• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5068562)   Today's Articles (5)
For: Cha D, Park S, Kim MS, Kim T, Hong SW, Cho KH, Lee C. Prediction of Oxidant Exposures and Micropollutant Abatement during Ozonation Using a Machine Learning Method. Environ Sci Technol 2021;55:709-718. [PMID: 33297674 DOI: 10.1021/acs.est.0c05836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Number Cited by Other Article(s)
1
Garazade N, Can-Güven E, Güven F, Yazici Guvenc S, Varank G. Application of machine learning algorithms for the prediction of metformin removal with hydroxyl radical-based photochemical oxidation and optimization of process parameters. JOURNAL OF HAZARDOUS MATERIALS 2025;489:137552. [PMID: 39954435 DOI: 10.1016/j.jhazmat.2025.137552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/11/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
2
Cai W, Ye C, Ao F, Xu Z, Chu W. Emerging applications of fluorescence excitation-emission matrix with machine learning for water quality monitoring: A systematic review. WATER RESEARCH 2025;277:123281. [PMID: 39970782 DOI: 10.1016/j.watres.2025.123281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
3
Zhuang W, Zhao X, Luo Q, Lv X, Zhang Z, Zhang L, Sui M. Task decomposition strategy based on machine learning for boosting performance and identifying mechanisms in heterogeneous activation of peracetic acid process. WATER RESEARCH 2024;267:122521. [PMID: 39357159 DOI: 10.1016/j.watres.2024.122521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
4
Martuza MA, Shafiquzzaman M, Haider H, Ahsan A, Ahmed AT. Predicting removal of arsenic from groundwater by iron based filters using deep neural network models. Sci Rep 2024;14:26428. [PMID: 39488582 PMCID: PMC11531467 DOI: 10.1038/s41598-024-76758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024]  Open
5
Cha D, Park S, Kim MS, Lee J, Lee Y, Cho KH, Lee C. Prediction of hydroxyl radical exposure during ozonation using different machine learning methods with ozone decay kinetic parameters. WATER RESEARCH 2024;261:122067. [PMID: 39003877 DOI: 10.1016/j.watres.2024.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
6
Kye H, Nam SH, Kim E, Koo J, Shin Y, Lee J, Hwang TM. Application of tryptophan-like fluorescence index to quantify the trace organic compounds removal in wastewater ozonation. CHEMOSPHERE 2024;363:142862. [PMID: 39029713 DOI: 10.1016/j.chemosphere.2024.142862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
7
Zhang W, Ashraf WM, Senadheera SS, Alessi DS, Tack FMG, Ok YS. Machine learning based prediction and experimental validation of arsenite and arsenate sorption on biochars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;904:166678. [PMID: 37657549 DOI: 10.1016/j.scitotenv.2023.166678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
8
Hernandez-Betancur JD, Ruiz-Mercado GJ, Martin M. Predicting Chemical End-of-Life Scenarios Using Structure-Based Classification Models. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023;11:3594-3602. [PMID: 36911873 PMCID: PMC9993395 DOI: 10.1021/acssuschemeng.2c05662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/10/2023] [Indexed: 06/18/2023]
9
Non-thermal plasma coupled liquid-phase catalysis /Fe2+ for VOCs removal: Enhanced mechanism of protocatechuic acid. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
10
Park S, Shim J, Yoon N, Lee S, Kwak D, Lee S, Kim YM, Son M, Cho KH. Deep reinforcement learning in an ultrafiltration system: Optimizing operating pressure and chemical cleaning conditions. CHEMOSPHERE 2022;308:136364. [PMID: 36087735 DOI: 10.1016/j.chemosphere.2022.136364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
11
Ma X, Xu W, Su R, Shao L, Zeng Z, Li L, Wang H. Insights into CO2 capture in porous carbons from machine learning, experiments and molecular simulation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
12
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022;56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
13
Yu G, Wu Y, Cao H, Ge Q, Dai Q, Sun S, Xie Y. Insights into the Mechanism of Ozone Activation and Singlet Oxygen Generation on N-Doped Defective Nanocarbons: A DFT and Machine Learning Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022;56:7853-7863. [PMID: 35615937 DOI: 10.1021/acs.est.1c08666] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
14
Zhu M, Wang J, Yang X, Zhang Y, Zhang L, Ren H, Wu B, Ye L. A review of the application of machine learning in water quality evaluation. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022;1:107-116. [PMID: 38075524 PMCID: PMC10702893 DOI: 10.1016/j.eehl.2022.06.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/31/2023]
15
An Intelligent Deep Learning Model for CO 2 Adsorption Prediction. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/8136302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
16
Huang R, Ma C, Ma J, Huangfu X, He Q. Machine learning in natural and engineered water systems. WATER RESEARCH 2021;205:117666. [PMID: 34560616 DOI: 10.1016/j.watres.2021.117666] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
17
Yuan X, Suvarna M, Low S, Dissanayake PD, Lee KB, Li J, Wang X, Ok YS. Applied Machine Learning for Prediction of CO2 Adsorption on Biomass Waste-Derived Porous Carbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021;55:11925-11936. [PMID: 34291911 DOI: 10.1021/acs.est.1c01849] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
18
Jeong N, Chung TH, Tong T. Predicting Micropollutant Removal by Reverse Osmosis and Nanofiltration Membranes: Is Machine Learning Viable? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021;55:11348-11359. [PMID: 34342439 DOI: 10.1021/acs.est.1c04041] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA