibrahim Y, Hilal N. Sustainability in Membrane Technology: Membrane Recycling and Fabrication Using Recycled Waste. MEMBRANES 2024; 14:52. [PMID: 38392679 PMCID: PMC10890584 DOI: 10.3390/membranes14020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Membrane technology has shown a promising role in combating water scarcity, a globally faced challenge. However, the disposal of end-of-life membrane modules is problematic as the current practices include incineration and landfills as their final fate. In addition, the increase in population and lifestyle advancement have significantly enhanced waste generation, thus overwhelming landfills and exacerbating environmental repercussions and resource scarcity. These practices are neither economically nor environmentally sustainable. Recycling membranes and utilizing recycled material for their manufacturing is seen as a potential approach to address the aforementioned challenges. Depending on physiochemical conditions, the end-of-life membrane could be reutilized for similar, upgraded, and downgraded operations, thus extending the membrane lifespan while mitigating the environmental impact that occurred due to their disposal and new membrane preparation for similar purposes. Likewise, using recycled waste such as polystyrene, polyethylene terephthalate, polyvinyl chloride, tire rubber, keratin, and cellulose and their derivates for fabricating the membranes can significantly enhance environmental sustainability. This study advocates for and supports the integration of sustainability concepts into membrane technology by presenting the research carried out in this area and rigorously assessing the achieved progress. The membranes' recycling and their fabrication utilizing recycled waste materials are of special interest in this work. Furthermore, this study offers guidance for future research endeavors aimed at promoting environmental sustainability.
Collapse
Affiliation(s)
- Noman Khalid Khanzada
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Muzamil Khatri
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Farah Ejaz Ahmed
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Yazan Ibrahim
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
32
|
Martínez-Izquierdo L, García-Comas C, Dai S, Navarro M, Tissot A, Serre C, Téllez C, Coronas J. Ultrasmall Functionalized UiO-66 Nanoparticle/Polymer Pebax 1657 Thin-Film Nanocomposite Membranes for Optimal CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4024-4034. [PMID: 38214452 PMCID: PMC10811625 DOI: 10.1021/acsami.3c16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Ultrasmall 4 to 6 nm nanoparticles of the metal-organic framework (MOF) UiO-66 (University of Oslo-66) were successfully prepared and embedded into the polymer Pebax 1657 to fabricate thin-film nanocomposite (TFN) membranes for CO2/N2 and CO2/CH4 separations. Furthermore, it has been demonstrated that ligand functionalization with amino (-NH2) and nitro (-NO2) groups significantly enhances the gas separation performance of the membranes. For CO2/N2 separation, 7.5 wt % UiO-66-NH2 nanoparticles provided a 53% improvement in CO2 permeance over the pristine membrane (from 181 to 277 GPU). Regarding the CO2/N2 selectivity, the membranes prepared with 5 wt % UiO-66-NO2 nanoparticles provided an increment of 17% over the membrane without the MOF (from 43.5 to 51.0). However, the CO2 permeance of this membrane dropped to 155 GPU. The addition of 10 wt % ZIF-94 particles with an average particle size of ∼45 nm into the 5 wt % UiO-66-NO2 membrane allowed to increase the CO2 permeance to 192 GPU while maintaining the CO2/N2 selectivity at ca. 51 due to the synergistic interaction between the MOFs and the polymer matrix provided by the hydrophilic nature of ZIF-94. In the case of CO2/CH4 separation, the 7.5 wt % UiO-66-NH2 membrane exhibited the best performance with an increase of the CO2 permeance from 201 to 245 GPU.
Collapse
Affiliation(s)
- Lidia Martínez-Izquierdo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Cristina García-Comas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Shan Dai
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Marta Navarro
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Laboratorio
de Microscopías Avanzadas, Universidad
de Zaragoza, Zaragoza 50018, Spain
| | - Antoine Tissot
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Christian Serre
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Carlos Téllez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Joaquín Coronas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| |
Collapse
|
33
|
Song Y, Chen D, Liu D, Hu R, Zhang Y, Hu Y, Song X, Gao F, Xie Z, Kang J, Zheng Z, Cao Y, Xiang M. In Situ Interfacial Polymerized Arginine-Doped Polydopamine Thin-Film Nanocomposite Membranes for High-Separation and Antifouling Reverse Osmosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56293-56304. [PMID: 37976105 DOI: 10.1021/acsami.3c13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this work, we synthesized polydopamine nanoparticles (PDNPs-M, M = I, II, III, and IV) with uniform particle sizes but varying l-arginine (Arg) contents (0%, 0.53%, 3.73%, and 6.62%) through a one-pot synthesis approach. Thin-film nanocomposite (TFN) membranes were fabricated via in situ interfacial polymerization (IP). The effects of the PDNPs-M chemical structure on the IP process and the consequent impacts on the structure and properties of the polyamide (PA) selective layer were investigated. The hydrophilicity and dispersibility of PDNPs-M exhibited an upward trend with the Arg content. Furthermore, Arg doping contributes to a denser and smoother PA layer. Among the TFC and TFN membranes, TFN-PDNPs-IV exhibited a water permeability of 3.89 L·m-2·h-1·bar-1 (55.1% higher than that of TFC-0) with a NaCl rejection rate of 98.8%, signifying superior water/salt selectivity. Additionally, TFN-PDNPs-IV exhibited regular pressure stability, commendable acid/alkali stability, and enhanced antifouling properties. These findings highlight the significant impact of nanoparticle hydrophilic functional groups on the structural and functional attributes of TFN membranes, offering a promising approach for developing advanced reverse osmosis membranes.
Collapse
Affiliation(s)
- Yuchen Song
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Dandan Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Demin Liu
- Dongfang Electric Machinery Co., Ltd., Deyang 618000, China
| | - Ran Hu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yue Zhang
- Dongfang Electric Machinery Co., Ltd., Deyang 618000, China
| | - Yiwen Hu
- Key Laboratory of Combustion and Explosion Technology, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Xiuduo Song
- Key Laboratory of Combustion and Explosion Technology, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Feng Gao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhihui Xie
- Dongfang Electric Machinery Co., Ltd., Deyang 618000, China
| | - Jian Kang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
34
|
Qiu Z, Chen J, Zeng J, Dai R, Wang Z. A review on artificial water channels incorporated polyamide membranes for water purification: Transport mechanisms and performance. WATER RESEARCH 2023; 247:120774. [PMID: 37898000 DOI: 10.1016/j.watres.2023.120774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
While thin-film composite (TFC) polyamide (PA) membranes are advanced for removing salts and trace organic contaminants (TrOCs) from water, TFC PA membranes encounter a water permeance-selectivity trade-off due to PA layer structural characteristics. Drawing inspiration from the excellent water permeance and solute rejection of natural biological channels, the development of analogous artificial water channels (AWCs) in TFC PA membranes (abbreviated as AWCM) promises to achieve superior mass transfer efficiency, enabling breaking the upper bound of water permeance and selectivity. Herein, we first discussed the types and structural characteristics of AWCs, followed by summarizing the methods for constructing AWCM. We discussed whether the AWCs acted as the primary mass transfer channels in AWCM and emphasized the important role of the AWCs in water transport and ion/TrOCs rejection. We thoroughly summarized the molecular-level mechanisms and structure-performance relationship of water molecules, ions, and TrOCs transport in the confined nanospace of AWCs, which laid the foundation for illustrating the enhanced water permeance and salt/TrOCs selectivity of AWCM. Finally, we discussed the challenges encountered in the field of AWCM and proposed future perspectives for practical applications. This review is expected to offer guidance for understanding the transport mechanisms of AWCM and developing next-generation membrane for effective water treatment.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiansuxuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jin Zeng
- School of Software Engineering, Tongji University, Shanghai 201804, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
35
|
Xin JH, Fan HY, Guo BB, Yang HC, Zhu CY, Zhang C, Xu ZK. Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes. Chem Commun (Camb) 2023; 59:13258-13271. [PMID: 37869905 DOI: 10.1039/d3cc04171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Interfacial polymerization is a well-known process to synthesize separation layers for thin film composite membranes at an immiscible organic liquid-aqueous liquid interface. The organic-aqueous interface determines the diffusion dynamics of monomers and the chemical environment for polymerization, exerting a critical influence on the formation of polymer thin films. This review summarizes recent advances in tailoring interfacial polymerization using interfaces beyond the conventional alkane-water interface to achieve high-performance separation films with designed structures. Diverse liquid-liquid interfaces are introduced for synthesizing separation films by adding co-solvents into the organic phase and/or the aqueous phase, respectively, or by replacing one of the liquid phases with other solvents. Innovative liquid-gel and liquid-gas interfaces are then summarized for the synthesis of polymer thin films for separation. Novel strategies to form reaction interfaces, such as spray-coating, are also presented and discussed. In addition, we discuss the details of how a physically or chemically patterned substrate affects interfacial polymerization. Finally, the potential of unconventional interfaces in interfacial polymerization is forecast with both challenges and opportunities.
Collapse
Affiliation(s)
- Jia-Hui Xin
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hong-Yu Fan
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Bian-Bian Guo
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Ye Zhu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Chao Zhang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
36
|
Liu W, Long L, Yang Z, Wang L, Gan Q, Zhou S, Sarkar P, Guo H, Tang CY. Enhancing the removal of organic micropollutants by nanofiltration membrane with Fe (III)-tannic acid interlayer: Mechanisms and environmental implications. WATER RESEARCH 2023; 245:120623. [PMID: 37729696 DOI: 10.1016/j.watres.2023.120623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/03/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Nanofiltration technology has been applied in a variety of water treatment scenarios. However, conventional thin-film composite (TFC) membranes fail to remove emerging organic micropollutants (OMPs) efficiently. Here we applied thin-film nanocomposite membrane with an interlayer (TFNi) of Fe (III)-tannic acid to remove various types of OMPs, such as endocrine disrupting chemicals (EDCs), pharmaceutically active compounds (PhACs), and perfluoroalkyl substances (PFASs). Compared to the pristine TFC membrane, TFNi membrane exhibited crumpled morphology and its rejection layer was denser, better cross-linked and possessed smaller average pore size with narrower distribution. Significant enhancement in water-OMPs selectivity of PhACs and PFASs was observed. The mechanism lies in the effects of interlayer in improving the membrane permeance to water and meanwhile reducing the permeance to some OMPs by enhancing size exclusion effects. This work confirms the effectiveness of using TFNi membrane to simultaneously enhance the OMPs rejection and water permeance. The unraveled mechanism might inspire the future development of high-performance nanofiltration membranes targeting OMPs removal.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shenghua Zhou
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hao Guo
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
37
|
Ma C, Cheng Z, Zhang M, Huang Y, Huang W, Wang L, Zhao B, Zhang Z. High performance forward osmosis membrane with ultrathin hydrophobic nanofibrous interlayer. CHEMOSPHERE 2023; 338:139556. [PMID: 37467861 DOI: 10.1016/j.chemosphere.2023.139556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The novel thin film composite (TFC) forward osmosis (FO) membrane with electrospinning nanofibers as support layer can alleviate internal concentration polarization (ICP). While the macropores of the nanofiber support layer cause defects in the polyamide (PA) layer. Therefore, hydrophobic polyvinylidene fluoride (PVDF) fine nanofibers were used as an interlayer to modulate the process of interfacial polymerization (IP) in this study. The results showed that the introduction of the interlayer improved the hydrophobicity of the support layer for achieving uniform, thin and defect-free selective polyamide (PA) layer. The water flux of TFC-PVDF was 58.26 LMH in the FO mode of 2 M NaCl, which was two times higher than that of the unmodified FO membrane. Lower reverse salt flux (4.91 gMH) and structural parameter (179.43 μm) alleviated the ICP. In addition, TFC-PVDF membrane showed good anti-fouling performance for SA (flux recovery ratio of 93.97%) due to high hydrophilicity, low zeta potential and low roughness. This study provides an easy and promising method to prepare defect-free PA selective layer on the macropores nanofiber support layer. The novel FO membrane shows high desalination performance and anti-fouling properties.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China
| | - Zhaoyang Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Meng Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yukun Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Weili Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| | - Bin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhaohui Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
38
|
Jiang C, Zhang M, Hou Y. Thin-Film Composite Membrane with Porous Interlayer Composed of Dendritic Mesoporous Silica Nanoparticles for Enhanced Nanofiltration. Polymers (Basel) 2023; 15:3912. [PMID: 37835961 PMCID: PMC10574978 DOI: 10.3390/polym15193912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Positively charged nanofiltration (NF) membranes show great potential in the fields of water treatment and resource recovery. However, this kind of NF membrane usually suffers from relatively low water permeance. Herein, a positively charged NF membrane with a porous interlayer is developed, where the interlayer is formed by assembling dendritic mesoporous silica nanoparticles (DMSNs) after the formation of a polyamide layer. This post-assembly strategy avoids the adverse effect of the interlayer on the formation of positively charged NF membranes. The porous DMSN interlayer provides abundant connected channels for water transport, thus endowing the NF membrane with enhanced water permeance. A series of DMSNs with different sizes was synthesized, and their influence on membrane formation and membrane performance was systematically investigated. The optimized membrane exhibits a CaCl2 rejection rate of 95.2% and a water flux of 133.6 L·h-1·m-2, which is 1.6 times that of the control group without an interlayer. This work represents an approach to the fabrication of a positively charged NF membrane with porous interlayers for high-efficiency cation rejection.
Collapse
Affiliation(s)
- Chi Jiang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China (Y.H.)
| | - Mengmeng Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China (Y.H.)
| | - Yingfei Hou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China (Y.H.)
| |
Collapse
|
39
|
Cheng P, Zhu T, Wang X, Fan K, Liu Y, Wang XM, Xia S. Enhancing Nanofiltration Selectivity of Metal-Organic Framework Membranes via a Confined Interfacial Polymerization Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12879-12889. [PMID: 37582261 DOI: 10.1021/acs.est.3c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Development of well-constructed metal-organic framework (MOF) membranes can bring about breakthroughs in nanofiltration (NF) performance for water treatment applications, while the relatively loose structures and inevitable defects usually cause low rejection capacity of MOF membranes. Herein, a confined interfacial polymerization (CIP) method is showcased to synthesize polyamide (PA)-modified NF membranes with MOF nanosheets as the building blocks, yielding a stepwise transition from two-dimensional (2D) MOF membranes to polyamide NF membranes. The CIP process was regulated by adjusting the loading amount of piperazine (PIP)-grafted MOF nanosheets on substrates and the additional content of free PIP monomers distributed among the nanosheets, followed by the reaction with trimesoyl chloride in the organic phase. The prepared optimal membrane exhibited a high Na2SO4 rejection of 98.4% with a satisfactory water permeance of 37.4 L·m-2·h-1·bar-1, which could be achieved by neither the pristine 2D MOF membranes nor the PA membranes containing the MOF nanosheets as the conventional interlayer. The PA-modified MOF membrane also displayed superior stability and enhanced antifouling ability. This CIP strategy provides a novel avenue to develop efficient MOF-based NF membranes with high ion-sieving separation performance for water treatment.
Collapse
Affiliation(s)
- Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Tongren Zhu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Xiaoping Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Kaiming Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
40
|
Restrepo MA, Mohammadifakhr M, Kamp J, Trzaskus K, Kemperman AJB, de Grooth J, Roesink HDW, Roth H, Wessling M. Incorporation of an Intermediate Polyelectrolyte Layer for Improved Interfacial Polymerization on PAI Hollow Fiber Membranes. MEMBRANES 2023; 13:741. [PMID: 37623802 PMCID: PMC10456695 DOI: 10.3390/membranes13080741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
In a single-step spinning process, we create a thin-walled, robust hollow fiber support made of Torlon® polyamide-imide featuring an intermediate polyethyleneimine (PEI) lumen layer to facilitate the integration and covalent attachment of a dense selective layer. Subsequently, interfacial polymerization of m-phenylenediamine and trimesoyl chloride forms a dense selective polyamide (PA) layer on the inside of the hollow fiber. The resulting thin-film composite hollow fiber membranes show high NaCl rejections of around 96% with a pure water permeability of 1.2 LMH/bar. The high success rate of fabricating the thin-film composite hollow fiber membrane proves our hypothesis of a supporting effect of the intermediate PEI layer on separation layer formation. This work marks a step towards the development of a robust method for the large-scale manufacturing of thin-film composite hollow fiber membranes for reverse osmosis and nanofiltration.
Collapse
Affiliation(s)
- Maria A. Restrepo
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Mehrdad Mohammadifakhr
- MST-Membrane Science and Technology Cluster, Department of Science and Technology, Mesa+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands (J.d.G.)
| | - Johannes Kamp
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Krzysztof Trzaskus
- Department of Research and Development, Aquaporin A/S, Nymøllevej 78, 2800 Kongens Lyngby, Denmark
| | - Antoine J. B. Kemperman
- MST-Membrane Science and Technology Cluster, Department of Science and Technology, Mesa+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands (J.d.G.)
| | - Joris de Grooth
- MST-Membrane Science and Technology Cluster, Department of Science and Technology, Mesa+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands (J.d.G.)
| | - Hendrik D. W. Roesink
- MST-Membrane Science and Technology Cluster, Department of Science and Technology, Mesa+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands (J.d.G.)
| | - Hannah Roth
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
| | - Matthias Wessling
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
41
|
Zhang Q, Zhou R, Peng X, Li N, Dai Z. Development of Support Layers and Their Impact on the Performance of Thin Film Composite Membranes (TFC) for Water Treatment. Polymers (Basel) 2023; 15:3290. [PMID: 37571184 PMCID: PMC10422403 DOI: 10.3390/polym15153290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Thin-film composite (TFC) membranes have gained significant attention as an appealing membrane technology due to their reversible fouling and potential cost-effectiveness. Previous studies have predominantly focused on improving the selective layers to enhance membrane performance. However, the importance of improving the support layers has been increasingly recognized. Therefore, in this review, preparation methods for the support layer, including the traditional phase inversion method and the electrospinning (ES) method, as well as the construction methods for the support layer with a polyamide (PA) layer, are analyzed. Furthermore, the effect of the support layers on the performance of the TFC membrane is presented. This review aims to encourage the exploration of suitable support membranes to enhance the performance of TFC membranes and extend their future applications.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Rui Zhou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Xue Peng
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China
| |
Collapse
|
42
|
Liang J, Huang H, Zhang H, Wu Y, Zhuang Y. Preparation of Thin Film Composite (TFC) Membrane with DESPs Interlayer and Its Forward Osmosis (FO) Performance for Organic Solvent Recovery. MEMBRANES 2023; 13:688. [PMID: 37505054 PMCID: PMC10384680 DOI: 10.3390/membranes13070688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
To explore the application of forward osmosis (FO) technology in the organic solvent recovery field, we prepared a new solvent-resistant triple layer thin film composite (TFC) membrane on the PI (polyimide) substrate. The deep eutectic supramolecular polymers (DESPs) interlayer was constructed on the substrate to improve the separation performance and solvent resistance. DESPs interlayer was formed by mixing and heating with cyclodextrin as the hydrogen bond acceptor and L-malic acid as the hydrogen bond donor. The chemical changes, surface property and morphology of the composite membrane with DESPs interlayer were characterized. The separation performance and stability of the triple layer composite membrane in organic solvent FO were studied. For the monascorubrin-ethanol system, the permeation flux of TFC/DESPs5-PI membrane could reach 9.51 LMH while the rejection rate of monascorubrin was 98.4% (1.0 M LiCl/ethanol as draw solution), which was better than the pristine membrane. Therefore, this solvent-resistant triple layer composite FO membrane has good potential for the recovery of organic solvents.
Collapse
Affiliation(s)
- Jingyi Liang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hansheng Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hao Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanhui Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yongbing Zhuang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
43
|
Swain A, Adarsh S, Biswas A, Bose S, Benicewicz BC, Kumar SK, Basu JK. Enhanced efficiency of water desalination in nanostructured thin-film membranes with polymer grafted nanoparticles. NANOSCALE 2023. [PMID: 37366152 DOI: 10.1039/d3nr00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Polyamide composite (PA-TFC) membranes are the state-of-the-art ubiquitous platforms to desalinate water at scale. We have developed a novel, transformative platform where the performance of such membranes is significantly and controllably improved by depositing thin films of polymethylacrylate [PMA] grafted silica nanoparticles (PGNPs) through the venerable Langmuir-Blodgett method. Our key practically important finding is that these constructs can have unprecedented selectivity values (i.e., ∼250-3000 bar-1, >99.0% salt rejection) at reduced feed water pressure (i.e., reduced cost) while maintaining acceptable water permeance A (= 2-5 L m-2 h-1 Bar-1) with as little as 5-7 PGNP layers. We also observe that the transport of solvent and solute are governed by different mechanisms, unlike gas transport, leading to independent control of A and selectivity. Since these membranes can be formulated using simple and low cost self-assembly methods, our work opens a new direction towards development of affordable, scalable water desalination methods.
Collapse
Affiliation(s)
- Aparna Swain
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - S Adarsh
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - Ashish Biswas
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bangalore, 560012, Karnataka, India
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, 29208, South Carolina, USA
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, 10027, New York, USA
| | - J K Basu
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| |
Collapse
|
44
|
Gu S, Zhang L, de Campo L, O'Dell LA, Wang D, Wang G, Kong L. Lyotropic Liquid Crystal (LLC)-Templated Nanofiltration Membranes by Precisely Administering LLC/Substrate Interfacial Structure. MEMBRANES 2023; 13:549. [PMID: 37367753 DOI: 10.3390/membranes13060549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Mesoporous materials based on lyotropic liquid crystal templates with precisely defined and flexible nanostructures offer an alluring solution to the age-old challenge of water scarcity. In contrast, polyamide (PA)-based thin-film composite (TFC) membranes have long been hailed as the state of the art in desalination. They grapple with a common trade-off between permeability and selectivity. However, the tides are turning as these novel materials, with pore sizes ranging from 0.2 to 5 nm, take center stage as highly coveted active layers in TFC membranes. With the ability to regulate water transport and influence the formation of the active layer, the middle porous substrate of TFC membranes becomes an essential player in unlocking their true potential. This review delves deep into the recent advancements in fabricating active layers using lyotropic liquid crystal templates on porous substrates. It meticulously analyzes the retention of the liquid crystal phase structure, explores the membrane fabrication processes, and evaluates the water filtration performance. Additionally, it presents an exhaustive comparison between the effects of substrates on both polyamide and lyotropic liquid crystal template top layer-based TFC membranes, covering crucial aspects such as surface pore structures, hydrophilicity, and heterogeneity. To push the boundaries even further, the review explores a diverse array of promising strategies for surface modification and interlayer introduction, all aimed at achieving an ideal substrate surface design. Moreover, it delves into the realm of cutting-edge techniques for detecting and unraveling the intricate interfacial structures between the lyotropic liquid crystal and the substrate. This review is a passport to unravel the enigmatic world of lyotropic liquid crystal-templated TFC membranes and their transformative role in global water challenges.
Collapse
Affiliation(s)
- Senlin Gu
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liangliang Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization (ANSTO), Sydney, NSW 2234, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Guang Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Centre, Dongguan 523803, China
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
45
|
Khdary NH, Almuarqab BT, El Enany G. Nanoparticle-Embedded Polymers and Their Applications: A Review. MEMBRANES 2023; 13:537. [PMID: 37233597 PMCID: PMC10220572 DOI: 10.3390/membranes13050537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
There has been increasing interest in the study and development of nanoparticle-embedded polymeric materials and their applications to special membranes. Nanoparticle-embedded polymeric materials have been observed to have a desirable compatibility with commonly used membrane matrices, a wide range of functionalities, and tunable physicochemical properties. The development of nanoparticle-embedded polymeric materials has shown great potential to overcome the longstanding challenges faced by the membrane separation industry. One major challenge that has been a bottleneck to the progress and use of membranes is the balance between the selectivity and the permeability of the membranes. Recent developments in the fabrication of nanoparticle-embedded polymeric materials have focused on how to further tune the properties of the nanoparticles and membranes to improve the performance of the membranes even further. Techniques for improving the performance of nanoparticle-embedded membranes by exploiting their surface characteristics and internal pore and channel structures to a significant degree have been incorporated into the fabrication processes. Several fabrication techniques are discussed in this paper and used to produce both mixed-matrix membranes and homogenous nanoparticle-embedded polymeric materials. The discussed fabrication techniques include interfacial polymerization, self-assembly, surface coating, and phase inversion. With the current interest shown in the field of nanoparticle-embedded polymeric materials, it is expected that better-performing membranes will be developed soon.
Collapse
Affiliation(s)
- Nezar H. Khdary
- King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Basha T. Almuarqab
- King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Gaber El Enany
- Department of Physics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Saudi Arabia;
| |
Collapse
|
46
|
Saud A, Saleem H, Khan AW, Munira N, Khan M, Zaidi SJ. Date Palm Tree Leaf-Derived Cellulose Nanocrystal Incorporated Thin-Film Composite forward Osmosis Membranes for Produced Water Treatment. MEMBRANES 2023; 13:membranes13050513. [PMID: 37233574 DOI: 10.3390/membranes13050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Worldwide water shortage and significant issues related to treatment of wastewater streams, mainly the water obtained during the recovery of oil and gas operations called produced water (PW), has enabled forward osmosis (FO) to progress and become advanced enough to effectively treat as well as retrieve water in order to be productively reused. Because of their exceptional permeability qualities, thin-film composite (TFC) membranes have gained increasing interest for use in FO separation processes. This research focused on developing a high water flux and less oil flux TFC membrane by incorporating sustainably developed cellulose nanocrystal (CNC) onto the polyamide (PA) layer of the TFC membrane. CNCs are prepared from date palm leaves and different characterization studies verified the definite formations of CNCs and the effective integration of CNCs in the PA layer. From the FO experiments, it was confirmed that that the membrane with 0.05 wt% of CNCs in the TFC membrane (TFN-5) showed better FO performance in PW treatment. Pristine TFC and TFN-5 membrane exhibited 96.2% and 99.0% of salt rejection and 90.5% and 97.45% of oil rejection. Further, TFC and TFN-5 demonstrated 0.46 and 1.61 LMHB pure water permeability and 0.41 and 1.42 LHM salt permeability, respectively. Thus, the developed membrane can help in overcoming the current challenges associated with TFC FO membranes for PW treatment processes.
Collapse
Affiliation(s)
- Asif Saud
- Center for Advanced Material, Qatar University, Doha 2713, Qatar
| | - Haleema Saleem
- Center for Advanced Material, Qatar University, Doha 2713, Qatar
| | | | - Nazmin Munira
- Center for Advanced Material, Qatar University, Doha 2713, Qatar
| | - Maryam Khan
- Center for Advanced Material, Qatar University, Doha 2713, Qatar
| | | |
Collapse
|
47
|
Liu M, Zhang L, Geng N. Effect of Interlayer Construction on TFC Nanofiltration Membrane Performance: A Review from Materials Perspective. MEMBRANES 2023; 13:membranes13050497. [PMID: 37233558 DOI: 10.3390/membranes13050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Polyamide (PA) thin-film composite (TFC) nanofiltration (NF) membranes, which are extensively utilized in seawater desalination and water purification, are limited by the upper bounds of permeability-selectivity. Recently, constructing an interlayer between the porous substrate and the PA layer has been considered a promising approach, as it may resolve the trade-off between permeability and selectivity, which is ubiquitous in NF membranes. The progress in interlayer technology has enabled the precise control of the interfacial polymerization (IP) process, which regulates the structure and performance of TFC NF membranes, resulting in a thin, dense, and defect-free PA selective layer. This review presents a summary of the latest developments in TFC NF membranes based on various interlayer materials. By drawing from existing literature, the structure and performance of new TFC NF membranes using different interlayer materials, such as organic interlayers (polyphenols, ion polymers, polymer organic acids, and other organic materials) and nanomaterial interlayers (nanoparticles, one-dimensional nanomaterials, and two-dimensional nanomaterials), are systematically reviewed and compared. Additionally, this paper proposes the perspectives of interlayer-based TFC NF membranes and the efforts required in the future. This review provides a comprehensive understanding and valuable guidance for the rational design of advanced NF membranes mediated by interlayers for seawater desalination and water purification.
Collapse
Affiliation(s)
- Mingxiang Liu
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Nannan Geng
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
48
|
Yang Z, Wu C, Tang CY. Making waves: Why do we need ultra-permeable nanofiltration membranes for water treatment? WATER RESEARCH X 2023; 19:100172. [PMID: 36860551 PMCID: PMC9969056 DOI: 10.1016/j.wroa.2023.100172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the last few decades, developing ultra-permeable nanofiltration (UPNF) membranes has been a focus research area to support NF-based water treatment. Nevertheless, there have been ongoing debates and doubts on the need for UPNF membranes. In this work, we share our perspectives on why UPNF membranes are desired for water treatment. We analyze the specific energy consumption (SEC) of NF processes under various application scenarios, which reveals the potential of UPNF membranes for reducing SEC by 1/3 to 2/3 depending on the prevailing transmembrane osmotic pressure difference. Furthermore, UPNF membranes could potentially enable new process opportunities. Vacuum-driven submerged NF-modules could be retrofitted to existing water/wastewater treatment plants, offering lower SEC and lower cost compared to conventional NF systems. Their use in submerged membrane bioreactors (NF-MBR) can recycle wastewater into high-quality permeate water, which enables energy-efficient water reuse in a single treatment step. The ability for retaining soluble organics may further extend the application of NF-MBR for anaerobic treatment of dilute municipal wastewater. Critical analysis of membrane development reveals huge rooms for UPNF membranes to attain improved selectivity and antifouling performance. Our perspective paper offers important insights for the future development of NF-based water treatment technology, which could potentially lead to a paradigm shift in this burgeoning field.
Collapse
|
49
|
Hu A, Liu Y, Zheng J, Wang X, Xia S, Van der Bruggen B. Tailoring properties and performance of thin-film composite membranes by salt additives for water treatment: A critical review. WATER RESEARCH 2023; 234:119821. [PMID: 36889093 DOI: 10.1016/j.watres.2023.119821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
During the fabrication of thin film composite (TFC) membranes by interfacial polymerization (IP), the utilization of salt additives is one of the effective methods to regulate membrane properties and performance. Despite gradually receiving widespread attention for membrane preparation, the strategies, effects and underlying mechanisms of using salt additives have not yet been systematically summarized. This review for the first time provides an overview of various salt additives used to tailor properties and performance of TFC membranes for water treatment. By classifying salt additives into organic and inorganic salts, the roles of added salt additives in the IP process and the induced changes in membrane structure and properties are discussed in detail, and the different mechanisms of salt additives affecting membrane formation are summarized. Based on these mechanisms, the salt-based regulation strategies have shown great potential for improving the performance and application competitiveness of TFC membranes, including overcoming the trade-off relationship between water permeability and salt selectivity, tailoring membrane pore size distribution for precise solute-solute separation, and enhancing membrane antifouling performance. Finally, future research directions are suggested to focus on the long-term stability assessment of salt-modified membranes, the combined use of different salt additives, and the integration of salt regulation with other membrane design or modification strategies.
Collapse
Affiliation(s)
- Airan Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| |
Collapse
|
50
|
Tayel A, Abdelaal AB, Esawi AMK, Ramadan AR. Thin-Film Nanocomposite (TFN) Membranes for Water Treatment Applications: Characterization and Performance. MEMBRANES 2023; 13:membranes13050477. [PMID: 37233538 DOI: 10.3390/membranes13050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Thin-film nanocomposite (TFN) membranes have been widely investigated for water treatment applications due to their promising performance in terms of flux, salt rejection, and their antifouling properties. This review article provides an overview of the TFN membrane characterization and performance. It presents different characterization techniques that have been used to analyze these membranes and the nanofillers within them. The techniques comprise structural and elemental analysis, surface and morphology analysis, compositional analysis, and mechanical properties. Additionally, the fundamentals of membrane preparation are also presented, together with a classification of nanofillers that have been used so far. The potential of TFN membranes to address water scarcity and pollution challenges is significant. This review also lists examples of effective TFN membrane applications for water treatment. These include enhanced flux, enhanced salt rejection, antifouling, chlorine resistance, antimicrobial properties, thermal stability, and dye removal. The article concludes with a synopsis of the current status of TFN membranes and future perspectives.
Collapse
Affiliation(s)
- Amr Tayel
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed B Abdelaal
- Department of Chemistry, McGill University, 845 Rue Sherbrooke O, Montreal, QC H3A 0G4, Canada
| | - Amal M K Esawi
- Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Adham R Ramadan
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| |
Collapse
|